The Fungal Community Structure Regulates Elevational Variations in Soil Organic Carbon Fractions in a Wugong Mountain Meadow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Experimental Design and Soil Sampling
2.3. Soil Physicochemical Analyses
2.4. SOC Fraction Analysis
2.5. Soil Microbial Residue C Analyses
2.6. Soil DNA Extraction, PCR Amplification, and Illumina Sequencing
2.7. Statistical Analysis
3. Results
3.1. Variation in Soil Physicochemical Properties Along an Elevation Gradient
3.2. Variation in SOC Fractions Along an Elevation Gradient
3.3. Variation in Soil Microbial Residue C Along an Elevation Gradient
3.4. Variation in Soil Fungal Community α-Diversity Along an Elevation Gradient
3.5. Variations in Soil Fungal Community Composition and Structure Along an Elevation Gradient
3.6. Factor Analysis of SOC Fractions
4. Discussion
4.1. Contribution of Fungi to the Soil C Pool Was Far Higher than That of Bacteria
4.2. Elevation Changed the Soil Fungal Community Structure and Diversity
4.3. Elevation Did Not Change Soil Fungal Residue C Concentration
4.4. Elevation Did Not Change SOC Concentration but Significantly Affected SOC Fractions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. IPCC Fourth Assessment Report: Climatic Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cabridge University Press: New York, NY, USA, 2007. [Google Scholar]
- Schlesinger, W.H.; Andrews, J.A. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Georgiou, K.; Jackson, R.B.; Vinduková, O.; Abramoff, R.Z.; Ahlstrm, A.; Feng, W.; Harden, J.W.; Pellegrini, A.F.A.; Polley, H.W.; Soong, J.L.; et al. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 2022, 13, 3797. [Google Scholar] [CrossRef] [PubMed]
- Angst, G.; Mueller, K.E.; Nierop, K.G.J.; Simpson, M.J. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol. Biochem. 2021, 156, 108189. [Google Scholar] [CrossRef]
- Galy, V.; Peucker-Ehrenbrink, B.; Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 2015, 521, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Bossio, D.A.; Cook-Patton, S.C.; Ellis, P.W.; Fargione, J.; Sanderman, J.; Smith, P.; Wood, S.; Zomer, R.J.; von Unger, M.; Emmer, I.M.; et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 2020, 3, 391–398. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Koegel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Guan, S.; An, N.; Zong, N.; He, Y.t.; Shi, P.l.; Zhang, J.J.; He, N.P. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil Biol. Biochem. 2018, 116, 224–236. [Google Scholar] [CrossRef]
- Lehmann, J.; Hansel, C.M.; Kaiser, C.; Kleber, M.; Maher, K.; Manzoni, S.; Nunan, N.; Reichstein, M.; Schimel, J.P.; Torn, M.S.; et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 2020, 13, 529–534. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Elliott, E.T. Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Williams, E.K.; Fogel, M.L.; Berhe, A.A.; Plante, A.F. Distinct bioenergetic signatures in particulate versus mineral-associated soil organic matter. Geoderma 2018, 330, 107–116. [Google Scholar] [CrossRef]
- Sokol, N.W.; Sanderman, J.; Bradford, M.A. Pathways of mineral- associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biol. 2019, 25, 12–24. [Google Scholar] [CrossRef]
- Buckeridge, K.M.; Creamer, C.; Whitaker, J. Deconstructing the microbial necromass continuum to inform soil carbon sequestration. Funct. Ecol. 2022, 36, 1396–1410. [Google Scholar] [CrossRef]
- Hofmockel, K.S.; Zak, D.R.; Moran, K.K.; Jastrow, J.D. Changes in forest soil organic matter pools after a decade of elevated CO2 and O3. Soil Biol. Biochem. 2011, 43, 1518–1527. [Google Scholar] [CrossRef]
