Exogenous L-Arginine Enhances Pathogenicity of Alternaria alternata on Kiwifruit by Regulating Metabolisms of Nitric Oxide, Polyamines, Reactive Oxygen Species (ROS), and Cell Wall Modification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Kiwifruit and Pathogen Treatment and Storage
2.3. Spore Germination Assay
2.4. In Vitro Mycelial Growth and In Vivo Pathogenicy Assessment of A. alternata
2.5. Measurement of Electrolyte Leakage, Ergosterol Content, and Malondialdehyde (MDA) Content
2.5.1. Electrolyte Leakage
2.5.2. Ergosterol Content
2.5.3. MDA Content
2.6. Analyzation of Contents Related Substances and Enzyme Activities
2.6.1. Mycelium Culture
2.6.2. Measurement of Arginine, Put, Spd, and Spm
2.6.3. Detection of Put on Activities of ADC, ODC, DAO, and PAO
2.6.4. Measurement of Endogenous NO, and NOS Activity
2.6.5. Detection and Characterization of Endogenous NO and ROS
2.6.6. The Rate of O2− Production and H2O2 Content Assay
2.6.7. Detection of NOX, SOD, CAT, POD, APX, and GR Activities
2.7. Detection of Cx, β-1,3-Glucanase, PG, PMG, PGTE, and PMTE Activities In Vitro and In Vivo
2.7.1. Extraction and Purification of Crude Enzyme Solution In Vitro
2.7.2. Extraction and Purification of Crude Enzyme Solution In Vivo
2.7.3. Measurement of CWDEs’ Activities
2.8. Gene Expression Analysis by Quantitative Real-Time PCR (RT-qPCR)
2.9. Data Analysis
3. Results
3.1. Effect of the L-Arginine on the Growth of Mycelium In Vitro and In Vivo and on the Spore Germination of A. alternata
3.2. Effect of L-Arginine on Electrolyte Leakage, MDA and Ergosterol Contents
3.3. Effect of L-Arginine on Contents of Endogenous Arginine, Put, Spd, and Spm
3.4. Effect of L-Arginine on Activities of ADC, ODC, DAO, and PAO
3.5. Effect of L-Arginine on NOS Activity, and Endogenous NO Content
3.6. Effect of L-Arginine on the Generation of O2− and H2O2 Content
3.7. Effect of L-Arginine on Activities of NOX, SOD, CAT, POD, GPX and GR
3.8. Effect of L-Arginine on the Activities of CWDEs from A. alternata
3.8.1. CWDEs from A. alternata In Vitro
3.8.2. CWDEs from A. alternata of Kiwifruit
3.9. Effect of L-Arginine on Relative Gene Expression Levels of A. alternata
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raynaldo, F.A.; Xu, Y.; Yolandani; Wang, Q.; Wu, B.; Li, D. Biological Control and Other Alternatives to Chemical Fungicides in Controlling Postharvest Disease of Fruits Caused by Alternaria alternata and Botrytis cinerea. Food Innov. Adv. 2024, 3, 135–143. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Zhang, T.; Bi, Y.; Wang, Y.; Prusky, D. Exogenous Polyamines Enhance Resistance to Alternaria alternata by Modulating Redox Homeostasis in Apricot Fruit. Food Chem. 2019, 301, 125303. [Google Scholar] [CrossRef] [PubMed]
- Aron, O.; Wang, M.; Mabeche, A.W.; Wajjiha, B.; Li, M.; Yang, S.; You, H.; Cai, Y.; Zhang, T.; Li, Y.; et al. MoCpa1-Mediated Arginine Biosynthesis Is Crucial for Fungal Growth, Conidiation, and Plant Infection of Magnaporthe oryzae. Appl. Microbiol. Biotechnol. 2021, 105, 5915–5929. [Google Scholar] [CrossRef] [PubMed]
