Chinese Populations of Magnaporthe oryzae Serving as a Source of Human-Mediated Gene Flow to Asian Countries: A Population Genomic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolate Sampling, DNA Preparation, Genome Sequencing and Published Genome Collection
2.2. Identification of Single-Nucleotide Polymorphism
2.3. Characterization of Genetic Diversity and Population Genetic Structures
2.4. Phylogeographic Analysis of M. oryzae
3. Results
3.1. Temporal Dynamics of Genetic Diversity in Chinese M. oryzae Populations
3.2. Genetic Structures of Worldwide Geographic Populations
3.3. Migration Patterns of M. oryzae
3.4. Demographic History of M. oryzae Populations
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Talbot, N.J. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 2003, 57, 177–202. [Google Scholar] [CrossRef] [PubMed]
- Khang, C.H.; Park, S.Y.; Lee, Y.H.; Valent, B.; Kang, S. Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex. Mol. Plant Microbe Interact. 2008, 21, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Zeigler, R.S. Recombination in Magnaporthe grisea. Annu. Rev. Phytopathol. 1998, 36, 249. [Google Scholar] [CrossRef]
- Valent, B. The Impact of Blast Disease: Past, Present, and Future. Methods Mol. Biol. 2021, 2356, 1–18. [Google Scholar]
- Notteghem, J.L.; Silué, D. Distribution of the mating type alleles in Magnaporthe grisea populations pathogenic on rice. Phytopathology 1992, 82, 421–424. [Google Scholar] [CrossRef]
- Dayakar, B.V.; Narayanan, N.N.; Gnanamanickam, S.S. Cross-Compatibility and Distribution of Mating Type Alleles of the Rice Blast Fungus Magnaporthe grisea in India. Plant Dis. 2000, 84, 700–704. [Google Scholar] [CrossRef]
- Maciel, J.L.; Ceresini, P.C.; Castroagudin, V.L.; Zala, M.; Kema, G.H.; McDonald, B.A. Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology 2014, 104, 95–107. [Google Scholar] [CrossRef]
- Tredway, L.P.; Stevenson, K.L.; Burpee, L.L. Mating type distribution and fertility status in Magnaporthe grisea populations from turfgrasses in georgia. Plant Dis. 2003, 87, 435–441. [Google Scholar] [CrossRef]
- Consolo, V.F.; Cordo, C.A.; Salerno, G.L. Mating-type distribution and fertility status in Magnaporthe grisea populations from Argentina. Mycopathologia 2005, 160, 285–290. [Google Scholar] [CrossRef]
- Zhan, J.; Thrall, P.H.; Burdon, J.J. Achieving sustainable plant disease management through evolutionary principles. Trends Plant Sci. 2014, 19, 570–575. [Google Scholar] [CrossRef]
- Markert, J.A.; Champlin, D.M.; Gutjahr-Gobell, R.; Grear, J.S.; Kuhn, A.; McGreevy, T.J., Jr.; Roth, A.; Bagley, M.J.; Nacci, D.E. Population genetic diversity and fitness in multiple environments. BMC Evol. Biol. 2010, 10, 205. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, W.; Tian, K.; Zheng, J.; Liu, X.; Li, K.; Lu, W.; Tan, Y.; Qin, Y.; Wang, C. Genetic diversity and pathogenicity dynamics of Magnaporthe oryzae in the wuling mountain area of China. Eur. J. Plant Pathol. 2019, 153, 731–742. [Google Scholar] [CrossRef]
- Xu, X.; Tang, X.; Han, H.; Yang, W.; Liu, X.; Li, K.; Tan, Y.; Qin, Y.; Liu, X.; Wang, C. Pathogenicity, mating type distribution and avirulence gene mutation of Magnaporthe oryzae populations in the wuling mountain region of China. Physiol. Mol. Plant Pathol. 2021, 116, 101716. [Google Scholar] [CrossRef]
- Li, Y.; Liu, E.M.; Dai, L.Y.; Li, C.Y.; Liu, L. Genetic diversity among populations as related to pathotypes for Magnaporthe grisea in hunan province. Chin. J. Rice Sci. 2007, 21, 304. [Google Scholar]