- Poeplau, C.; Thomas, K.T.; Leblans, N.I.W.; Sigurdsson, B.D. Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland. Global Change Biol. 2017, 23, 1316–1327. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Niu, S.L.; Zhang, Z.; Yang, H.J.; Li, L.H.; Wan, S.Q. Light and heavy fractions of soil organic matter in response to climate warming and increased precipitation in a temperate steppe. PLoS ONE 2012, 7, e33217. [Google Scholar] [CrossRef]
- Chen, J.G.; Xiao, W.; Zheng, C.Y.; Zhu, B. Nitrogen addition has contrasting effects on particulate and mineral-associated soil organic carbon in a subtropical forest. Soil Biol. Biochem. 2020, 142, 107708. [Google Scholar] [CrossRef]
- Rocci, K.; Lavalle, J.M.; Stewart, C.E.; Cotrufo, M.F. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. Sci. Total Environ. 2021, 793, 148569. [Google Scholar] [CrossRef]
- Georgiou, K.; Abramoff, R.Z.; Harte, J.; Riley, W.J.; Torn, M.S. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nat. Commun. 2017, 8, 1223. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, X.; Pei, G.T.; Xia, Z.W.; Peng, B.; Sun, L.F.; Gao, D.C.; Chen, S.D.; Liu, D.W.; Dai, W.W.; et al. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biol. Biochem. 2020, 141, 107687. [Google Scholar] [CrossRef]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Liu, X.; Lin, W.; Li, X.; Yang, L.; Sun, S.; Hui, D.; Guo, J.; Zou, X.; Yang, Y. Tree roots exert greater influence on soil microbial necromass carbon than above-ground litter in subtropical natural and plantation forests. Soil Biol. Biochem. 2022, 173, 108811. [Google Scholar] [CrossRef]
- Tian, P.; Zhao, X.; Liu, S.; Wang, Q.; Zhang, W.; Guo, P.; Razavi, B.S.; Liang, C. Differential responses of fungal and bacterial necromass accumulation in soil to nitrogen deposition in relation to deposition rate. Sci. Total Environ. 2022, 847, 157645. [Google Scholar] [CrossRef]
- Liang, C.; Cheng, G.; Wixon, D.L.; Balser, T.C. An Absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization. Biogeochemistry 2011, 106, 303–309. [Google Scholar] [CrossRef]
- Clipson, N.; Otte, M.; Landy, E. Biogeochemical roles of fungi in marine and estuaring habitats. In Fungi in Biogeochemical Cycles; Gadd, G.M., Ed.; Cambridge University Press: New York, NY, USA, 2006; pp. 436–461. [Google Scholar]
- Cotrufo, M.F.; Ranalli, M.G.; Haddix, M.L.; Six, J.; Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 2019, 12, 989–994. [Google Scholar] [CrossRef]
- Clemmensen, K.E.; Bahr, A.; Ovaskainen, O.; Dahlberg, A.; Ekblad, A.; Wallander, H.; Stenlid, J.; Finlay, R.D.; Wardle, D.A.; Lindahl, B.D. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 2013, 339, 1615–1618. [Google Scholar] [CrossRef]
- Li, N.; Xu, Y.Z.; Han, X.Z.; He, H.B.; Zhang, X.D.; Zhang, B. Fungi contribute more than bacteria to soil organic matter through necromass accumulation under different agricultural practices during the early pedogenesis of a Mollisol. Eur. J. Soil Biol. 2015, 67, 51–58. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J.; Wang, X.; Hartley, I.P.; Zhang, Y. Fungal necromass contributes more to soil organic carbon and more sensitive to land use intensity than bacterial necromass. App. Soil Ecol. 2022, 176, 104492. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhou, L.Y.; Fu, Y.L.; Jiang, Z.; Jia, S.X.; Song, B.Q.; Liu, D.G.; Zhou, X.H. Drought-induced changes in rare microbial community promoted contribution of microbial necromass C to SOC in a subtropical forests. Soil Biol. Biochem. 2024, 189, 109252. [Google Scholar] [CrossRef]
- Liang, C.; Amelung, W.; Lehmann, J.; Kastner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biol. 2019, 25, 3578–3590. [Google Scholar] [CrossRef]