- Namiki, F.; Matsunaga, M.; Okuda, M.; Inoue, I.; Nishi, K.; Fujita, Y.; Tsuge, T. Mutation of an Arginine Biosynthesis Gene Causes Reduced Pathogenicity in Fusarium oxysporum f. Sp. Melonis. Mol. Plant Microbe Interact. 2001, 14, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.O.; Wilson, R.A. Essential, Deadly, Enigmatic: Polyamine Metabolism and Roles in Fungal Cells. Fungal Biol. Rev. 2019, 33, 47–57. [Google Scholar] [CrossRef]
- Gong, X.; Fu, Y.; Jiang, D.; Li, G.; Yi, X.; Peng, Y. L-Arginine Is Essential for Conidiation in the Filamentous Fungus Coniothyrium minitans. Fungal Genet. Biol. 2007, 44, 1368–1379. [Google Scholar] [CrossRef]
- Tabor, C.W.; Tabor, H. Polyamines in Microorganisms. Microbiol. Rev. 1985, 49, 81–99. [Google Scholar] [CrossRef]
- Pegg, A.E.; McCann, P.P. Polyamine Metabolism and Function. Am. J. Physiol. Cell Physiol. 1982, 243, C212–C221. [Google Scholar] [CrossRef]
- Valdés-Santiago, L.; Cervantes-Chávez, J.A.; León-Ramírez, C.G.; Ruiz-Herrera, J. Polyamine Metabolism in Fungi with Emphasis on Phytopathogenic Species. J. Amino Acids 2012, 2012, 837932. [Google Scholar] [CrossRef]
- Gevrekci, A.Ö. The Roles of Polyamines in Microorganisms. World J. Microbiol. Biotechnol. 2017, 33, 204. [Google Scholar] [CrossRef]
- Rocha, R.O.; Elowsky, C.; Pham, N.T.T.; Wilson, R.A. Spermine-Mediated Tight Sealing of the Magnaporthe oryzae Appressorial Pore–Rice Leaf Surface Interface. Nat. Microbiol. 2020, 5, 1472–1480. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ma, W.; Li, X.; Miao, W.; Zheng, L.; Cheng, B. Polyamines Stimulate Hyphal Branching and Infection in the Early Stage of Glomus etunicatum Colonization. World J. Microbiol. Biotechnol. 2012, 28, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Santiago, L.; Guzmán-de-Peña, D.; Ruiz-Herrera, J. Life without Putrescine: Disruption of the Gene-Encoding Polyamine Oxidase in Ustilago maydis Odc Mutants: Life without Putrescine. FEMS Yeast Res. 2010, 10, 928–940. [Google Scholar] [CrossRef] [PubMed]
- Lowe-Power, T.M.; Hendrich, C.G.; Von Roepenack-Lahaye, E.; Li, B.; Wu, D.; Mitra, R.; Dalsing, B.L.; Ricca, P.; Naidoo, J.; Cook, D.; et al. Metabolomics of Tomato Xylem Sap during Bacterial Wilt Reveals Ralstonia solanacearum Produces Abundant Putrescine, a Metabolite That Accelerates Wilt Disease. Environ. Microbiol. 2018, 20, 1330–1349. [Google Scholar] [CrossRef]
- Wang, D.; Li, L.; Xu, Y.; Limwachiranon, J.; Li, D.; Ban, Z.; Luo, Z. Effect of Exogenous Nitro Oxide on Chilling Tolerance, Polyamine, Proline, and γ-Aminobutyric Acid in Bamboo Shoots (Phyllostachys praecox f. Prevernalis). J. Agric. Food Chem. 2017, 65, 5607–5613. [Google Scholar] [CrossRef]
