Functional Evolution of Pseudofabraea citricarpa as an Adaptation to Temperature Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Materials
2.2. DNA Extraction
2.3. Library Construction and Sequencing
2.4. Genome Assembly Genome Annotation
2.5. Comparative Genomic Analysis
2.6. Statistical Analysis
3. Results
3.1. CQWZ Exhibits Higher Temperature Tolerance and Pathogenicity
3.2. P. citricarpa Experienced Genome Fragmentation and Fusion during Spread
3.3. Differences between Two Strains in Terms of Growth and Pathogenicity Pathways
3.4. Differential High Temperature Tolerance Involves the Oxidative Stress Pathway
3.5. CQWZ Has Evolved to Acquire an Increased Number of Core Pathogenic Genes
3.6. HOG Pathway Responsible for Differences in High Temperature Tolerance and Pathogenicity
4. Discussion
4.1. Temperature Adaptation of Fungi
4.2. Fungal Manipulation of Plant Defenses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef]
- Casadevall, A. Climate change brings the specter of new infectious diseases. J. Clin. Investig. 2020, 130, 553–555. [Google Scholar] [CrossRef]
- Ali, S.; Gladieux, P.; Rahman, H.; Saqib, M.S.; Fiaz, M.; Ahmad, H.; Leconte, M.; Gautier, A.; Justesen, A.; Hovmøller, M.; et al. Inferring the contribution of sexual reproduction, migration and off-season survival to the temporal maintenance of microbial populations: A case study on the wheat fungal pathogen Puccinia striiformis f.sp. tritici. Mol. Ecol. 2014, 23, 603–617. [Google Scholar] [CrossRef]
- Singh, R.P.; Hodson, D.P.; Huerta-Espino, J.; Jin, Y.; Bhavani, S.; Njau, P.; Herrera-Foessel, P.; Singh, P.; Singh, S.; Govindan, V. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 2011, 49, 465–481. [Google Scholar] [CrossRef] [PubMed]
- Sbeiti, A.A.L.; Mazurier, M.; Ben, C.; Rickauer, M.; Gentzbittel, L. Temperature increase modifies susceptibility to Verticillium wilt in Medicago spp and may contribute to the emergence of more aggressive pathogenic strains. Front. Plant Sci. 2023, 14, 1109154. [Google Scholar] [CrossRef] [PubMed]
- Nazari, L.; Manstretta, V.; Rossi, V. A non-linear model for temperature-dependent sporulation and T-2 and HT-2 production of Fusarium langsethiae and Fusarium sporotrichioides. Fungal Biol. 2016, 120, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Mitchell-Olds, T.; Willis, J.H.; Goldstein, D.B. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat. Rev. Genet. 2007, 8, 845–856. [Google Scholar] [CrossRef]
- Monroe, J.G.; McGovern, C.; Lasky, J.R.; Grogan, K.; Beck, J.; McKay, J.K. Adaptation to warmer climates by parallel functional evolution of CBF genes in Arabidopsis thaliana. Mol. Ecol. 2016, 25, 3632–3644. [Google Scholar] [CrossRef]
- Savolainen, O.; Lascoux, M.; Merila, J. Ecological genomics of local adaptation. Nat. Rev. Genet. 2013, 14, 807–820. [Google Scholar] [CrossRef]
- Bazzicalupo, A. Local adaptation in fungi. FEMS Microbiol. Rev. 2022, 46, fuac026. [Google Scholar] [CrossRef]
- Gu, X.; Ding, J.; Liu, W.; Yang, X.; Yao, L.; Gao, X.; Zhang, M.; Yang, S.; Wen, J. Comparative genomics and association analysis identifies virulence genes of Cercospora sojina in soybean. BMC Genom. 2020, 21, 172. [Google Scholar] [CrossRef]
- Salmerón-Santiago, K.G.; Pardo, J.P.; Flores-Herrera, O.; Mendoza-Hernández, G.; Miranda-Arango, M.; Guerra-Sánchez, G. Response to osmotic stress and temperature of the fungus Ustilago maydis. Arch. Microbiol. 2011, 193, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Gautam, H.R.; MBhardwaj, L.; Kumar, R. Climate change and its impact on plant diseases. Curr. Sci. India 2013, 105, 1685–1691. [Google Scholar]
- Santini, A.; Ghelardini, L. Plant pathogen evolution and climate change. CABI Rev. 2015, 35, 1–8. [Google Scholar] [CrossRef]
- Doehlemann, G.; Berndt, P.; Hahn, M. Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiology 2006, 152, 2625–2634. [Google Scholar] [CrossRef]
- Verghese, J.; Abrams, J.; Wang, Y.; Morano, K.A. Biology of the heat shock response and protein chaperones: Budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol. Mol. Biol. Rev. 2012, 76, 115–158. [Google Scholar] [CrossRef]