- Wang, B.R.; An, S.S.; Liang, C.; Yang, L.; Yakov, K. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biol. Biochem. 2021, 162, 108422. [Google Scholar] [CrossRef]
- Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 637–669. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araujo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C.; Chen, I.; Clark, T.D.; Colwell, R.K.; Danielsen, F.; Evengard, B.; et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, 6332. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.T.; Zak, D.R.; White, D.C.; Peacock, A. Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci. Am. J. 2001, 65, 359–367. [Google Scholar] [CrossRef]
- Treseder, K.K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 2004, 164, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Castro, H.F.; Classen, A.T.; Austin, E.E.; Norby, R.J.; Schadt, C.W. Soil microbial community responses to multiple experimental climate change drivers. Appl. Environ. Microb. 2010, 76, 999–1007. [Google Scholar] [CrossRef]
- Wakelin, S.A.; Colloff, M.J.; Harvey, P.R.; Marschner, P.; Gregg, A. The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigatedmaize. FEMS Microbiol. Ecol. 2007, 59, 661–670. [Google Scholar] [CrossRef]
- Butler, O.M.; Manzoni, S.; Warren, C.R. Community composition and physiological plasticity control microbial carbon storage across natural and experimental soil fertility gradients. ISME J. 2023, 17, 2259–2269. [Google Scholar] [CrossRef] [PubMed]
- Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Siles, J.A.; Margesin, R. Seasonal soil microbial responses are limited to changes in functionality at two alpine forest sites differing in altitude and vegetation. Sci. Rep. 2017, 7, 2204. [Google Scholar] [CrossRef] [PubMed]
- Sundqvist, M.K.; Sanders, N.J.; Wardle, D.A. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 261–280. [Google Scholar] [CrossRef]
- Bragazza, L.; Bardgett, R.D.; Mitchell, E.A.D.; Buttler, A. Linking soil microbial communities to vascular plant abundance along a climate gradient. New Phytol. 2015, 205, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Cheng, X.L.; Hui, D.F.; Zhang, Q.; Li, M.; Zhang, Q.F. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China. Sci. Total Environ. 2016, 541, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.F.; Cotrufo, M.F. Grassland soil carbon sequestration: Current understanding, challenges, and solution. Science 2022, 377, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.; Hastings, A.; Chadwick, D.R.; Jones, D.L.; Evans, C.D.; Jones, M.B.; Rees, R.M.; Smith, P. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric. Ecosyst. Environ. 2018, 253, 62–81. [Google Scholar] [CrossRef]
- Lugato, E.; Lavallee, J.M.; Haddix, M.L.; Panagos, P.; Cotrufo, M.F. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 2021, 14, 295–300. [Google Scholar] [CrossRef]
- Zhou, W.; Gang, C.C.; Zhou, L.; Chen, Y.; Li, J.L.; Ju, W.M.; Odeh, I. Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China. Acta Oecol. 2014, 55, 86–96. [Google Scholar] [CrossRef]
- Deng, L.; Shangguan, Z.P.; Wu, G.L.; Chang, X.F. Efects of grazing exclusion on carbon sequestration in China’s grassland. Earth-Sci. Rev. 2017, 173, 84–95. [Google Scholar] [CrossRef]
- Yang, Y.; Tilman, D.; Furey, G.; Lehman, C. Soil carbon sequestion accelerated by restoration of grassland biodiversity. Nat. Commun. 2019, 10, 718. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting global grassland degredation. Nat. Rev. Earth Env. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Aronson, E.L.; Goulden, M.L.; Allison, S.D. Greenhouse gas fluxes under drought and nitrogen addition in a Southern California grassland. Soil Biol. Biochem. 2019, 131, 19–27. [Google Scholar] [CrossRef]
