Isolation, Identification, and Analyzing the Biological Characteristics of Pathogens Causing Stem Rot of Lanzhou Onion During Postharvest Storage and Studying the Influence of Pathogen Infection on the Active Components of Lanzhou Onion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Methods
2.2.1. Isolation and Purification of Isolates
2.2.2. Morphological Identification of Isolates
2.2.3. Molecular Biological Identification of Isolate
2.2.4. Pathogenicity Testing of Isolates
2.2.5. Effects of Temperature, Light, pH, Carbon and Nitrogen Sources and Different Humidity Conditions on the Growth and Sporulation of Pathogens
2.2.6. Analysis of Onion Active Components
Sample Preparation
GC–MS Condition
2.2.7. Statistical Analysis
3. Results
3.1. Symptoms of Onion Stem Rot During Postharvest Storage Stage
3.2. Identification of the Pathogen Causing Onion Stem Rot During Storage
3.2.1. Morphological Identification
3.2.2. Molecular Biological Identification
3.3. Verification of the Pathogenicity of the Three Isolates
3.4. Effects of Environmental Conditions on the Sporulation of Pathogens
3.4.1. Temperature Significantly Affected the Growth and Sporulation of Pathogens
3.4.2. pH Significantly Affected the Growth and Sporulation of Pathogens
3.4.3. Light Significantly Affected the Growth and Sporulation of Pathogens
3.4.4. Carbon Source Significantly Affected the Growth and Sporulation of Pathogens
3.4.5. Nitrogen Source Significantly Affected the Growth and Sporulation of Pathogens
3.4.6. Determination of Spore Germination of Pathogens Under Different Humidity Conditions
3.5. Analysis of Onion Active Ingredients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, S.U.; Lee, J.H.; Choi, S.H.; Lee, J.S.; Ohnisi-Kameyama, M.; Kozukue, N.; Levin, C.E.; Friedman, M. Flavonoid content in fresh, home-processed, and light-exposed onions and in dehydrated commercial onion products. J. Agric. Food Chem. 2008, 56, 8541–8548. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.Y.; Guo, H.W.; Zhang, W.X.; Wang, L.; Zhao, X.Y. Research progress on nutritional components and health benefits of onion. Food Mach. 2014, 30, 305–309. [Google Scholar]
- Chen, D.; Zhang, Y.; Zhao, J.; Liu, L.; Zhao, L. Research Progress on Physical Preservation Technology of Fresh-Cut Fruits and Vegetables. Horticulturae 2024, 10, 1098. [Google Scholar] [CrossRef]
- Köycü, N.D.; Özer, N. Determination of seedborne fungi in Onion and their transmission to Onion sets. Phytoparasitica 1997, 25, 25–31. [Google Scholar] [CrossRef]
- Wen, J.W.; Zhu, L.; Gao, J. Preliminary study on the occurrence and prevention of onion purple spot disease. J. Agric. Univ. 2003, 47–49. [Google Scholar]
- Dong, Q.P.; Jia, M.; Chen, X.D. How to prevent and treat purple spot of onion. Agric. Sci. Technol. 2008, 16–17. [Google Scholar]
