Key Amino Acid Residues of the Agt1 Transporter for Trehalose Transport by Saccharomyces cerevisiae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains and Growth Conditions
2.2. Yeast Strain Construction
2.3. Plasmid Construction
2.4. Trehalase Expression and Purification
2.5. Trehalose Transport Assay
2.6. Agt1 Sequence Analysis
2.7. Agt1 Structure Modeling and Docking
2.8. Molecular Dynamics and Steered Molecular Dynamics
2.9. Statistical Analysis
3. Results
3.1. Expression and Characterization of TreA from E. coli
3.2. Identification and Screening of Yeast Strains with Enhanced Trehalose Transport Capacity
3.3. Comparative Analysis of Agt1-Mediated Trehalose Transport in High-Performance Yeast Strains
3.4. Residue Interactions and Transport Dynamics of Trehalose in Agt1
3.5. Key Residue Interactions in Agt1-Mediated Trehalose Transport
3.6. Validation of Key Residues in Agt1-Mediated Trehalose Transport
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, A.; Tapia, H.; Goddard, J.M.; Gibney, P.A. Trehalose and Its Applications in the Food Industry. Compr. Rev. Food Sci. Food Saf. 2022, 21, 5004–5037. [Google Scholar] [CrossRef] [PubMed]
- Elbein, A.D.; Pan, Y.T.; Pastuszak, I.; Carroll, D. New Insights on Trehalose: A Multifunctional Molecule. Glycobiology 2003, 13, 17R–27R. [Google Scholar] [CrossRef]
- Jain, N.K.; Roy, I. Effect of Trehalose on Protein Structure. Protein Sci. 2009, 18, 24–36. [Google Scholar] [CrossRef] [PubMed]
- François, J.; Parrou, J.L. Reserve Carbohydrates Metabolism in the Yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2001, 25, 125–145. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Vargas-Smith, J.; Tapia, H.; Gibney, P.A. Characterizing Phenotypic Diversity of Trehalose Biosynthesis Mutants in Multiple Wild Strains of Saccharomyces cerevisiae. G3 Genes|Genomes|Genet. 2022, 12, jkac196. [Google Scholar] [CrossRef]
- Bisson, L.F.; Fan, Q.; Walker, G.A. Sugar and Glycerol Transport in Saccharomyces cerevisiae. Adv. Exp. Med. Biol. 2016, 892, 125–168. [Google Scholar]
- Gibney, P.A.; Schieler, A.; Chen, J.C.; Rabinowitz, J.D.; Botstein, D. Characterizing the in Vivo Role of Trehalose in Saccharomyces cerevisiae Using the AGT1 Transporter. Proc. Natl. Acad. Sci. USA 2015, 112, 6116–6121. [Google Scholar] [CrossRef] [PubMed]
- Vidgren, V.; Londesborough, J. Characterization of the Saccharomycesbayanus-Type Agt1 Transporter of Lager Yeast. J. Inst. Brew. 2012, 118, 148–151. [Google Scholar] [CrossRef]
- Stambuk, B.U.; Alves, S.L.; Hollatz, C.; Zastrow, C.R. Improvement of Maltotriose Fermentation by Saccharomyces cerevisiae. Lett. Appl. Microbiol. 2006, 43, 370–376. [Google Scholar] [CrossRef]
- Han, E.K.; Cotty, F.; Sottas, C.; Jiang, H.; Michels, C.A. Characterization of AGT1 Encoding a General A-glucoside Transporter from Saccharomyces. Mol. Microbiol. 1995, 17, 1093–1107. [Google Scholar] [CrossRef]
- Vidgren, V.; Kankainen, M.; Londesborough, J.; Ruohonen, L. Identification of Regulatory Elements in the AGT1 Promoter of Ale and Lager Strains of Brewer’s Yeast. Yeast 2011, 28, 579–594. [Google Scholar] [CrossRef]
- Rodrigues, C.I.S.; Wahl, A.; Gombert, A.K. Aerobic Growth Physiology of Saccharomyces cerevisiae on Sucrose Is Strain-Dependent. FEMS Yeast Res. 2021, 21, foab021. [Google Scholar] [CrossRef]
- Vidgren, V.; Ruohonen, L.; Londesborough, J. Characterization and Functional Analysis of the MAL and MPH Loci for Maltose Utilization in Some Ale and Lager Yeast Strains. Appl. Environ. Microbiol. 2005, 71, 7846–7857. [Google Scholar] [CrossRef]
- Vidgren, V.; Multanen, J.P.; Ruohonen, L.; Londesborough, J. The Temperature Dependence of Maltose Transport in Ale and Lager Strains of Brewer’s Yeast. FEMS Yeast Res. 2010, 10, 402–411. [Google Scholar] [CrossRef]
- Bell, P.J.L.; Higgins, V.J.; Dawes, I.W.; Bissinger, P.H. Tandemly Repeated 147 Bp Elements Cause Structural and Functional Variation in Divergent MAL Promoters of Saccharomyces cerevisiae. Yeast 1997, 13, 1135–1144. [Google Scholar] [CrossRef]