- Wang, M.M.; Sun, X.; Cao, B.C.; Chiariello, N.R.; Docherty, K.M.; Field, C.B.; Gao, Q.; Gutknecht, J.L.M.; Guo, X.; He, G.H.; et al. Long-term elevated precipitation induces grassland soil carbon loss via microbe-plant–soil interplay. Global Change Biol. 2023, 29, 5429–5444. [Google Scholar] [CrossRef] [PubMed]
- White, R.P.; Murray, S.; Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems; World Resources Institute: Washington, DC, USA, 2000. [Google Scholar]
- Wang, C.; Qu, L.R.; Yang, L.M.; Liu, D.W.; Morrissey, E.; Miao, R.H.; Liu, Z.P.; Wang, Q.K.; Fang, Y.T.; Bai, E. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biol. 2021, 27, 2039–2048. [Google Scholar] [CrossRef] [PubMed]
- Strickland, M.S.; Rousk, J. Considering fungal: Bacterial dominance in soils methods, controls, and ecosystem implications. Soil Biol. Biochem. 2010, 42, 1385–1395. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Haddix, M.L.; Kroeger, M.E.; Stewart, C.E. The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biol. Biochem. 2022, 168, 108648. [Google Scholar] [CrossRef]
- Ren, Q.; Yuan, J.H.; Wang, J.P.; Liu, X.; Ma, S.L.; Zhou, L.Y.; Miao, L.J.; Zhang, J.C. Water level has higher influence on soil organic carbon and microbial community in Poyang lake wetland than vegetation type. Microorganisms 2022, 10, 131. [Google Scholar] [CrossRef]
- Indorf, C.; Dyckmans, J.; Khan, K.S.; Joergensen, T.G. Optimisation of amino sugar quantification by HPLC in soil and plant hydrolysates. Biol. Fertil. Soils 2011, 47, 387–396. [Google Scholar] [CrossRef]
- Kang, E.; Li, Y.; Zhang, X.D.; Yan, Z.Q.; Wu, H.D.; Li, M.; Yan, L.; Zhang, K.R.; Wang, J.Z.; Kang, X.M. Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland. Sci. Total Environ. 2021, 774, 145780. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
- Klink, S.; Keller, A.B.; Wild, A.J.; Baumert, V.L.; Gube, M.; Lehndorff, E.; Meyer, N.; Mueller, C.W.; Phillips, R.P.; Pausch, J. Stable isotopes reveal that fungal residues contribute more to mineral-associated organic matter pools than plant residues. Soil Biol. Biochem. 2022, 168, 108634. [Google Scholar] [CrossRef]
- Yang, Y.; Dou, Y.X.; Wang, B.R.; Wang, Y.Q.; Liang, C.; An, S.S.; Soromotin, A.; Kuzyakov, Y. Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence. Soil Biol. Biochem. 2022, 170, 108688. [Google Scholar] [CrossRef]
- Chang, Y.; Sokol, N.W.; Groenigen, K.J.V.; Bradford, M.A.; Ji, D.C.; Crowther, T.W.; Liang, C.; Luo, Y.Q.; Kuzyakov, Y.; Wang, J.K.; et al. Stoichiometric approach to estimate sources of mineral-associated soil organic matter. Global Change Biol. 2024, 30, e17092. [Google Scholar] [CrossRef] [PubMed]
- Angst, G.; Mueller, K.E.; Kögel-Knabner, I.; Freeman, K.H.; Mueller, C.W. Aggregation controls the stability of lignin and lipids in claysized particulate and mineral associated organic matter. Biogeochemistry 2017, 132, 307–324. [Google Scholar] [CrossRef]
- Keiluweit, M.; Wanzek, T.; Kleber, M.; Nico, P.; Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 2017, 8, 1771. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Liu, S.G.; Chen, L.Y.; Li, N.; Bing, H.J.; Wang, T.; Chen, X.P.; Li, Y.; Wang, G.X. Soil organic carbon becomes newer under warming at a permafrost site on the Tibetan Plateau. Soil Biol. Biochem. 2021, 152, 108074. [Google Scholar] [CrossRef]
- Podwojewski, P.; Poulenard, J.; Nguyet, M.L.; de Rouw, A.; Nguyen, V.T.; Pham, Q.H.; Tran, D.T. Climate and vegetation determine soil organic matter status in an alpine inner-tropical soil catena in the Fan Si Pan Mountain, Vietnam. Catena 2011, 87, 226–239. [Google Scholar] [CrossRef]