- Shan, C.H. Investigation and control technology of onion downy mildew in Xichang City. J. Chang. Veg. 2009, 35–36. [Google Scholar]
- Wang, J.Z. Regularity and influencing factors of downy mildew of onion. Chin. Veg. 2007, 1, 60–61. [Google Scholar]
- Zhang, Y.H. Study on Quality Change of Different Onion Varieties After Storage and Identification of a Storage Disease. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2011. [Google Scholar]
- Gong, D.; Bi, Y.; Jiang, H.; Xue, S.L.; Wang, Z.H.; Li, Y.C.; Zong, Y.Y.; Dov, P. A comparison of postharvest physiology, quality and volatile compounds of ‘Fuji’ and ‘Delicious’ apples inoculated with Penicillium expansum. Postharvest Biol. Technol. 2019, 150, 95–104. [Google Scholar] [CrossRef]
- Ge, Y.Q.; Ni, Y.Y.; Zhang, Z.H.; Qiao, X.G.; Huang, X.F.; Jie, F. Study on three traditional spices of ginger, garlic and onion. Food Ferment. Ind. 2003, 29, 59–64. [Google Scholar]
- Kamini, E.N.; Syedaa, A. Antimicrobial activity of garlic and onion extracts. Pharmazie 1983, 38, 747–748. [Google Scholar]
- Maidment, D.C.; Dembny, Z.; Watts, D.T. The antibacterial activity of 12 Alliums against Escherichia coli. Food Sci. Nutr. 2001, 31, 238–241. [Google Scholar] [CrossRef]
- Jirovetz, L.; Koch, H.P.; Jager, W.; Remberg, G. Investigations of German onionoil by GC-MS and GC-FTIR. Pharmazie 1992, 47, 455–456. [Google Scholar]
- Xi, J.; Yang, D.; Xue, H.; Liu, Z.; Bi, Y.; Zhang, Y.; Yang, X.; Shang, S. Isolation of the main pathogens causing postharvest disease in Fresh Angelica sinensis during different storage stages and impacts of ozone treatment on disease development and my cotoxin production. Toxins 2023, 15, 154. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Ruan, Y.; Jin, S.; Wang, L. The importance of Talaromyces and its taxonomic studies. J. Fungal Res. 2021, 19, 83–93. [Google Scholar]
- Cai, F.; Druzhinina, I.S. In honor of John Bissett: Authoritative guidelines on molecular identification of Trichoderma. Fungal Divers. 2021, 107, 1–69. [Google Scholar] [CrossRef]
- Lv, B.Y.; Yang, X.; Xue, H.L.; Nan, M.; Zhang, Y.; Liu, Z.; Bi, Y.; Shang, S. Isolation of main pathogens causing postharvest disease in fresh Codonopsis pilosula during different storage stages and ozone control against disease and mycotoxin accumulation. J. Fungi 2023, 9, 146. [Google Scholar] [CrossRef] [PubMed]
- Raja, H.A.; Miller, A.N.; Pearce, C.J.; Oberlies, N.H. Fungal identification using molecular tools: A primer for the natural products research community. J. Nat. Prod. 2017, 80, 756–770. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef]
- Hong, S.B.; Go, S.J.; Shin, H.D.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 2005, 97, 1316–1329. [Google Scholar] [CrossRef]
- O’Donnell, K.; Nirenberg, H.I.; Aoki, T.; Cigelnik, E. A multigene phylogeny of the Gibberella fujikuroi species complex: Detection of additional phylogenetically distinct species. Mycoscience 2000, 41, 61–78. [Google Scholar] [CrossRef]
