Comparative Effects of Monascin and Monascinol Produced by Monascus pilosus SWM-008 on Pro-Inflammatory Factors and Histopathological Alterations in Liver and Kidney Tissues in a Streptozotocin–Nicotinamide-Induced Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animal Grouping and Experiment Schedule
2.3. Serum Liver Function Index (AST, ALT, Albumin) and Renal Function Index (BUN, Creatinine, Uric Acid) Concentration
2.4. H&E Staining
2.5. Determination of Liver and Kidney Protein Expression
2.5.1. Tissue Homogenization
2.5.2. Target Protein (TNF-α, IL-6, IL-1β, and COX-2) Analysis
2.6. Statistical Analysis
3. Results
3.1. Effects of SWM-008 Red Mold Rice and Functional Components on Changes in Body Weight, Liver Weight, Kidney Weight, Food Intake, and Water Consumption in STZ-NA-Induced Rats
3.2. Effects of SWM-008 Red Mold Rice and Functional Components on Serum Liver Function Indicators in STZ-NA-Induced Rats
3.3. Effects of SWM-008 Red Mold Rice and Functional Components on the Pro-Inflammatory Factors IL-6, IL-1β, TNF-α, and COX-2 in the Liver of STZ-NA-Induced Rats
3.4. Effects of SWM-008 Red Mold Rice and Functional Components on Liver Histopathology in STZ-NA-Induced Rats
3.5. Effects of SWM-008 Red Mold Rice and Functional Components on Serum Kidney Function Indicators in STZ-NA-Induced Rats
3.6. Effects of SWM-008 Red Mold Rice and Functional Components on the Pro-Inflammatory Factors IL-6, IL-1β, TNF-α, and COX-2 in the Kidney of STZ-NA-Induced Rats
3.7. Effects of SWM-008 Red Mold Rice and Functional Components on Kidney Histopathology in STZ-NA-Induced Rats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Tolman, K.G.; Fonseca, V.; Dalpiaz, A.; Tan, M.H. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care 2007, 30, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, J.; Nafizah, A.N.; Zariyantey, A.; Budin, S. Mechanisms of diabetes-induced liver damage: The role of oxidative stress and inflammation. Sultan Qaboos Univ. Med. J. 2016, 16, e132. [Google Scholar] [CrossRef] [PubMed]
- Ekberg, K.; Landau, B.R.; Wajngot, A.; Chandramouli, V.; Efendic, S.; Brunengraber, H.; Wahren, J. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes 1999, 48, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.C.; Coate, K.C.; Winnick, J.J.; An, Z.; Cherrington, A.D. Regulation of hepatic glucose uptake and storage in vivo. Adv. Nutr. 2012, 3, 286–294. [Google Scholar] [CrossRef]
- Petersen, M.C.; Vatner, D.F.; Shulman, G.I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 2017, 13, 572–587. [Google Scholar] [CrossRef]
- Jha, J.C.; Gray, S.P.; Barit, D.; Okabe, J.; El-Osta, A.; Namikoshi, T.; Thallas-Bonke, V.; Wingler, K.; Szyndralewiez, C.; Heitz, F. Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J. Am. Soc. Nephrol. 2014, 25, 1237. [Google Scholar] [CrossRef]