- Chen, Y.L.; Deng, Y.; Ding, J.Z.; Hu, H.W.; Xu, T.L.; Li, F.; Yang, G.B.; Yang, Y.H. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Mol. Ecol. 2017, 26, 6608–6620. [Google Scholar] [CrossRef]
- Parniske, M. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nat. Rev. Microbiol. 2008, 6, 763–775. [Google Scholar] [CrossRef]
- Voriskova, J.; Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 2013, 7, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Klein, T.; Siegwolf, R.T.; Korner, C. Belowground carbon trade among tall trees in a temperate forest. Science 2016, 352, 342–344. [Google Scholar] [CrossRef]
- Shen, C.C.; Ni, Y.Y.; Liang, W.J.; Wang, J.J.; Chu, H.Y. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front. Microbiol. 2015, 6, 582. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.J.; Zhang, W.; Zhong, Z.K.; Han, X.H.; Yang, G.H.; Feng, Y.Z.; Ren, G.X. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Sci. Total Environ. 2018, 610, 750–758. [Google Scholar] [CrossRef]
- Gui, Y.X.; Bing, H.J.; Fang, L.C.; Wu, Y.H.; Yu, J.L.; Shen, G.T.; Jiang, M.; Wang, X.; Zhang, X.C. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau. Geoderma 2019, 338, 118–127. [Google Scholar]
- Li, J.; Wang, X.; Wu, J.H.; Sun, Y.X.; Zhang, Y.Y.; Zhao, Y.F.; Huang, Z.; Duan, W.H. Climate and geochemistry at different altitudes influence soil fungal community aggregation patterns in alpine grasslands. Sci. Total Environ. 2023, 881, 163375. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shi, S.; Lin, F.; Jiang, P. Response of the soil fungal community to multi-factor environmental changes in a temperate forest. Appl. Soil Ecol. 2014, 81, 45–56. [Google Scholar] [CrossRef]
- Yang, T.; Adams, J.M.; Shi, Y.; Sun, H.B.; Cheng, L.; Zhang, Y.J.; Chu, H.Y. Fungal community assemblages in a high elevation desert environment: Absence of dispersal limitation and edaphic effects in surface soil. Soil Biol. Biochem. 2017, 115, 393–402. [Google Scholar] [CrossRef]
- Hao, Z.G.; Zhao, Y.F.; Wang, X.; Wu, J.H.; Jiang, S.L.; Xiao, J.J.; Wang, X.H.; Liu, H.Y.; Li, J.; Sun, Y.X. Thresholds in aridity and soil carbon-to-nitrogen ratio govern the accumulation of soil microbial residues. Commun. Earth Environ. 2021, 2, 236. [Google Scholar] [CrossRef]
- Xu, S.; Song, X.Y.; Zeng, H.; Wang, J.J. Soil microbial necromass carbon in forests: A global synthesis of patterns and controlling factors. Soil Ecol. Lett. 2024, 6, 240237. [Google Scholar] [CrossRef]
- Garten, C.T., Jr.; Hanson, P.J. Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma 2006, 136, 342–352. [Google Scholar] [CrossRef]
- Djukic, I.; Zehetner, F.; Tatzber, M.; Gerzabek, M.H. Soil organic-matter stocks and characteristics along an Alpine elevation gradient. J. Plant Nutr. Soil Sci. 2010, 173, 30–38. [Google Scholar] [CrossRef]
- Tian, G.; Justicia, R.; Coleman, D.C.; Carroll, C.R. Assessment of soil and plant carbon levels in two ecosystems (woody bamboo and pasture) in Montane Ecuador. Soil Sci. 2007, 173, 459–468. [Google Scholar] [CrossRef]
- Six, J.; Guggenberger, G.; Paustian, K.; Haumaier, L.; Elliott, E.T.; Zech, W. Sources and composition of soil organic matter fractions between and within soil aggregates. Eur. J. Soil Sci. 2001, 52, 607–618. [Google Scholar] [CrossRef]
- Jia, J.; Liu, Z.; Haghipour, N.; Wacker, L.; Zhang, H.; Sierra, C.A.; Ma, T.; Wang, Y.; Chen, L.; Luo, A.; et al. Molecular 14C evidence for contrasting turnover and temperature sensitivity of soil organic matter fractionss. Ecol. Lett. 2023, 26, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Zhu, E.X.; Liu, Z.G.; Ma, L.X.; Luo, J.N.; Kang, E.Z.; Wang, Y.; Zhao, Y.P.; Jia, J.; Feng, X.J. Enhanced mineral preservation rather than microbial residue production dictates the accrual of mineral associated organic carbon along a weathering gradient. Geophys. Res. Lett. 2024, 51, e2024GL108466. [Google Scholar] [CrossRef]