- Stambuk, B.U.; De Araujo, P.S. Kinetics of Active α-Glucoside Transport in Saccharomyces cerevisiae. FEMS Yeast Res. 2001, 1, 73–78. [Google Scholar] [CrossRef]
- Plourde-Owobi, L.; Durner, S.; Goma, G.; François, J. Trehalose Reserve in Saccharomyces cerevisiae: Phenomenon of Transport, Accumulation and Role in Cell Viability. Int. J. Food Microbiol. 2000, 55, 33–40. [Google Scholar] [CrossRef]
- Kulikova-Borovikova, D.; Lisi, S.; Dauss, E.; Alamae, T.; Buzzini, P.; Hallsworth, J.E.; Rapoport, A. Activity of the α-Glucoside Transporter Agt1 in Saccharomyces cerevisiae Cells during Dehydration-Rehydration Events. Fungal Biol. 2018, 122, 613–620. [Google Scholar] [CrossRef]
- Chen, A.; Gibney, P.A. Intracellular Trehalose Accumulation via the Agt1 Transporter Promotes Freeze–Thaw Tolerance in Saccharomyces cerevisiae. J. Appl. Microbiol. 2022, 133, 2390–2402. [Google Scholar] [CrossRef] [PubMed]
- Tapia, H.; Young, L.; Fox, D.; Bertozzi, C.R.; Koshland, D. Increasing Intracellular Trehalose Is Sufficient to Confer Desiccation Tolerance to Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2015, 112, 6122–6127. [Google Scholar] [CrossRef] [PubMed]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef]
- Yang, Y.; Yao, K.; Repasky, M.P.; Leswing, K.; Abel, R.; Shoichet, B.K.; Jerome, S.V. Efficient Exploration of Chemical Space with Docking and Deep Learning. J. Chem. Theory Comput. 2021, 17, 7106–7119. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Guthrie, C.; Fink, G.R. Guide to Yeast Genetics and Molecular Biology. In Methods in Enzymology, 1st ed.; Academic Press: Cambridge, MA, USA, 1991; Volume 194, pp. 1–863. [Google Scholar]
- Sikorski, R.S.; Hieter, P. A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989, 122, 19–27. [Google Scholar] [CrossRef]
- Mumberg, D.; Müller, R.; Funk, M. Yeast Vectors for the Controlled Expression of Heterologous Proteins in Different Genetic Backgrounds. Gene 1995, 156, 119–122. [Google Scholar] [CrossRef]
- Wong, E.D.; Miyasato, S.R.; Aleksander, S.; Karra, K.; Nash, R.S.; Skrzypek, M.S.; Weng, S.; Engel, S.R.; Cherry, J.M. Saccharomyces Genome Database Update: Server Architecture, Pan-Genome Nomenclature, and External Resources. Genetics 2023, 224, iyac191. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- MacKerell, A.D.; Bashford, D.; Bellott, M.; Dunbrack, R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 1998, 102, 3586–3616. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N⋅log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Strom, A.R.; Kaasen, I. Trehalose Metabolism in Escherichia Coli: Stress Protection and Stress Regulation of Gene Expression. Mol. Microbiol. 1993, 8, 205–210. [Google Scholar] [CrossRef]
- Stambuk, B.U.; Panek, A.D.; Crowe, J.H.; Crowe, L.M.; De Araujo, P.S. Expression of High-Affinity Trehalose-H+ Symport in Saccharomyces cerevisiae. Biochim. Biophys. Acta—Gen. Subj. 1998, 1379, 118–128. [Google Scholar] [CrossRef]
- Tripodi, F.; Nicastro, R.; Reghellin, V.; Coccetti, P. Post-translational modifications on yeast carbon metabolism: Regulatory mechanisms beyond transcriptional control. Biochim. Biophys. Acta 2015, 1850, 620–627. [Google Scholar] [CrossRef]
- Vidgren, V.; Londesborough, J. Overexpressed maltose transporters in laboratory and lager yeasts: Localization and competition with endogenous transporters. Yeast 2018, 35, 567–576. [Google Scholar] [CrossRef]
- Izawa, S.; Inoue, Y. Post-transcriptional regulation of gene expression in yeast under ethanol stress. Biotechnol. Appl. Biochem. 2009, 53, 93–99. [Google Scholar] [CrossRef]
- Smit, A.; Moses, S.G.; Pretorius, I.S.; Cordero Otero, R.R. The Thr505 and Ser557 Residues of the AGT1-Encoded α-Glucoside Transporter Are Critical for Maltotriose Transport in Saccharomyces cerevisiae. J. Appl. Microbiol. 2008, 104, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Trichez, D.; Knychala, M.M.; Figueiredo, C.M.; Alves, S.L.; da Silva, M.A.; Miletti, L.C.; de Araujo, P.S.; Stambuk, B.U. Key Amino Acid Residues of the AGT1 Permease Required for Maltotriose Consumption and Fermentation by Saccharomyces cerevisiae. J. Appl. Microbiol. 2019, 126, 580–594. [Google Scholar] [CrossRef]