- Yadav, M.K.; Aravindan, S.; Raghu, S.; Prabhukarthikeyan, S.; Keerthana, U.; Ngangkham, U.; Pramesh, D.; Banerjee, A.; Adak, T.; Kar, M.K.; et al. Assessment of genetic diversity and population structure of Magnaporthe oryzae causing rice blast disease using ssr markers. Physiol. Mol. Plant Pathol. 2019, 106, 157–165. [Google Scholar] [CrossRef]
- Jagadeesh, D.; Kumar, M.K.P.; Amruthavalli, C.; Devaki, N.S. Genetic diversity of Magnaporthe oryzae, the blast pathogen of rice in different districts of karnataka, india determined by simple sequence repeat (ssr) markers. Indian Phytopathol. 2020, 73, 713–723. [Google Scholar] [CrossRef]
- Longya, A.; Talumphai, S.; Jantasuriyarat, C. Morphological characterization and genetic diversity of rice blast fungus, Pyricularia oryzae, from thailand using issr and srap markers. J. Fungi 2020, 6, 38. [Google Scholar] [CrossRef]
- Lopez, A.L.C.; Cumagun, C.J.R. Genetic structure of Magnaporthe oryzae populations in three island groups in the philippines. Eur. J. Plant Pathol. 2019, 153, 101–118. [Google Scholar] [CrossRef]
- Odjo, T.; Diagne, D.; Adreit, H.; Milazzo, J.; Raveloson, H.; Andriantsimialona, D.; Kassankogno, A.I.; Ravel, S.; Gumedzoé, Y.M.D.; Ouedraogo, I.; et al. Structure of african populations of Pyricularia oryzae from rice. Phytopathology 2021, 111, 1428–1437. [Google Scholar] [CrossRef]
- Roumen, E.; Levy, M.; Notteghem, J.L. Characterisation of the european pathogen population of Magnaporthe grisea by DNA fingerprinting and pathotype analysis. Eur. J. Plant Pathol. 1997, 103, 363–371. [Google Scholar] [CrossRef]
- Pagliaccia, D.; Urak, R.Z.; Wong, F.; Douhan, L.I.; Greer, C.A.; Vidalakis, G.; Douhan, G.W. Genetic structure of the rice blast pathogen (Magnaporthe oryzae) over a decade in North Central California rice fields. Microb. Ecol. 2018, 75, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Onaga, G.; Suktrakul, W.; Wanjiku, M.; Quibod, I.L.; Entfellner, J.B.D.; Bigirimana, J.; Habarugira, G.; Murori, R.; Asea, G.; Ismail, A.M.; et al. Magnaporthe oryzae populations in sub-saharan africa are diverse and show signs of local adaptation. BioRxiv 2020. [Google Scholar] [CrossRef]
- Zhong, Z.; Chen, M.; Lin, L.; Han, Y.; Bao, J.; Tang, W.; Lin, L.; Lin, Y.; Somai, R.; Lu, L.; et al. Population genomic analysis of the rice blast fungus reveals specific events associated with expansion of three main clades. ISME J. 2018, 12, 1867–1878. [Google Scholar] [CrossRef]
- Saleh, D.; Milazzo, J.; Adreit, H.; Fournier, E.; Tharreau, D. South-East Asia is the center of origin, diversity and dispersion of the rice blast fungus, Magnaporthe oryzae. New Phytol. 2014, 201, 1440–1456. [Google Scholar] [CrossRef]
- Gladieux, P.; Ravel, S.; Rieux, A.; Cros-Arteil, S.; Adreit, H.; Milazzo, J.; Thierry, M.; Fournier, E.; Terauchi, R.; Tharreau, D. Coexistence of multiple endemic and pandemic lineages of the rice blast pathogen. mBio 2018, 9, e01806-17. [Google Scholar] [CrossRef]
- Taheri, P.; Irannejad, A. Genetic structure of various Magnaporthe oryzae populations in iran and uruguay. Australas. Plant Pathol. 2014, 43, 287–297. [Google Scholar] [CrossRef]
- Duan, G.; Bao, J.; Chen, X.; Xie, J.; Liu, Y.; Chen, H.; Zheng, H.; Tang, W.; Wang, Z. Large-scale genome scanning within exonic regions revealed the contributions of selective sweep prone genes to host divergence and adaptation in Magnaporthe oryzae species complex. Microorganisms 2021, 9, 562. [Google Scholar] [CrossRef]