- Liu, Y.J.; Whelen, S.; Hall, B.D. Phylogenetic relationships among ascomycetes: Evidence from an RNA polymerse II subunit. Mol. Biol. Evol. 1999, 16, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Zhen, Y.; Chen, B.; Wu, X.; Zhao, Q.; He, S.; Li, Z. Effects of several vegetable oils on conidial germination of Nomura L. J. Microbiol. 2015, 42, 690–698. [Google Scholar]
- Fernandes, S.; Gois, A.; Mendes, F.; Perestrelo, R.; Medina, S.; Câmara, J.S. Typicality assessment of onions (Allium cepa) from different geographical regions based on the volatile signature and chemometric tools. Foods 2020, 9, 375. [Google Scholar] [CrossRef] [PubMed]
- Zhai, M.M.; Li, J.; Jiang, C.X.; Shi, Y.-P.; Di, D.-L.; Crews, P.; Wu, Q.-X. The bioactive secondary metabolites from Talaromyces species. Nat. Prod. Bioprosp. 2016, 6, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Li, C.X.; Zhao, S.; Zhang, T.; Xian, L.; Liao, L.S.; Liu, J.L.; Feng, J.X. Genome sequencing and analysis of Talaromyces pinophilus provide insights into biotechnological applications. Sci. Rep. 2017, 7, 490. [Google Scholar] [CrossRef]
- Vinale, F.; Nicoletti, R.; Lacatena, F.; Marra, R.; Sacco, A.; Lombardi, N.; D’errico, G.; Digilio, M.C.; Lorito, M.; Woo, S.L. Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat. Prod. Res. 2017, 31, 1778–1785. [Google Scholar] [CrossRef]
- Khalmuratova, I.; Kim, H.; Nam, Y.J.; Oh, Y.; Jeong, M.-J.; Choi, H.-R.; You, Y.-H.; Choo, Y.-S.; Lee, I.-J.; Shin, J.-H.; et al. Diversity and plant growth promoting capacity of endophytic fungi associated with halophytic plants from the west coast of Korea. Mycobiology 2015, 43, 373–383. [Google Scholar] [CrossRef]
- Patel, D.; Patel, A.; Patel, M.; Goswami, D. Talaromyces pinophilus strain M13: A portrayal of novel groundbreaking fungal strain for phytointensifcation. Environ. Sci. Pollut. Res. 2021, 28, 8758–8769. [Google Scholar] [CrossRef]
- Abdel-Rahim, I.R.; Abo-Elyousr, K.A.M. Talaromyces pinophilus strain AUN-1 as a novel mycoparasite of Botrytis cinerea, the pathogen of onion scape and umbel blights. Microbiol. Res. 2018, 212–213, 1–9. [Google Scholar] [CrossRef]
- Alagesaboopathi, C. Biological control of damping-of disease of cotton seedling. Curr. Sci. 1994, 66, 865–867. [Google Scholar]
- Zhang, Y.Q.; Li, R.H.; Zhang, H.B.; Wu, M.; Hu, X.Q. Purification, characterization, and application of a thermostable dextranase from Talaromyces pinophilus. J. Ind. Microbiol. Biotechnol. 2017, 44, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Xue, A.G.; Chen, Y.; Voldeng, H.D.; Fedak, G.; Savard, M.E.; Längle, T.; Zhang, J.; Harman, G.E. Concentration and cultivar effects on efficacy of CLO-1 biofungicide in controlling Fusarium head blight of wheat. Biol. Control 2014, 73, 2–7. [Google Scholar] [CrossRef]