- Jilling, A.; Keiluweit, M.; Contosta, A.R.; Frey, S.; Schimel, J.; Schnecker, J.; Smith, R.G.; Tiemann, L.; Grandy, A.S. Minerals in the rhizosphere: Overlooked mediators of soil nitrogen availability to plants and Microorganisms. Biogeochemistry 2018, 139, 103–122. [Google Scholar] [CrossRef]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef] [PubMed]
Soil Depth | Elevation | pH | OM (g/kg) | TN (g/kg) | TP (g/kg) | C:N |
---|---|---|---|---|---|---|
0–20 cm | 1500 m | 5.31 | 127.44 | 4.80 a | 0.82 a | 15.62 b |
1700 m | 5.46 | 129.61 | 3.68 b | 0.53 b | 20.43 a | |
1900 m | 5.43 | 127.59 | 3.40 b | 0.55 b | 21.73 a | |
20–40 cm | 1500 m | 5.49 | 79.18 | 2.88 | 0.59 a | 16.00 b |
1700 m | 5.48 | 87.36 | 2.62 | 0.35 b | 19.34 a | |
1900 m | 5.49 | 88.63 | 2.54 | 0.44 ab | 20.18 a |
Indices | 0–20 cm | 20–40 cm | Significance | ||||||
---|---|---|---|---|---|---|---|---|---|
1500 m | 1700 m | 1900 m | 1500 m | 1700 m | 1900 m | Elevation | Depth | Elevation × Depth | |
Chao1 | 292 b | 378 a | 430 a | 213 b | 275 b | 386 a | 0.000 | 0.001 | 0.420 |
Simpson | 0.979 a | 0.981 a | 0.965 b | 0.948 | 0.892 | 0.929 | 0.729 | 0.084 | 0.639 |
Shannon | 6.445 b | 6.908 a | 6.421 b | 5.712 | 5.149 | 5.682 | 0.993 | 0.011 | 0.432 |
Pielou | 1.136 a | 1.166 a | 1.059 b | 1.065 | 0.917 | 0.956 | 0.497 | 0.045 | 0.492 |
Phylum | 0–20 cm | 20–40 cm | Significance | ||||||
---|---|---|---|---|---|---|---|---|---|
1500 m | 1700 m | 1900 m | 1500 m | 1700 m | 1900 m | Elevation | Depth | Elevation × Depth | |
Ascomycota | 72.98 a | 64.69 b | 73.02 a | 70.90 | 71.96 | 77.33 | 0.45 | 0.47 | 0.67 |
Basidiomycota | 19.18 | 24.13 | 20.41 | 21.82 | 21.24 | 17.39 | 0.71 | 0.77 | 0.78 |
Mortierellomycota | 1.90 b | 3.24 a | 2.41 b | 2.10 | 1.97 | 2.44 | 0.20 | 0.21 | 0.08 |
Chytridiomycota | 0.17 | 0.32 | 0.16 | 0.03 | 0.02 | 0.06 | 0.12 | 0.00 | 0.03 |
Kickxellomycota | 0.09 | 0.16 | 0.21 | 0.04 b | 0.10 ab | 0.12 a | 0.02 | 0.03 | 0.81 |
Rozellomycota | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.40 | 0.34 | 0.40 |
Entorrhizomycota | 0.01 | 0.01 | 0.01 | 0.02 | 0.00 | 0.00 | 0.62 | 0.95 | 0.41 |
unclassified_Fungi | 5.66 | 7.46 | 3.77 | 5.00 | 4.71 | 2.66 | 0.13 | 0.19 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yuan, J.; Ren, Q.; Zhou, L.; Zeng, H.; Miao, L.; Sun, Z.; Wan, F.; Yan, Y. The Fungal Community Structure Regulates Elevational Variations in Soil Organic Carbon Fractions in a Wugong Mountain Meadow. J. Fungi 2024, 10, 772. https://doi.org/10.3390/jof10110772
Wang J, Yuan J, Ren Q, Zhou L, Zeng H, Miao L, Sun Z, Wan F, Yan Y. The Fungal Community Structure Regulates Elevational Variations in Soil Organic Carbon Fractions in a Wugong Mountain Meadow. Journal of Fungi. 2024; 10(11):772. https://doi.org/10.3390/jof10110772
Chicago/Turabian StyleWang, Jinping, Jihong Yuan, Qiong Ren, Liyin Zhou, Huanhuan Zeng, Lujun Miao, Zhiyong Sun, Fang Wan, and Yuanying Yan. 2024. "The Fungal Community Structure Regulates Elevational Variations in Soil Organic Carbon Fractions in a Wugong Mountain Meadow" Journal of Fungi 10, no. 11: 772. https://doi.org/10.3390/jof10110772
APA StyleWang, J., Yuan, J., Ren, Q., Zhou, L., Zeng, H., Miao, L., Sun, Z., Wan, F., & Yan, Y. (2024). The Fungal Community Structure Regulates Elevational Variations in Soil Organic Carbon Fractions in a Wugong Mountain Meadow. Journal of Fungi, 10(11), 772. https://doi.org/10.3390/jof10110772