- Yin, S.; Gao, Z.; Wang, C.; Huang, L.; Kang, Z.; Zhang, H. Nitric Oxide and Reactive Oxygen Species Coordinately Regulate the Germination of Puccinia striiformis f. Sp. Tritici Urediniospores. Front. Microbiol. 2016, 7, 178. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, W.; Sun, M.; Zhang, X.; Zheng, W. Regulatory Effects of Nitric Oxide on Reproduction and Melanin Biosynthesis in Onion Pathogenic Fungus Stemphylium eturmiunum. Fungal Biol. 2021, 125, 519–531. [Google Scholar] [CrossRef]
- Samalova, M.; Johnson, J.; Illes, M.; Kelly, S.; Fricker, M.; Gurr, S. Nitric Oxide Generated by the Rice Blast Fungus Magnaporthe oryzae Drives Plant Infection. New Phytol. 2013, 197, 207–222. [Google Scholar] [CrossRef]
- Zhao, Y.; Lim, J.; Xu, J.; Yu, J.; Zheng, W. Nitric Oxide as a Developmental and Metabolic Signal in Filamentous Fungi. Mol. Microbiol. 2020, 113, 872–882. [Google Scholar] [CrossRef]
- Turrion-Gomez, J.L.; Benito, E.P. Flux of Nitric Oxide between the Necrotrophic Pathogen Botrytis cinerea and the Host Plant. Mol. Plant Pathol. 2011, 12, 606–616. [Google Scholar] [CrossRef]
- Wang, D.; Li, W.; Li, D.; Li, L.; Luo, Z. Effect of High Carbon Dioxide Treatment on Reactive Oxygen Species Accumulation and Antioxidant Capacity in Fresh-Cut Pear Fruit during Storage. Sci. Hortic. 2021, 281, 109925. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, C. Fengycins, Cyclic Lipopeptides from Marine Bacillus Subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation. Appl. Environ. Microbiol. 2018, 84, e00445-18. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Shao, Y.-L.; Tang, Y.-J.; Zhou, W.-W. Antifungal Activity of Essential Oil Compounds (Geraniol and Citral) and Inhibitory Mechanisms on Grain Pathogens (Aspergillus flavus and Aspergillus ochraceus). Molecules 2018, 23, 2108. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Téllez, V.I.; Cruz-Olmedo, A.K.; Plasencia, J.; Gavilanes-Ruíz, M.; Arce-Cervantes, O.; Hernández-León, S.; Saucedo-García, M. The Protective Effect of Trichoderma Asperellum on Tomato Plants against Fusarium oxysporum and Botrytis cinerea Diseases Involves Inhibition of Reactive Oxygen Species Production. Int. J. Mol. Sci. 2019, 20, 2007. [Google Scholar] [CrossRef]
- Wang, X.; Che, M.Z.; Khalil, H.B.; McCallum, B.D.; Bakkeren, G.; Rampitsch, C.; Saville, B.J. The Role of Reactive Oxygen Species in the Virulence of Wheat Leaf Rust Fungus Puccinia triticina. Environ. Microbiol. 2020, 22, 2956–2967. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Z. A Double-edged Sword: Reactive Oxygen Species (ROS) during the Rice Blast Fungus and Host Interaction. FEBS J. 2022, 289, 5505–5515. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Li, B.; Chen, T.; Tian, S. Reactive Oxygen Species: A Generalist in Regulating Development and Pathogenicity of Phytopathogenic Fungi. Comput. Struct. Biotechnol. J. 2020, 18, 3344–3349. [Google Scholar] [CrossRef]