- Yao, R.L. Pathogen Identification of Maize Ear Rot; Study on Toxic Production Conditions and Field Control. Master’s Thesis, Shanxi Agricultural University, Tai’yuan, China, 2015. [Google Scholar]
- Zhang, G.Z.; Zhang, X.J.; Chen, Q.; Li, Z.; Guo, K.; Yang, H.T. Isolation and identification of three new recorded species from China within Trichoderma harziensis complex species. Shandong Sci. 2015, 28, 43–46. [Google Scholar]
- Cao, Z.J.; Qin, W.T.; Zhao, J.; Liu, Y.; Wang, S.X.; Zheng, S.Y. Three New Trichoderma Species in Harzianum Clade Associated with the Contaminated Substrates of Edible Fungi. J. Fungi 2022, 8, 1154. [Google Scholar] [CrossRef]
- Stefan, S.; Danijela, R.; Katarina, G. Talaromyces minioluteus: New Postharvest Fungal Pathogen in Serbia. Plant Dis. 2020, 104, 656–667. [Google Scholar]
- Ying, C.; Zhang, Y.H.; Wang, D.M. Technology of onion seed harvesting. Mod. Agric. Sci. Technol. 2011, 53–54. [Google Scholar]
- Zalepugin, D.Y.; Tilkunova, N.A.; Chernyshova, I.V. Stability of thiosulfinates from garlic (Allium sativum L.) supercritical extracts in polar and nonpolar solvents. Russ. J. Phys. Chem. B 2015, 9, 1032–1042. [Google Scholar] [CrossRef]
- Taglienti, A.; Araniti, F.; Piscopo, A.; Tiberini, A. Characterization of volatile organic compounds in ‘Rossa di Tropea’ onion by means of headspace solid-phase microextraction gas chromatography-mass spectrometry (HS/SPME GC-MS) and sensory analysis. Agronomy 2021, 11, 874. [Google Scholar] [CrossRef]
- Vikram, A.; Prithiviraj, B.; Hamzehzarghani, H.; Kushalappa, A. Volatile metabolite profiling to discriminate diseases of McIntosh apple inoculated with fungal pathogens. J. Sci. Food Agric. 2004, 84, 1333–1340. [Google Scholar] [CrossRef]
- Encinas-Basurto, D.; Valenzuela-Quintanar, M.I.; Sánchez-Estrada, A.; Tiznado-Hernández, M.E.; Rodríguez-Félix, A.; Troncoso-Rojas, R. Alterations in volatile metabolites profile of fresh tomatoes in response to Alternaria alternata (Fr.) Keissl. 1912 infection. Chil. J. Agric. Res. 2017, 77, 194–201. [Google Scholar] [CrossRef]
Molecular Marker | Primer | Direction | Reference | Primer Sequence |
---|---|---|---|---|
Internal transcribed spacer (ITS) | ITS1 | Forward | [19,20] | 5′-TCCGTAGGTGAACCTGCGG-3′ |
ITS4 | Reverse | 5′-TCCTCCGCTTATTGATATGC-3′ | ||
β-Tubulin (BenA) | Bt2a | Forward | [20] | 5′-GGTAACCAAATCGGTGCTGCTTTC-3′ |
Bt2b | Reverse | 5′-ACCCTCAGTGTAGTGACCCTTGGC-3 | ||
Calmodulin (CaM) | AD1 | Forward | [21,22] | GCCGACTCTTTGACTGAAGAGC |
AD2 | GCCGATTCTTTGACCGAGGAAC | |||
Q1 | Reverse | GCATCATGAGCTGGACGAACTC | ||
Q2 | GCATCATGAGCTGGACGAATTC | |||
RNA polymerase II second largest subunit (RPB2) | T1 | Forward | [23] | ACTGGTAACTGGGGTGAGCA |
T2 | ACGGGTAACTGGGGTGAACA | |||
F1 | Reverse | TCACAGTGAGTCCAGGTGTG | ||
F2 | TCGCAATGCGTCCAGGTATG |
Disease Rating | Symptom |
---|---|