- Piccoli, G.B.; Grassi, G.; Cabiddu, G.; Nazha, M.; Roggero, S.; Capizzi, I.; De Pascale, A.; Priola, A.M.; Di Vico, C.; Maxia, S. Diabetic kidney disease: A syndrome rather than a single disease. Rev. Diabet. Stud. 2015, 12, 87. [Google Scholar] [CrossRef]
- Thomas, M.C.; Brownlee, M.; Susztak, K.; Sharma, K.; Jandeleit-Dahm, K.A.; Zoungas, S.; Rossing, P.; Groop, P.-H.; Cooper, M.E. Diabetic kidney disease. Nat. Rev. Dis. Primers 2015, 1, 1–20. [Google Scholar] [CrossRef]
- Patakova, P. Monascus secondary metabolites: Production and biological activity. J. Ind. Microbiol. Biotechnol. 2013, 40, 169–181. [Google Scholar] [CrossRef]
- Liu, J.-T.; Chen, H.-Y.; Chen, W.-C.; Man, K.-M.; Chen, Y.-H. Red yeast rice protects circulating bone marrow-derived proangiogenic cells against high-glucose-induced senescence and oxidative stress: The role of heme oxygenase-1. Oxid. Med. Cell Longev. 2017, 2017, 3831750. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Kalaivani, M. Protective effect of Monascus fermented rice against STZ-induced diabetic oxidative stress in kidney of rats. J. Food Sci. Technol. 2015, 52, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.-R.; Ke, B.-J.; Hsu, Y.-W.; Lee, C.-L. Dimerumic acid and deferricoprogen produced by Monascus purpureus attenuate liquid ethanol diet-induced alcoholic hepatitis via suppressing NF-κB inflammation signalling pathways and stimulation of AMPK-mediated lipid metabolism. J. Funct. Foods 2019, 60, 103393. [Google Scholar] [CrossRef]
- Kohama, Y.; Matsumoto, S.; Mimura, T.; Tanabe, N.; Inada, A.; Nakanishi, T. Isolation and identification of hypotensive principles in red-mold rice. Chem. Pharm. Bull. 1987, 35, 2484–2489. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-C.; Wang, J.-J.; Lin, T.-T.; Pan, T.-M. Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. J. Ind. Microbiol. Biotechnol. 2003, 30, 41–46. [Google Scholar] [CrossRef]
- Hsu, W.-H.; Lee, B.-H.; Huang, Y.-C.; Hsu, Y.-W.; Pan, T.-M. Ankaflavin, a novel Nrf-2 activator for attenuating allergic airway inflammation. Free Radic. Biol. Med. 2012, 53, 1643–1651. [Google Scholar] [CrossRef]
- Shi, Y.-C.; Liao, V.H.-C.; Pan, T.-M. Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans. Free Radic. Biol. Med. 2012, 52, 109–117. [Google Scholar] [CrossRef]
- Hsu, W.-H.; Lee, B.-H.; Liao, T.-H.; Hsu, Y.-W.; Pan, T.-M. Monascus-fermented metabolite monascin suppresses inflammation via PPAR-γ regulation and JNK inactivation in THP-1 monocytes. Food Chem. Toxicol. 2012, 50, 1178–1186. [Google Scholar] [CrossRef]
- Zheng, G.; Zhan, Y.; Tang, Q.; Chen, T.; Zheng, F.; Wang, H.; Wang, J.; Wu, D.; Li, X.; Zhou, Y. Monascin inhibits IL-1β induced catabolism in mouse chondrocytes and ameliorates murine osteoarthritis. Food Funct. 2018, 9, 1454–1464. [Google Scholar] [CrossRef]