- Zhang, X.; Zong, Y.; Gong, D.; Yu, L.; Sionov, E.; Bi, Y.; Prusky, D. NADPH Oxidase Regulates the Growth and Pathogenicity of Penicillium expansum. Front. Plant Sci. 2021, 12, 696210. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Li, Y.; Bi, Y.; Mao, R.; Yang, Y.; Jiang, Q.; Prusky, D. Cellular Responses Required for Oxidative Stress Tolerance of the Necrotrophic Fungus Alternaria alternata, Causal Agent of Pear Black Spot. Microorganisms 2022, 10, 621. [Google Scholar] [CrossRef]
- Kapoor, R.; Singh, N. Arbuscular Mycorrhiza and Reactive Oxygen Species. In Arbuscular Mycorrhizas and Stress Tolerance of Plants; Wu, Q.-S., Ed.; Springer: Singapore, 2017; pp. 225–243. ISBN 978-981-10-4114-3. [Google Scholar]
- Abbà, S.; Khouja, H.R.; Martino, E.; Archer, D.B.; Perotto, S. SOD1-Targeted Gene Disruption in the Ericoid Mycorrhizal Fungus Oidiodendron maius Reduces Conidiation and the Capacity for Mycorrhization. Mol. Plant Microbe Interact. 2009, 22, 1412–1421. [Google Scholar] [CrossRef]
- Ge, Y.; Duan, B.; Li, C.; Wei, M.; Chen, Y.; Li, X.; Tang, Q. Application of Sodium Silicate Retards Apple Softening by Suppressing the Activity of Enzymes Related to Cell Wall Degradation. J. Sci. Food Agric. 2019, 99, 1828–1833. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Chen, Y.; Li, C.; Wei, M.; Lv, J.; Meng, K. Inhibitory Effects of Sodium Silicate on the Fungal Growth and Secretion of Cell Wall-degrading Enzymes by Trichothecium roseum. J. Phytopathol. 2017, 165, 620–625. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Wu, Y.H.; Zhao, X.X.; An, M.N.; Chen, J.G.; Yin, X.M. Characterization of Cell Wall Degrading Enzymes of Rhizoctonia solani AG-3 from Tobacco Target Spot. Adv. Mater. Res. 2014, 1010, 1161–1164. [Google Scholar] [CrossRef]
- Ge, C.; You, W.; Li, R.; Li, W.; Shao, Y. Construction of the PG-deficient Mutant of Fusarium equiseti by CRISPR/Cas9 and Its Pathogenicity of Pitaya. J. Basic Microbiol. 2021, 61, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Kim, D.; Lee, J. NADPH Oxidase Gene, FgNoxD, Plays a Critical Role in Development and Virulence in Fusarium graminearum. Front. Microbiol. 2022, 13, 822682. [Google Scholar] [CrossRef]
- Micallef, B.J.; Shelp, B.J. Arginine Metabolism in Developing Soybean Cotyledons: I. Relationship to Nitrogen Nutrition. Plant Physiol. 1989, 90, 624–630. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Takahashi, Y.; Berberich, T.; Imai, A.; Takahashi, T.; Michael, A.J.; Kusano, T. A Protective Role for the Polyamine Spermine against Drought Stress in Arabidopsis. Biochem. Biophys. Res. Commun. 2007, 352, 486–490. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, L.; Li, F.; Meng, D.; Sheng, J. Amelioration of Chilling Stress by Arginine in Tomato Fruit: Changes in Endogenous Arginine Catabolism. Postharvest Biol. Technol. 2013, 76, 106–111. [Google Scholar] [CrossRef]
- Palma, F.; Carvajal, F.; Jamilena, M.; Garrido, D. Contribution of Polyamines and Other Related Metabolites to the Maintenance of Zucchini Fruit Quality during Cold Storage. Plant Physiol. Biochem. 2014, 82, 161–171. [Google Scholar] [CrossRef]