0 | No disease |
1 | Scale disease area less than 10% |
2 | Scale disease area 10~30% |
3 | Scale disease area 30~50% |
4 | Scale disease area greater than 50% |
Culture Conditions | Talaromyces pinophilus | Trichoderma simmonsii. | Talaromyces minioluteus | |
---|---|---|---|---|
Spore Production (×107) | Spore Production (×108) | Spore Production (×107) | ||
Temperature (°C) | 15 | 1.83 ± 0.030 d | 2.87 ± 0.021 d | 5.61 ± 0.015 b |
20 | 2.07 ± 0.060 c | 4.54 ± 0.055 b | 6.76 ± 0.036 a | |
25 | 2.31 ± 0.015 b | 5.18 ± 0.000 a | 4.5 ± 0.032 c | |
30 | 3.21 ± 0.010 a | 3.38 ± 0.003 c | 3.26 ± 0.012 d | |
35 | 2.30 ± 0.005 b | 2.61 ± 0.006 e | 2.74 ± 0.026 e | |
pH | 5 | 0.94 ± 0.006 b | 2.28 ± 0.329 a | 2.51 ± 0.015 g |
6 | 0.66 ± 0.516 c | 1.88 ± 0.038 ab | 3.27 ± 0.057 f | |
7 | 2.33 ± 0.01 a | 1.82 ± 0.055 b | 4.04 ± 0.055 e | |
8 | 2.03 ± 0.055 a | 1.51 ± 0.424 b | 8.06 ± 0.006 b | |
9 | 1.31 ± 0.005 b | 0.91 ± 0.189 c | 8.27 ± 0.021 a | |
10 | 1.21 ± 0.01 b | 0.68 ± 0.010 cd | 5.57 ± 0.061 c | |
11 | 1.03 ± 0.006 b | 0.28 ± 0.002 d | 5.07 ± 0.061 d | |
Light condition | 24 h light | 1.65 ± 0.006 a | 4.23 ± 0.054 a | 5.73 ± 0.252 c |
12 h light/12 h dark | 1.21 ± 0.010 b | 2.86 ± 0.006 c | 7.15 ± 0.212 b | |
24 dark | 1.17 ± 0.210 b | 1.44 ± 0.055 b | 9.30 ± 0.042 a | |
carbon source | glucose | 0.63 ± 0.006 f | 3.33 ± 0.306 d | 1.94 ± 0.036 c |
sucrose | 1.73 ± 0.008 c | 10.59 ± 0.150 a | 9.23 ± 0.321 a | |
mannitol | 1.35 ± 0.006 d | 3.37 ± 0.321 d | 3.10 ± 0.105 b | |
maltose | 2.35 ± 0.006 a | 5.94 ± 0.079 c | 3.28 ± 0.044 b | |
fructose | 0.77 ± 0.006 e | 11.83 ± 0.153 b | 0.47 ± 0.021 d | |
β-cd | 1.95 ± 0.015 b | 3.43 ± 0.153 d | 0.73 ± 0.01 d | |
nitrogen source | yeast extract | 1.71 ± 0.015 c | 1.19 ± 0.021 a | 2.49 ± 0.026 c |
peptone | 2.87 ± 0.321 a | 0.52 ± 0.015 e | 1.37 ± 0.056 d | |
ammonium sulfate | 1.3 ± 0.010 d | 0.64 ± 0.001 d | 3.44 ± 0.055 a | |
sodium nitrate | 0.59 ± 0.021 e | 0.69 ± 0.010 b | 1.21 ± 0.021 e | |
urea | 0 ± 0 f | 0 ± 0 f | 0 ± 0 f | |
glycine | 2.42 ± 0.02 b | 0.86 ± 0.010 b | 3.07 ± 0.061 b |
Serial Number | Compound Name | CAS Number | Molecular Formula | Relative Content | |||
---|---|---|---|---|---|---|---|
CK | Talaromyces pinophilus | Trichoderma simmonsii | Talaromyces minioluteus | ||||
1 | 1-Propanesulfenothioic acid | 137363-84-9 | C3H8S2 | 0.26 | |||
2 | 2,4-dimethylthiophene | 638-00-6 | C6H8S | 0.8 | 0.17 | 0.59 | |
3 | 2,3-Dithiahexane | 2179-60-4 | C4H10S2 | 0.08 | 0.13 | 0.22 | 0.06 |
4 | methyl (1E)-1-propen-1-yl | 23838-19-9 | C4H8S2 | 0.07 | 0.11 | 0.05 | |
5 | Isopropyl disulfide | 4253-89-8 | C6H14S2 | 25.97 | 10.7 | 8 | |
6 | (1E)-1-allyl propyl | 23838-21-3 | C6H12S2 | 6.54 | 4.94 | ||
7 | Diallyl disulfide | 2179-57-9 | C6H10S2 | 2.25 | 0.49 | 0.23 | |
8 | methylpropyl trisulfide | 17619-36-2 | C4H10S3 | 0.22 | 0.09 | 0.28 | 0.05 |