- Gladieux, P.; Condon, B.; Ravel, S.; Soanes, D.; Maciel, J.L.N.; Nhani, A., Jr.; Chen, L.; Terauchi, R.; Lebrun, M.H.; Tharreau, D.; et al. Gene Flow between Divergent Cereal- and Grass-Specific Lineages of the Rice Blast Fungus Magnaporthe oryzae. mBio 2018, 9, e01219-17. [Google Scholar] [CrossRef]
- Lande, R. Neutral theory of quantitative genetic variance in an island model with local extinction and colonization. Evolution 1992, 46, 381–389. [Google Scholar] [CrossRef]
- Kimura, M.; Weiss, G.H. The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 1964, 49, 561–576. [Google Scholar] [CrossRef]
- Meng, J.-W.; He, D.-C.; Zhu, W.; Yang, L.-N.; Wu, E.-J.; Xie, J.-H.; Shang, L.-P.; Zhan, J. Human-mediated gene flow contributes to metapopulation genetic structure of the pathogenic fungus Alternaria alternata from potato. Front. Plant Sci. 2018, 9, 00198. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Chen, C.; Li, B.; Weng, Q.; Chen, Q. The gene flow direction of geographically distinct Phytophthora infestans populations in China corresponds with the route of seed potato exchange. Front. Microbiol. 2020, 11, 1077. [Google Scholar] [CrossRef] [PubMed]
- Tharreau, D.; Fudal, I.; Andriantsimialona, D.; Santoso; Utami, D.; Fournier, E.; Lebrun, M.-H.; Nottéghem, J.-L. World population structure and migration of the rice blast fungus, Magnaporthe oryzae. In Advances in Genetics, Genomics and Control of Rice Blast Disease; Springer: Berlin/Heidelberg, Germany, 2009; pp. 209–215. [Google Scholar]
- Onaga, G.; Wydra, K.; Koopmann, B.; Séré, Y.; von Tiedemann, A. Population structure, pathogenicity, and mating type distribution of Magnaporthe oryzae isolates from east Africa. Phytopathology 2015, 105, 1137–1145. [Google Scholar] [CrossRef]
- Park, S.Y.; Milgroom, M.; Han, S.; Kang, S.; Lee, Y.H. Genetic differentiation of Magnaporthe oryzae populations from scouting plots and commercial rice fields in Korea. Phytopathology 2008, 98, 436–442. [Google Scholar] [CrossRef]
- Kawakubo, S.; Gao, F.; Li, S.; Tan, Z.; Huang, Y.-K.; Adkar-Purushothama, C.R.; Gurikar, C.; Maneechoat, P.; Chiemsombat, P.; Aye, S.S.; et al. Genomic analysis of the brassica pathogen turnip mosaic potyvirus reveals its spread along the former trade routes of the Silk Road. Proc. Natl. Acad. Sci. USA 2021, 118, e2021221118. [Google Scholar] [CrossRef]
- Zhong, Z.; Norvienyeku, J.; Chen, M.; Bao, J.; Lin, L.; Chen, L.; Lin, Y.; Wu, X.; Cai, Z.; Zhang, Q.; et al. Directional selection from host plants is a major force driving host specificity in Magnaporthe species. Sci. Rep. 2016, 6, 25591. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Dean, R.A.; Talbot, N.J.; Ebbole, D.J.; Farman, M.L.; Mitchell, T.K.; Orbach, M.J.; Thon, M.; Kulkarni, R.; Xu, J.R.; Pan, H.; et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 2005, 434, 980–986. [Google Scholar] [CrossRef]
- Li, F.; Fast, R. Accurate short read alignment with burrows-wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Delcher, A.L.; Phillippy, A.; Carlton, J.; Salzberg, S.L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 2002, 30, 2478–2483. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, B.; Wittelsbürger, U.; Ramos-Onsins, S.E.; Lercher, M.J. PopGenome: An efficient Swiss army knife for population genomic analyses in R. Mol. Biol. Evol. 2014, 31, 1929–1936. [Google Scholar] [CrossRef] [PubMed]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R package for genetic analysis of populations with clonal or partially clonal reproduction. PeerJ 2013, 2, e281. [Google Scholar] [CrossRef]
- Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Francis, R.M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 2017, 17, 27–32. [Google Scholar] [CrossRef]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Lemey, P.; Rambaut, A.; Drummond, A.J.; Suchard, M.A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 2009, 5, e1000520. [Google Scholar] [CrossRef]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. Modelfinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, E.M. Vcf2phylip v2.0: Convert a vcf matrix into several matrix formats for phylogenetic analysis. Zenodo 2019. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Bielejec, F.; Baele, G.; Vrancken, B.; Suchard, M.A.; Rambaut, A.; Lemey, P. SpreaD3, Interactive visualization of spatiotemporal history and trait evolutionary processes. Mol. Biol. Evol. 2016, 33, 2167–2169. [Google Scholar] [CrossRef]
- Li, Q.; Xu, K.; Yu, R.J. Genetic variation in chinese hatchery populations of the japanese scallop (patinopecten yessoensis) inferred from microsatellite data. Aquaculture 2007, 269, 211–219. [Google Scholar] [CrossRef]
- Edwards, A.W. The genetical theory of natural selection. Genetics 2000, 154, 1419–1426. [Google Scholar] [CrossRef]
- Zhan, J. Population genetics of plant pathogens. In eLS; McDonald, B., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- McDonald, B.A.; McDermott, J.M. Population genetics of plant pathogenic fungi. Bioscience 1993, 43, 311–319. [Google Scholar] [CrossRef]
- Gutaker, R.M.; Groen, S.C.; Bellis, E.S.; Choi, J.Y.; Pires, I.S.; Bocinsky, R.K.; Slayton, E.R.; Wilkins, O.; Castillo, C.C.; Negrão, S.; et al. Genomic history and ecology of the geographic spread of rice. Nat. Plants 2020, 6, 492–502. [Google Scholar] [CrossRef]
- Gross, B.L.; Zhao, Z. Archaeological and genetic insights into the origins of domesticated rice. Proc. Natl. Acad. Sci. USA 2014, 111, 6190–6197. [Google Scholar] [CrossRef]
- Thon, M.R.; Pan, H.; Diener, S.; Papalas, J.; Taro, A.; Mitchell, T.K.; Dean, R.A. The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biol. 2006, 7, R16. [Google Scholar] [CrossRef]
- Couch, B.C.; Kohn, L.M. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 2002, 94, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Saunders, D.G.O.; Mitsuoka, C.; Natsume, S.; Kosugi, S.; Saitoh, H.; Inoue, Y.; Chuma, I.; Tosa, Y.; Cano, L.M.; et al. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genom. 2016, 17, 370. [Google Scholar] [CrossRef]
- Chung, H.; Goh, J.; Han, S.S.; Roh, J.H.; Kim, Y.; Heu, S.; Shim, H.K.; Jeong, D.G.; Kang, I.J.; Yang, J.W. Comparative pathogenicity and host ranges of Magnaporthe oryzae and related species. Plant Pathol. J. 2020, 36, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E.; Haydon, D.T.; Antia, R. Emerging pathogens: The epidemiology and evolution of species jumps. Trends Ecol. Evol. 2005, 20, 238–244. [Google Scholar] [CrossRef]
- Parada-Rojas, C.H.; Quesada-Ocampo, L.M. Phytophthora capsici populations are structured by host, geography, and fluopicolide sensitivity. Phytopathology 2022, 112, 1559–1567. [Google Scholar] [CrossRef]