- Hu, L.; Li, Y.; Bi, Y.; Li, J.; Bao, G.; Liu, J.; Yu, X. Effects of Nitric Oxide on Growth of Fusarium sulphureum and Its Virulence to Potato Tubers. Eur. Food Res. Technol. 2014, 238, 1007–1014. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Hornby, J.M.; Jacobitz-Kizzier, S.M.; McNeel, D.J.; Jensen, E.C.; Treves, D.S.; Nickerson, K.W. Inoculum Size Effect in Dimorphic Fungi: Extracellular Control of Yeast-Mycelium Dimorphism in Ceratocystis ulmi. Appl. Environ. Microbiol. 2004, 70, 1356–1359. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yu, Y.; Xie, P.; Zhu, X.; Yang, C.; Wang, L.; Zhang, S. Antifungal Activities of L-Methionine and L-Arginine Treatment In Vitro and In Vivo against Botrytis cinerea. Microorganisms 2024, 12, 360. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Higgins, V.J. Nitric Oxide Has a Regulatory Effect in the Germination of Conidia of Colletotrichum coccodes. Fungal Genet. Biol. 2005, 42, 284–292. [Google Scholar] [CrossRef]
- Sarkar, A.; Chakraborty, N.; Acharya, K. Unraveling the Role of Nitric Oxide in Regulation of Defense Responses in Chilli against Alternaria Leaf Spot Disease. Physiol. Mol. Plant Pathol. 2021, 114, 101621. [Google Scholar] [CrossRef]
- Yang, S.; Yan, D.; Li, M.; Li, D.; Zhang, S.; Fan, G.; Peng, L.; Pan, S. Ergosterol Depletion under Bifonazole Treatment Induces Cell Membrane Damage and Triggers a ROS-Mediated Mitochondrial Apoptosis in Penicillium expansum. Fungal Biol. 2022, 126, 1–10. [Google Scholar] [CrossRef]
- Shen, Y.; Chen, C.; Cai, N.; Yang, R.; Chen, J.; Kahramanoǧlu, İ.; Okatan, V.; Rengasamy, K.R.R.; Wan, C. The Antifungal Activity of Loquat (Eriobotrya japonica Lindl.) Leaves Extract Against Penicillium digitatum. Front. Nutr. 2021, 8, 663584. [Google Scholar] [CrossRef]
- Tabor, C.W.; Tabor, H. POLYAMINES. Annu. Rev. Biochem. 1984, 53, 749–790. [Google Scholar] [CrossRef]
- Crespo-Sempere, A.; Estiarte, N.; Marín, S.; Sanchis, V.; Ramos, A.J. Targeting Fusarium graminearum Control via Polyamine Enzyme Inhibitors and Polyamine Analogs. Food Microbiol. 2015, 49, 95–103. [Google Scholar] [CrossRef]
- Bailey, A.; Mueller, E.; Bowyer, P. Ornithine Decarboxylase of Stagonospora (Septoria) Nodorum Is Required for Virulence toward Wheat. J. Biol. Chem. 2000, 275, 14242–14247. [Google Scholar] [CrossRef]
- Maier, J.; Hecker, R.; Rockel, P.; Ninnemann, H. Role of Nitric Oxide Synthase in the Light-Induced Development of Sporangiophores in Phycomyces blakesleeanus. Plant Physiol. 2001, 126, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Shu, P.; Li, Y.; Wang, X.; Yao, L.; Sheng, J.; Shen, L. Exogenous Ferulic Acid Treatment Increases Resistance against Botrytis Cinerea in Tomato Fruit by Regulating Nitric Oxide Signaling Pathway. Postharvest Biol. Technol. 2021, 182, 111678. [Google Scholar] [CrossRef]
- Mersmann, S.; Bourdais, G.; Rietz, S.; Robatzek, S. Ethylene Signaling Regulates Accumulation of the FLS2 Receptor and Is Required for the Oxidative Burst Contributing to Plant Immunity. Plant Physiol. 2010, 154, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, Y.; Li, J.; Gu, X.; Zhao, L.; Li, B.; Wang, K.; Yang, Q.; Zhang, H. Pichia caribbica Improves Disease Resistance of Cherry Tomatoes by Regulating ROS Metabolism. Biol. Control 2022, 169, 104870. [Google Scholar] [CrossRef]