- Chen, R.-J.; Hung, C.-M.; Chen, Y.-L.; Wu, M.-D.; Yuan, G.-F.; Wang, Y.-J. Monascuspiloin induces apoptosis and autophagic cell death in human prostate cancer cells via the Akt and AMPK signaling pathways. J. Agric. Food Chem. 2012, 60, 7185–7193. [Google Scholar] [CrossRef]
- Chiu, H.-W.; Fang, W.-H.; Chen, Y.-L.; Wu, M.-D.; Yuan, G.-F.; Ho, S.-Y.; Wang, Y.-J. Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS ONE 2012, 7, e40462. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, K.; Yang, Z.; Li, J.; Chen, G.; Wu, Q.; Lv, X.; Hu, W.; Rao, P.; Ai, L. Monascuspiloin from Monascus-Fermented Red Mold Rice Alleviates Alcoholic Liver Injury and Modulates Intestinal Microbiota. Foods 2022, 11, 3048. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-L.; Pan, T.-M. Effects of red mold dioscorea with pioglitazone, a potentially functional food, in the treatment of diabetes. J. Food Drug Anal. 2015, 23, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.-X.; Hsu, Y.-W.; Pan, T.-M.; Lee, C.-L. Monascinol from Monascus pilosus-fermented rice exhibits hypolipidemic effects by regulating cholesterol and lipid metabolism. J. Funct. Foods 2024, 119, 106285. [Google Scholar] [CrossRef]
- Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4–15. [Google Scholar] [CrossRef]
- Goyal, S.N.; Reddy, N.M.; Patil, K.R.; Nakhate, K.T.; Ojha, S.; Patil, C.R.; Agrawal, Y.O. Challenges and issues with streptozotocin-induced diabetes–a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem. Biol. Interact. 2016, 244, 49–63. [Google Scholar] [CrossRef]
- Furman, B.L. Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. Pharmacol. 2015, 70, 5–47. [Google Scholar] [CrossRef]
- Masiello, P.; Broca, C.; Gross, R.; Roye, M.; Manteghetti, M.; Hillaire-Buys, D.; Novelli, M.; Ribes, G. Experimental NIDDM: Development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 1998, 47, 224–229. [Google Scholar] [CrossRef]
- Szkudelski, T. Streptozotocin–nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp. Biol. Med. 2012, 237, 481–490. [Google Scholar] [CrossRef]
- Rasouli, N.; Kern, P.A. Adipocytokines and the metabolic complications of obesity. J. Clin. Endocrinol. Metab. 2008, 93, s64–s73. [Google Scholar] [CrossRef]
- Yu, Y.; Chai, J. The function of miRNAs and their potential as therapeutic targets in burn-induced insulin resistance. Int. J. Mol. Med. 2015, 35, 305–310. [Google Scholar] [CrossRef]
- Dufour, D.R.; Lott, J.A.; Nolte, F.S.; Gretch, D.R.; Koff, R.S.; Seeff, L.B. Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests. Clin. Chem. 2000, 46, 2027–2049. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.-Z.; Park, S.; Reagan, W.J.; Goldstein, R.; Zhong, S.; Lawton, M.; Rajamohan, F.; Qian, K.; Liu, L.; Gong, D.-W. Alanine aminotransferase isoenzymes: Molecular cloning and quantitative analysis of tissue expression in rats and serum elevation in liver toxicity. Hepatology 2009, 49, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Moshage, H.; Janssen, J.; Franssen, J.; Hafkenscheid, J.; Yap, S. Study of the molecular mechanism of decreased liver synthesis of albumin in inflammation. J. Clin. Investig. 1987, 79, 1635–1641. [Google Scholar] [CrossRef] [PubMed]