- Sebollela, A.; Louzada, P.R.; Sola-Penna, M.; Sarone-Williams, V.; Coelho-Sampaio, T.; Ferreira, S.T. Inhibition of Yeast Glutathione Reductase by Trehalose: Possible Implications in Yeast Survival and Recovery from Stress. Int. J. Biochem. Cell Biol. 2004, 36, 900–908. [Google Scholar] [CrossRef]
- Magalhães, R.S.S.; Popova, B.; Braus, G.H.; Outeiro, T.F.; Eleutherio, E.C.A. The Trehalose Protective Mechanism during Thermal Stress in Saccharomyces cerevisiae: The Roles of Ath1 and Agt1. FEMS Yeast Res. 2018, 18, foy066. [Google Scholar] [CrossRef]
- Jules, M.; Guillou, V.; François, J.; Parrou, J.L. Two Distinct Pathways for Trehalose Assimilation in the Yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2004, 70, 2771–2778. [Google Scholar] [CrossRef]
- Stambuk, B.U.; Batista, A.S.; De Araujo, P.S. Kinetics of Active Sucrose Transport in Saccharomyces cerevisiae. J. Biosci. Bioeng. 2000, 89, 212–214. [Google Scholar] [CrossRef]
- Teste, M.A.; Marie François, J.; Parrou, J.L. Characterization of a New Multigene Family Encoding Isomaltases in the Yeast Saccharomyces cerevisiae, the IMA Family. J. Biol. Chem. 2010, 285, 26815–26824. [Google Scholar] [CrossRef]
- Muller, G.; de Godoy, V.R.; Dário, M.G.; Duval, E.H.; Alves-Jr, S.L.; Bücker, A.; Rosa, C.A.; Dunn, B.; Sherlock, G.; Stambuk, B.U. Improved Sugarcane-Based Fermentation Processes by an Industrial Fuel-Ethanol Yeast Strain. J. Fungi 2023, 9, 803. [Google Scholar] [CrossRef]
- Cousseau, F.E.M.; Alves, S.L.; Trichez, D.; Stambuk, B.U. Characterization of Maltotriose Transporters from the Saccharomyces eubayanus Subgenome of the Hybrid Saccharomyces pastorianus Lager Brewing Yeast Strain Weihenstephan 34/70. Lett. Appl. Microbiol. 2013, 56, 21–29. [Google Scholar] [CrossRef]
Agt1 Mutation Site | Function |
---|---|
S128A | Forms hydrogen bonds in ACY8, ACY21, S288C trehalose docking sites; key position in stretching dynamics. |
Q137A | Key position in stretching dynamics, forms hydrogen bonds with trehalose. |
Q156A | Forms hydrogen bonds in ACY8, ACY21 docking sites; key position in stretching dynamics. |
L164A | Forms hydrogen bonds in ACY185 docking site. |
T230A | Key position in stretching dynamics, forms hydrogen bonds with trehalose. |
Q256A | Forms hydrogen bonds in ACY185 docking site. |
Q339A | Key position in stretching dynamics, forms hydrogen bonds with trehalose. |
T391A | Forms hydrogen bonds in ACY8 docking site. |
E395A | Forms hydrogen bonds in ACY8, ACY21 docking sites; key position in stretching dynamics. |
R396A | Key position in stretching dynamics, forms hydrogen bonds with trehalose. |
S408A | Forms hydrogen bonds in ACY21 docking site. |
Y484A | Forms hydrogen bonds in ACY185 docking site. |
Y507A | Forms hydrogen bonds in S288C docking site. |
N514A | Forms hydrogen bonds in S288C, ACY185 docking site. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, A.; Cheng, Y.; Meng, L.; Chen, J. Key Amino Acid Residues of the Agt1 Transporter for Trehalose Transport by Saccharomyces cerevisiae. J. Fungi 2024, 10, 781. https://doi.org/10.3390/jof10110781
Chen A, Cheng Y, Meng L, Chen J. Key Amino Acid Residues of the Agt1 Transporter for Trehalose Transport by Saccharomyces cerevisiae. Journal of Fungi. 2024; 10(11):781. https://doi.org/10.3390/jof10110781
Chicago/Turabian StyleChen, Anqi, Yuhan Cheng, Liushi Meng, and Jian Chen. 2024. "Key Amino Acid Residues of the Agt1 Transporter for Trehalose Transport by Saccharomyces cerevisiae" Journal of Fungi 10, no. 11: 781. https://doi.org/10.3390/jof10110781
APA StyleChen, A., Cheng, Y., Meng, L., & Chen, J. (2024). Key Amino Acid Residues of the Agt1 Transporter for Trehalose Transport by Saccharomyces cerevisiae. Journal of Fungi, 10(11), 781. https://doi.org/10.3390/jof10110781