- Vangalis, V.; Papaioannou, I.A.; Markakis, E.A.; Knop, M.; Typas, M.A. The NADPH Oxidase A of Verticillium dahliae Is Essential for Pathogenicity, Normal Development, and Stress Tolerance, and It Interacts with Yap1 to Regulate Redox Homeostasis. J. Fungi 2021, 7, 740. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Qi, T.; Deng, L.; Yi, L.; Zeng, K. Influence of Arginine on the Biocontrol Efficiency of Metschnikowia citriensis against Geotrichum citri-aurantii Causing Sour Rot of Postharvest Citrus Fruit. Food Microbiol. 2022, 101, 103888. [Google Scholar] [CrossRef]
- Li, B.; Ding, Y.; Tang, X.; Wang, G.; Wu, S.; Li, X.; Huang, X.; Qu, T.; Chen, J.; Tang, X. Effect of L-Arginine on Maintaining Storage Quality of the White Button Mushroom (Agaricus bisporus). Food Bioprocess Technol. 2019, 12, 563–574. [Google Scholar] [CrossRef]
- Ha, H.C.; Sirisoma, N.S.; Kuppusamy, P.; Zweier, J.L.; Woster, P.M.; Casero, R.A. The Natural Polyamine Spermine Functions Directly as a Free Radical Scavenger. Proc. Natl. Acad. Sci. USA 1998, 95, 11140–11145. [Google Scholar] [CrossRef]
- Pottosin, I.; Velarde-Buendia, A.M.; Bose, J.; Zepeda-Jazo, I.; Shabala, S.; Dobrovinskaya, O. Cross-Talk between Reactive Oxygen Species and Polyamines in Regulation of Ion Transport across the Plasma Membrane: Implications for Plant Adaptive Responses. J. Exp. Bot. 2014, 65, 1271–1283. [Google Scholar] [CrossRef]
- Das, K.C.; Misra, H.P. Hydroxyl Radical Scavenging and Singlet Oxygen Quenching Properties of Polyamines. Mol. Cell. Biochem. 2004, 262, 127–133. [Google Scholar] [CrossRef]
- Gerlin, L.; Baroukh, C.; Genin, S. Polyamines: Double Agents in Disease and Plant Immunity. Trends Plant Sci. 2021, 26, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-G.; Tian, J.-L.; Liu, R.; Cao, P.-F.; Zhang, T.-J.; Ren, A.; Shi, L.; Zhao, M.-W. Ornithine Decarboxylase-Mediated Production of Putrescine Influences Ganoderic Acid Biosynthesis by Regulating Reactive Oxygen Species in Ganoderma lucidum. Appl. Environ. Microbiol. 2017, 83, e01289-17. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, M.K.; Tabor, C.W.; Tabor, H. Polyamines Protect Escherichia coli Cells from the Toxic Effect of Oxygen. Proc. Natl. Acad. Sci. USA 2003, 100, 2261–2265. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Zhang, B.; Gai, Y.; Sun, X.; Chung, K.-R.; Li, H. Cell-Wall-Degrading Enzymes Required for Virulence in the Host Selective Toxin-Producing Necrotroph Alternaria alternata of Citrus. Front. Microbiol. 2019, 10, 2514. [Google Scholar] [CrossRef]
- Qian, X.; Yang, Q.; Zhang, Q.; Abdelhai, M.H.; Dhanasekaran, S.; Serwah, B.N.A.; Gu, N.; Zhang, H. Elucidation of the Initial Growth Process and the Infection Mechanism of Penicillium digitatum on Postharvest Citrus (Citrus reticulata Blanco). Microorganisms 2019, 7, 485. [Google Scholar] [CrossRef]