- Rozga, J.; Piątek, T.; Małkowski, P. Human albumin: Old, new, and emerging applications. Ann. Transplant. 2013, 18, 205–217. [Google Scholar]
- Salazar, J.H. Overview of urea and creatinine. Lab. Med. 2014, 45, e19–e20. [Google Scholar] [CrossRef]
- Herman, J.; Goldbourt, U. Uric acid and diabetes: Observations in a population study. Lancet 1982, 320, 240–243. [Google Scholar] [CrossRef]
- Matthews, J.R.; Schlaich, M.P.; Rakoczy, E.P.; Matthews, V.B.; Herat, L.Y. The effect of SGLT2 inhibition on diabetic kidney disease in a model of diabetic retinopathy. Biomedicines 2022, 10, 522. [Google Scholar] [CrossRef]
- Kruger, C.; Nguyen, T.-T.; Breaux, C.; Guillory, A.; Mangelli, M.; Fridianto, K.T.; Kovalik, J.-P.; Burk, D.H.; Noland, R.C.; Mynatt, R. Proximal tubular cell–specific ablation of carnitine acetyltransferase causes tubular disease and secondary glomerulosclerosis. Diabetes 2019, 68, 819–831. [Google Scholar] [CrossRef]
- Amorim, R.G.; Guedes, G.d.S.; Vasconcelos, S.M.L.; Santos, J.C.d.F. Kidney disease in diabetes mellitus: Cross-linking between hyperglycemia, redox imbalance and inflammation. Arq. Bras. Cardiol. 2019, 112, 577–587. [Google Scholar] [CrossRef]
- Lin, C.-W.; Lin, C.-H.; Hsu, Y.-W.; Pan, T.-M.; Lee, C.-L. Monascin and ankaflavin prevents metabolic disorder by blood glucose regulatory, hypolipidemic, and anti-inflammatory effects in high fructose and high fat diet-induced hyperglycemic rat. J. Funct. Foods 2023, 104, 105537. [Google Scholar] [CrossRef]
- Adin, S.N.; Gupta, I.; Panda, B.P.; Mujeeb, M. Monascin and ankaflavin—Biosynthesis from Monascus purpureus, production methods, pharmacological properties: A review. Biotechnol. Appl. Biochem. 2023, 70, 137–147. [Google Scholar] [CrossRef]
- Hsu, W.-H.; Pan, T.-M. A novel PPARgamma agonist monascin’s potential application in diabetes prevention. Food Funct. 2014, 5, 1334–1340. [Google Scholar] [CrossRef]
Groups | Initial Body Weight (g) | Final Body Weight (g) | Liver Weight (g) | Kidney Weight (g) |
---|---|---|---|---|
NOR | 211.4 ± 5.8 a | 550.5 ± 35.1 b | 14.74 ± 1.86 b | 3.54 ± 0.51 a |
STZ-NA | 208.3 ± 8.3 a | 288.3 ± 23.7 a | 11.57 ± 0.95 a | 3.51 ± 0.27 a |
RL | 202.9 ± 10.6 a | 314.6 ± 31.8 a | 12.53 ± 1.06 a | 3.59 ± 0.34 a |
RH | 202.5 ± 9.0 a | 311.5 ± 27.2 a | 12.60 ± 0.71 a | 3.59 ± 0.24 a |
Msol-1X | 205.1 ± 7.9 a | 293.6 ± 30.4 a | 12.37 ± 1.42 a | 3.60 ± 0.23 a |
Msol-2X | 202.5 ± 8.9 a | 297.3 ± 23.4 a | 12.31 ± 1.13 a | 3.48 ± 0.31 a |
MS-1X | 201.8 ± 10.6 a | 286.1 ± 23.4 a | 12.10 ± 1.16 a | 3.38 ± 0.21 a |
MS-2X | 200.5 ± 12.6 a | 293.1 ± 26.8 a | 12.20 ± 1.34 a | 3.38 ± 0.25 a |
Groups | Food Intake (g) | Water Intake (mL) |
---|---|---|