9 | Propane dithioic acid | 67230-81-3 | C6H10S2 | 0.26 | 0.26 | 0.02 | |
10 | dicyclopropyl disulfide | 68846-57-1 | C6H10S2 | 0.44 | 0.46 | ||
11 | Butyl propyl | 72437-64-0 | C7H16S2 | 0.21 | 0.03 | 0.14 | |
12 | Dipropyl trisulfide | 6028-61-1 | C6H14S3 | 3.2 | 3.48 | 2.2 | |
13 | 1E-1-propenyl-1-propyl | 23838-27-9 | C6H12S3 | 0.86 | 0.84 | 4.8 | |
14 | Propyl mercaptan | 107-03-9 | C3H8S | 1.15 | |||
15 | Diallyl trisulfide | 2050-87-5 | C6H10S3 | 0.22 | |||
16 | 3-mercapto-1,2,4-triazole | 3179-31-5 | C2H3N3S | 0.16 | |||
17 | 1,3,5-trithiane | 116664-29-0 | C3H6S3 | 0.13 | |||
18 | 1-1-propenylthionyl | 126876-23-1 | C7H14S3 | 7.66 | 1.01 | ||
19 | nbutyl sulfoxide | 218-511-4 | C8H18OS | 0.17 | |||
20 | diallyl disulfide | 2179-60-4 | C4H10S2 | 0.23 | |||
21 | 1-allyl disulfide | 122156-02-9 | C6H10S2 | 0.04 | 0.2 | ||
22 | methyl (1E)-1-propen-1-yl | 23838-25-7 | C4H8S3 | 0.29 | 0.46 | 0.17 | |
23 | N-(3-cyanophenyl)-2-[(5,6-dimethylthieno)] | 764694-25-9 | C17H14N4O2S | 0.25 | |||
24 | Dipropyl trisulfide | 6028-61-1 | C6H14S3 | 3.48 | |||
25 | S-(2-phenoxyethyl) thioacetic acid | 60359-72-0 | C10H12O2S | 0.1 | |||
26 | (1Z)-1-propenyl-1-propyl | 23838-20-2 | C6H12S2 | 5.36 | |||
27 | 2-mercapto-3,4-dimethyl-2,3-dihydrothiophene | 137363-86-1 | C6H10S2 | 0.82 | |||
28 | (Z)-methyl-1-propenyl trisulfide | 23838-25-7 | C4H8S3 | 0.17 | |||
29 | 2-mercapto-3-4-dimethyl-2-3-dihydrothiophene | 137363-86-1 | C6H10S2 | 1.06 | |||
30 | Di (1-propenyl) trisulfide | 115321-81-8 | C6H10S3 | 6.33 | |||
31 | Thiopropanal S-oxide | 32157-29-2 | C3H6OS | 0.46 | |||
32 | isopropyldisulfide | 4253-89-8 | C6H14S2 | 19.93 | |||
33 | Trans-diallyl disulfide | 23838-23-5 | C6H10S2 | 0.1 | |||
34 | Methylallyl trisulfide | 34135-85-8 | C4H8S3 | 0.24 | |||
35 | 3-butenyl isothiocyanate | 3386-97-8 | C5H7NS | 1.85 | |||
36 | Dipropyl trisulfide | 6028-61-1 | C6H14S3 | 16.69 | |||
37 | Diallyl trisulfide | 2050-87-5 | C6H10S3 | 1.5 | |||
38 | 1-methiopropenyl-2-propenyl disulfide | 126876-22-0 | C6H12O3 | 0.3 | |||
39 | 1-propyl sulfide | 629-19-6 | C6H14S2 | 2.91 | |||
40 | glutaraldehyde | 111-30-8 | C5H8O2 | 0.15 | |||
41 | Hexamethylcyclotrisiloxane | 541-05-9 | C6H18O3Si3 | 0.23 | 0.57 | ||
42 | octamethylcyclotetrasiloxane | 556-67-2 | C8H24O4Si4 | 0.22 | |||
43 | Cyclocarboxypropyl oleic acid | 53980-88-4 | C21H36O4 | 0.13 | |||
44 | 2-nononone | 821-55-6 | C9H18O | 0.27 | |||
45 | 3, 4-trimethylsilanoxy phenethylamine | 55429-13-5 | C24H34F5NO3Si3 | 0.23 | |||
46 | Methyl nonyl ketone | 112-12-9 | C11H22O | 16.59 | 4.88 | 2.36 | |
47 | 2-tridecyl alcohol | 1653-31-2 | C13H28O | 1.61 | |||
48 | 2, 4-octanedione | 14090-87-0 | C8H14O2 | 7.2 | 1.13 | 5.07 | |
49 | N-ethyl-n-nitroso amylamine | 25413-63-2 | C7H16N2O | 1.76 | |||
50 | 1-methylhexyl acetate | 5921-82-4 | C9H18O2 | 0.94 | |||