- Ramos, A.M.; Gally, M.; García, M.C.; Levin, L. Pectinolytic Enzyme Production by Colletotrichum Truncatum, Causal Agent of Soybean Anthracnose. Rev. Iberoam. Micol. 2010, 27, 186–190. [Google Scholar] [CrossRef]
- Rasul, S.; Dubreuil-Maurizi, C.; Lamotte, O.; Koen, E.; Poinssot, B.; Alcaraz, G.; Wendehenne, D.; Jeandroz, S. Nitric Oxide Production Mediates Oligogalacturonide-triggered Immunity and Resistance to Botrytis cinerea in Arabidopsis thaliana. Plant Cell Environ. 2012, 35, 1483–1499. [Google Scholar] [CrossRef]
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) | Product Size (bp) |
---|---|---|---|
Actin | TACACTTTCTCAACCACAGCCG | CGGAATCGCTCGTTACCAAT | 176 |
NOXA | GGACCCACTCACCGAACTCAAATC | CCATCTCGCATACCGCAGAACAG | 81 |
NOXB | GTGCTGCCCTGAAATCTCCATCTG | CTTCCTCTCCGTGCTACAACCAAG | 148 |
SOD | GGAGCAAAGGCTGTCTATCGT | TTGCCGTTCTGGTATTGGAG | 123 |
CAT | AGTCGGAGGAGCAAATCACAG | AGTCGGAGGAGCAAATCACAG | 266 |
POD | TTAACTACGGCGTTAGCTTCC | TTAACTACGGCGTTAGCTTCC | 228 |
GPX | TTAACTACGGCGTTAGCTTCC | TTAACTACGGCGTTAGCTTCC | 202 |
GR | GTGGAGCCAATCCCAGAAA | GTGGAGCCAATCCCAGAAA | 217 |
Cx | CACCTCGCTCGCTCCTTTCC | CCATATCCAGCAGGCTCAACATTG | 132 |
β-1,3-glucanase | CGGCAATGCTCCAGGTTAT | CGCACGATAACATAGAAAGGAA | 196 |
PG | CTCACAAACTGACCGACTCCA | CATCGCAGCCGTTGATACTA | 84 |
PMTE | CAGAAGTGGAACGGTGACAACAAC | TGATAGGCACAGGCTTCGCAAG | 127 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Meng, L.; Zhang, H.; Liu, R.; Zhu, Y.; Tan, X.; Wu, Y.; Gao, Q.; Ren, X.; Kong, Q. Exogenous L-Arginine Enhances Pathogenicity of Alternaria alternata on Kiwifruit by Regulating Metabolisms of Nitric Oxide, Polyamines, Reactive Oxygen Species (ROS), and Cell Wall Modification. J. Fungi 2024, 10, 801. https://doi.org/10.3390/jof10110801
Wang D, Meng L, Zhang H, Liu R, Zhu Y, Tan X, Wu Y, Gao Q, Ren X, Kong Q. Exogenous L-Arginine Enhances Pathogenicity of Alternaria alternata on Kiwifruit by Regulating Metabolisms of Nitric Oxide, Polyamines, Reactive Oxygen Species (ROS), and Cell Wall Modification. Journal of Fungi. 2024; 10(11):801. https://doi.org/10.3390/jof10110801
Chicago/Turabian StyleWang, Di, Lingkui Meng, Haijue Zhang, Rong Liu, Yuhan Zhu, Xinyu Tan, Yan Wu, Qingchao Gao, Xueyan Ren, and Qingjun Kong. 2024. "Exogenous L-Arginine Enhances Pathogenicity of Alternaria alternata on Kiwifruit by Regulating Metabolisms of Nitric Oxide, Polyamines, Reactive Oxygen Species (ROS), and Cell Wall Modification" Journal of Fungi 10, no. 11: 801. https://doi.org/10.3390/jof10110801
APA StyleWang, D., Meng, L., Zhang, H., Liu, R., Zhu, Y., Tan, X., Wu, Y., Gao, Q., Ren, X., & Kong, Q. (2024). Exogenous L-Arginine Enhances Pathogenicity of Alternaria alternata on Kiwifruit by Regulating Metabolisms of Nitric Oxide, Polyamines, Reactive Oxygen Species (ROS), and Cell Wall Modification. Journal of Fungi, 10(11), 801. https://doi.org/10.3390/jof10110801