- Diao, Y.; Zhang, C.; Xu, J.; Lin, D.; Liu, L.; Mtung’e, O.G.; Liu, X. Genetic differentiation and recombination among geographic populations of the fungal pathogen Colletotrichum truncatum from chili peppers in China. Evol. Appl. 2015, 8, 108–118. [Google Scholar] [CrossRef]
- Li, J.; Lu, L.; Jia, Y.; Wang, Q.; Fukuta, Y.; Li, C. Characterization of field isolates of Magnaporthe oryzae with mating type, DNA fingerprinting, and pathogenicity assays. Plant Dis. 2016, 100, 298–303. [Google Scholar] [CrossRef]
- Teixeira, M.M.; Barker, B.M. Use of population genetics to assess the ecology, evolution, and population structure of coccidioides. Emerg. Infect. Dis. 2016, 22, 1022–1030. [Google Scholar] [CrossRef]
- Huang, X.; Kurata, N.; Wei, X.; Wang, Z.-X.; Wang, A.; Zhao, Q.; Zhao, Y.; Liu, K.; Lu, H.; Li, W.; et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 2012, 490, 497–501. [Google Scholar] [CrossRef]
- Londo, J.P.; Chiang, Y.C.; Hung, K.H.; Chiang, T.Y.; Schaal, B.A. Phylogeography of asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc. Natl. Acad. Sci. USA 2006, 103, 9578–9583. [Google Scholar] [CrossRef]
- Huang, X.; Han, B. Rice domestication occurred through single origin and multiple introgressions. Nat. Plants 2015, 2, 15207. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Platts, A.E.; Fuller, D.Q.; Hsing, Y.I.; Wing, R.A.; Purugganan, M.D. The rice paradox: Multiple origins but single domestication in asian rice. Mol. Biol. Evol. 2017, 34, 969–979. [Google Scholar] [CrossRef]
- Yang, M.; Smit, S.; de Ridder, D.; Feng, J.; Liu, T.; Xu, J.; van der Lee, T.A.J.; Zhang, H.; Chen, W. Adaptation of Fusarium Head Blight Pathogens to Changes in Agricultural Practices and Human Migration. Adv. Sci. 2024, 5, e2401899. [Google Scholar] [CrossRef] [PubMed]
- Thrall, P.H.; Oakeshott, J.G.; Fitt, G.; Southerton, S.; Burdon, J.J.; Sheppard, A.; Russell, R.J.; Zalucki, M.; Heino, M.; Denison, R.F. Evolution in agriculture: The application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol. Appl. 2011, 4, 200–215. [Google Scholar] [CrossRef]
- Williams, P.D. Darwinian interventions: Taming pathogens through evolutionary ecology. Trends Parasitol. 2010, 26, 83–92. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, G.; Liu, Y.; Zheng, C.; Yu, K.; Xie, J.; Wang, B.; Zheng, H.; Tang, W.; Bao, J.; Wang, Z.; et al. Chinese Populations of Magnaporthe oryzae Serving as a Source of Human-Mediated Gene Flow to Asian Countries: A Population Genomic Analysis. J. Fungi 2024, 10, 739. https://doi.org/10.3390/jof10110739
Duan G, Liu Y, Zheng C, Yu K, Xie J, Wang B, Zheng H, Tang W, Bao J, Wang Z, et al. Chinese Populations of Magnaporthe oryzae Serving as a Source of Human-Mediated Gene Flow to Asian Countries: A Population Genomic Analysis. Journal of Fungi. 2024; 10(11):739. https://doi.org/10.3390/jof10110739
Chicago/Turabian StyleDuan, Guohua, Yuchan Liu, Cheng Zheng, Kaihui Yu, Jiahui Xie, Baohua Wang, Huakun Zheng, Wei Tang, Jiandong Bao, Zonghua Wang, and et al. 2024. "Chinese Populations of Magnaporthe oryzae Serving as a Source of Human-Mediated Gene Flow to Asian Countries: A Population Genomic Analysis" Journal of Fungi 10, no. 11: 739. https://doi.org/10.3390/jof10110739
APA StyleDuan, G., Liu, Y., Zheng, C., Yu, K., Xie, J., Wang, B., Zheng, H., Tang, W., Bao, J., Wang, Z., & Chen, M. (2024). Chinese Populations of Magnaporthe oryzae Serving as a Source of Human-Mediated Gene Flow to Asian Countries: A Population Genomic Analysis. Journal of Fungi, 10(11), 739. https://doi.org/10.3390/jof10110739