51 | 2-hexyl-5-methylfuran-3-ketone | 33922-66-6 | C11H18O2 | 4.1 | 28.9 | 33.87 | |
52 | 1-methyl-5-methylene-8-1-methylethylene-1,6-cyclodecadiene | 23986-74-5 | C15H24 | 0.23 | |||
53 | 2-tridecanone | 593-08-8 | C13H26O | 4.59 | 3.38 | 1.44 | |
54 | 2-ethyl-1-octene | 51655-64-2 | C10H20 | 0.2 | |||
55 | 6-acetoxytropine | 85644-59-3 | C10H17NO3 | 1.24 | |||
56 | 2, 4-tridecanedione | 25276-80-6 | C13H24O2 | 3.05 | 5.32 | 2.79 | |
57 | 2-nonadecanone | 629-66-3 | C19H38O | 0.52 | 0.51 | ||
58 | 3-(2-methyl-1,3-dioxopentyclo-2-yl) propane-1-amine | 66442-97-5 | C7H15NO2 | 0.26 | |||
59 | 5-methyl-2-octylfuran-3-ketone | 57877-72-2 | C13H22O2 | 3.72 | |||
60 | dihydroactiniolactone | 17092-92-1 | C11H16O2 | 0.12 | |||
61 | Tetradecane, 1,2-epoxy | 3234-28-4 | C14H28O | 1.86 | |||
62 | 2-(3-chloropropyl)-1,3-dioxane | 16686-11-6 | C6H11ClO2 | 0.89 | 1.2 | ||
63 | Cis-9-tetradecenol | 35153-15-2 | C14H28O | 0.37 | |||
64 | 4-n-heptoxyaniline formaldehyde | 27893-41-0 | C14H20O2 | 0.14 | |||
65 | 1, 8-diazobicyclic [5.4.0] undeca-7-ene | 6674-22-2 | C9H16N2 | 0.81 | |||
66 | Triethylsilane | 617-86-7 | C6H16Si | 9.28 | 0.28 | ||
67 | 2-oxazolidinone | 497-25-6 | C3H5NO2 | 0.26 | |||
68 | 2-triedecyl alcohol | 1653-31-2 | C13H28O | 0.7 | |||
69 | 4-methyl-4-(2,3-dimethyl-2-cyclopentenyl) pentylaldehyde | 60714-25-2 | C13H22O | 2.47 | 1.31 | ||
70 | 12-(BOC-amino) dodecanoic acid | 18934-81-1 | C17H33NO4 | 0.28 | |||
71 | Nonadiol diacetate | 1322-17-4 | C11H22O3 | 0.14 | |||
72 | N-ethyl-n-nitroso amylamine | 25413-63-2 | C7H16N2O | 0.48 | |||
73 | cycloundecanone | 878-13-7 | C11H20O | 0.25 | |||
74 | Benzyl benzoate | 120-51-4 | C14H12O2 | 2.22 | 2.643 | ||
75 | 5-methyl-2-octylfuran-3-ketone | 57877-72-2 | C13H22O2 | 0.1 | |||
76 | Benzyl salicylate | 118-58-1 | C14H12O3 | 0.37 | 0.82 | ||
77 | 2-ethyl-5-methylfuran | 1703-52-2 | C7H10O | 0.42 | |||
78 | N-nonanoic acid | 112-05-0 | C9H18O2 | 0.78 | |||
79 | 2,4-pentanedione | 53759-23-2 | C15H28O2 | 0.5 | |||
80 | Allyl stearate | 6289-31-2 | C21H40O2 | 0.13 | |||
81 | N-ethyl-n-nitroso amylamine | 25413-63-2 | C7H16N2O | 0.58 | |||
82 | Beta-caryophyllene | 87-44-5 | C15H24 | 0.12 | |||
83 | 4-hexyl-2,5-dioxofuran-3-acetic acid | 39212-21-0 | C12H16O5 | 0.12 | |||
84 | 5,6,7,7A-tetrahydro-4,7,7 a-trimethyl-2 (4H)-benzofuranone | 17092-92-1 | C11H16O2 | 0.17 | |||
85 | 1-hexyl naphthalene | 2876-53-1 | C16H20 | 1.15 | |||
86 | Pentafluorobenzyl n-caprylate | 21635-03-0 | C15H17F5O2 | 0.11 | |||
87 | 9-borobicyclic [3.3.1] nonane | 280-64-8 | C13H25BO | 0.46 | |||
88 | 2-pentadecanone | 2345-28-0 | C15H30O | 0.45 | |||
89 | (R)-2-tert-butyl-6-methyl-1,3-dioxin-4-one | 107289-20-3 | C9H14O3 | 1.73 | |||
90 | 4H-pyrano-4-one,2,3-dihydro6-2-methylpropyl | 243118-18-5 | C25H44O2 | 0.62 | |||
91 | acetaldehyde | 200-836-8 | CH3CHO | 0.6 | |||
92 | 2-ethyl butenal | 19780-25-7 | C6H10O | 2.67 | |||