NOR | 1542.1 ± 126.6 a | 2953.8 ± 581.5 a |
STZ-NA | 2350.1 ± 193.1 b | 10,821.3 ± 1295.8 b |
RL | 2394.9 ± 200.6 b | 10,700.0 ± 1264.9 b |
RH | 2464.5 ± 358.4 b | 11,330.0 ± 2220.8 b |
Msol-1X | 2441.0 ± 279.7 b | 10,879.4 ± 1671.2 b |
Msol-2X | 2424.5 ± 207.4 b | 11,190.0 ± 1314.4 b |
MS-1X | 2359.8 ± 119.8 b | 10,264.0 ± 958.0 b |
MS-2X | 2396.3 ± 275.0 b | 10,725.0 ± 1269.0 b |
Groups | AST (U/L) | ALT (U/L) | Albumin (g/dL) |
---|---|---|---|
NOR | 104.3 ± 14.0 a | 37.9 ± 7.3 a | 5.03 ± 0.35 d |
STZ-NA | 222.1 ± 19.4 d | 112.1 ± 17.5 c | 4.10 ± 0.32 a |
RL | 169.8 ± 47.3 c | 85.8 ± 21.9 b | 4.20 ± 0.23 ab |
RH | 146.3 ± 26.3 bc | 84.9 ± 12.0 b | 4.63 ± 0.14 c |
Msol-1X | 154.4 ± 41.5 bc | 86.5 ± 20.9 b | 4.21 ± 0.10 ab |
Msol-2X | 155.3 ± 30.4 bc | 89.9 ± 21.6 b | 4.31 ± 0.16 ab |
MS-1X | 156.9 ± 26.0 bc | 86.5 ± 13.5 b | 4.44 ± 0.16 bc |
MS-2X | 131.6 ± 39.5 ab | 91.3 ± 20.5 b | 4.41 ± 0.22 bc |
Groups | BUN (mg/dL) | Creatinine (mg/dL) | Uric Acid (g/dL) |
---|---|---|---|
NOR | 16.6 ± 3.2 a | 0.63 ± 0.08 d | 5.78 ± 0.96 c |
STZ-NA | 45.5 ± 2.0 c | 0.56 ± 0.07 c | 3.23 ± 0.36 a |
RL | 35.0 ± 6.1 b | 0.47 ± 0.06 b | 3.33 ± 0.31 a |
RH | 37.2 ± 5.7 b | 0.48 ± 0.01 b | 3.48 ± 0.53 a |
Msol-1X | 43.9 ± 9.3 c | 0.46 ± 0.04 ab | 4.41 ± 0.51 b |
Msol-2X | 40.3 ± 5.9 bc | 0.49 ± 0.03 b | 4.51 ± 0.74 b |
MS-1X | 36.5 ± 7.5 b | 0.48 ± 0.02 b | 4.49 ± 0.26 b |
MS-2X | 36.5 ± 5.3 b | 0.42 ± 0.04 a | 4.41 ± 0.43 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.-X.; Hsu, Y.-W.; Pan, T.-M.; Lee, C.-L. Comparative Effects of Monascin and Monascinol Produced by Monascus pilosus SWM-008 on Pro-Inflammatory Factors and Histopathological Alterations in Liver and Kidney Tissues in a Streptozotocin–Nicotinamide-Induced Rat Model. J. Fungi 2024, 10, 815. https://doi.org/10.3390/jof10120815
Yang P-X, Hsu Y-W, Pan T-M, Lee C-L. Comparative Effects of Monascin and Monascinol Produced by Monascus pilosus SWM-008 on Pro-Inflammatory Factors and Histopathological Alterations in Liver and Kidney Tissues in a Streptozotocin–Nicotinamide-Induced Rat Model. Journal of Fungi. 2024; 10(12):815. https://doi.org/10.3390/jof10120815
Chicago/Turabian StyleYang, Pei-Xin, Ya-Wen Hsu, Tzu-Ming Pan, and Chun-Lin Lee. 2024. "Comparative Effects of Monascin and Monascinol Produced by Monascus pilosus SWM-008 on Pro-Inflammatory Factors and Histopathological Alterations in Liver and Kidney Tissues in a Streptozotocin–Nicotinamide-Induced Rat Model" Journal of Fungi 10, no. 12: 815. https://doi.org/10.3390/jof10120815
APA StyleYang, P. -X., Hsu, Y. -W., Pan, T. -M., & Lee, C. -L. (2024). Comparative Effects of Monascin and Monascinol Produced by Monascus pilosus SWM-008 on Pro-Inflammatory Factors and Histopathological Alterations in Liver and Kidney Tissues in a Streptozotocin–Nicotinamide-Induced Rat Model. Journal of Fungi, 10(12), 815. https://doi.org/10.3390/jof10120815