93 | m-xylene | 108-38-3 | C8H10 | 0.14 | |||
94 | 2,4-dimethylthiophene | 638-00-6 | C8H10 | 0.22 | |||
95 | styrene | 100-42-5 | C6H8S | 0.12 | |||
96 | Butyl acrylate | 141-32-5 | C7H12O2 | 0.23 | |||
97 | 3,4-dimethylthiophene | 175202-55-8 | C10H8O4S2 | 1.61 | |||
98 | 4-methylaminobenzoic acid | 10541-83-0 | C8H9NO2 | 0.23 | |||
99 | octamethylcyclotetrasiloxane | 556-67-2 | (CH3)8Si4O4 | 0.25 | |||
100 | 2-ethylhexanol | 104-76-7 | C8HO | 0.14 | |||
101 | trans-2-octenal | 2548-87-0 | C8H14O | 0.15 | |||
102 | (1E)-1-allyl propyl | 104-76-7 | C8H18O | 11.57 | |||
103 | ((S)-(-)-2-hydroxy-3,3-dimethylbutyric acid | 2511-00-4 | C11H20O2 | 0.64 | |||
104 | Capric aldehyde | 68846-57-1 | C6H10S2 | 0.12 | |||
105 | Ethyl thiocyanate | 91-20-3 | C10H8 | 0.78 | |||
106 | 2-hexyl-5-methylfuran-3-ketone | 2050-87-5 | C6H10S3 | 0.5 | |||
107 | oxazolidin-2-ketone | 497-25-6 | C3H5NO2 | 0.61 | |||
108 | Tetra-(trimethylsilanoxy) silicon | 3555-47-3 | C12H36O4Si5 | 0.11 | |||
109 | Ethyl thiocyanate | 542-90-5 | C3H5NS | 0.42 | |||
110 | Cyclopentane carbohydrazide | 3400-7-5 | C6H12N2O | 1.14 | |||
111 | 1,8-bis-trimethylsiloxy-octane | 16654-42-5 | C14H34O2Si2 | 1.09 | |||
112 | dodecamethyldihydrohexasiloxane | 995-82-4 | C12H38O5Si6 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Zhang, H.; Zhang, Q.; Xi, J.; Jiang, K.; Li, J.; Xue, H.; Bi, Y. Isolation, Identification, and Analyzing the Biological Characteristics of Pathogens Causing Stem Rot of Lanzhou Onion During Postharvest Storage and Studying the Influence of Pathogen Infection on the Active Components of Lanzhou Onion. J. Fungi 2024, 10, 789. https://doi.org/10.3390/jof10110789
Wang R, Zhang H, Zhang Q, Xi J, Jiang K, Li J, Xue H, Bi Y. Isolation, Identification, and Analyzing the Biological Characteristics of Pathogens Causing Stem Rot of Lanzhou Onion During Postharvest Storage and Studying the Influence of Pathogen Infection on the Active Components of Lanzhou Onion. Journal of Fungi. 2024; 10(11):789. https://doi.org/10.3390/jof10110789
Chicago/Turabian StyleWang, Ruoxing, Hui Zhang, Qingru Zhang, Jihui Xi, Kunhao Jiang, Jinzhu Li, Huali Xue, and Yang Bi. 2024. "Isolation, Identification, and Analyzing the Biological Characteristics of Pathogens Causing Stem Rot of Lanzhou Onion During Postharvest Storage and Studying the Influence of Pathogen Infection on the Active Components of Lanzhou Onion" Journal of Fungi 10, no. 11: 789. https://doi.org/10.3390/jof10110789
APA StyleWang, R., Zhang, H., Zhang, Q., Xi, J., Jiang, K., Li, J., Xue, H., & Bi, Y. (2024). Isolation, Identification, and Analyzing the Biological Characteristics of Pathogens Causing Stem Rot of Lanzhou Onion During Postharvest Storage and Studying the Influence of Pathogen Infection on the Active Components of Lanzhou Onion. Journal of Fungi, 10(11), 789. https://doi.org/10.3390/jof10110789