- Reyre, J.L.; Grisel, S.; Haon, M.; Navarro, D.; Ropartz, D.; Le Gall, S.; Record, E.; Sciara, G.; Tranquet, O.; Berrin, J.; et al. The maize pathogen Ustilago maydis secretes glycoside hydrolases and carbohydrate oxidases directed toward components of the fungal cell wall. Appl. Environ. Microb. 2022, 88, e01581-22. [Google Scholar] [CrossRef]
- Scharf, D.H.; Heinekamp, T.; Brakhage, A.A. Human and plant fungal pathogens: The role of secondary metabolites. PLoS Pathog. 2014, 10, e1003859. [Google Scholar] [CrossRef] [PubMed]
- Román, E.; Arana, D.M.; Nombela, C.; Alonso-Monge, R.; Pla, J. MAP kinase pathways as regulators of fungal virulence. Trends Microbiol. 2007, 15, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, X.; Huang, F.; Zhang, J.; Li, H.; Ding, D.; Hyde, K.D. A destructive new disease of citrus in China caused by Cryptosporiopsis citricarpa sp nov. Plant Dis. 2012, 96, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Zeng, Y.; Wang, W.; Cheng, L.; Qiao, X.; Hou, X.; Li, H. First report and new hosts of Pseudofabraea citricarpa causing citrus target spot in China. Plant Health Progress 2021, 22, 26–30. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, A.; Yu, Y.; Bi, C.; Zhou, C. Integrated transcriptomic and secretomic approaches reveal critical pathogenicity factors in Pseudofabraea citricarpa inciting citrus target spot. Microb. Biotechnol. 2019, 12, 1260–1273. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xu, Y.; He, J.; Yang, Y. Establishment of an identification method of citrus resistance to target spot. J. Fruit. Sci. 2022, 39, 295–301. (In Chinese) [Google Scholar]
- Wang, L.; Wang, C.; Li, B.; Wang, W. Sustainable Land Use Evaluation in Wanzhou District Chongqing City. J. Sustain. Dev. 2011, 4, 125. [Google Scholar] [CrossRef]
- Chen, L.; Liu, S.; Ren, J.; Li, L.; Sun, H.; Zhang, X.; Qiao, X.; Yang, Y. Genome sequence resource of Pseudofabraea citricarpa: A fungus causing citrus target spot. PhytoFrontiers 2023, 3, 924–926. [Google Scholar] [CrossRef]
- Heung, L.J.; Luberto, C.; Plowden, A.; Hannun, Y.A.; Del Poeta, M. The sphingolipid pathway regulates Pkc1 through the formation of diacylglycerol in Cryptococcus neoformans. J. Biol. Chem. 2004, 279, 21144–21153. [Google Scholar] [CrossRef] [PubMed]
- Mollapour, M.; Piper, P.W. Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res. 2006, 6, 1274–1280. [Google Scholar] [CrossRef]
- Kuzuyama, T.; Takagi, M.; Takahashi, S.; Seto, H. Cloning and characterization of 1-deoxy-D-xylulose 5-phosphate synthase from Streptomyces sp strain CL190, which uses both the mevalonate and nonmevalonate pathways for isopentenyl diphosphate biosynthesis. J. Bacteriol. 2000, 182, 891–897. [Google Scholar] [CrossRef]
- Coakley, S.M.; Scherm, H.; Chakraborty, S. Climate change and plant disease management. Annu. Rev. Phytopathol. 1999, 37, 399–426. [Google Scholar] [CrossRef]
- Lendenmann, M.H.; Croll, D.; Palma-Guerrero, J.; Stewart, E.L.; McDonald, B.A. QTL mapping of temperature sensitivity reveals candidate genes for thermal adaptation and growth morphology in the plant pathogenic fungus Zymoseptoria tritici. Heredity 2016, 116, 384–394. [Google Scholar] [CrossRef]
- Xiao, W.; Zhang, J.; Huang, J.; Xin, C.; Li, M.J.; Song, Z. Response and regulatory mechanisms of heat resistance in pathogenic fungi. Appl. Microb. Biotechnol. 2022, 106, 5415–5431. [Google Scholar] [CrossRef]
- Sugiyama, K.; Izawa, S.; Inoue, Y. The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J. Biol. Chem. 2000, 275, 15535–15540. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, M.; Shu, C.; Zhou, E. Three genes related to trehalose metabolism affect sclerotial development of Rhizoctonia solani AG-1 IA, causal agent of rice sheath blight. Rice Sci. 2022, 29, 268–276. [Google Scholar] [CrossRef]
- Fabri, J.H.T.M.; de Sá, N.P.; Malavazi, I.; Del Poeta, M. The dynamics and role of sphingolipids in eukaryotic organisms upon thermal adaptation. Prog. Lipid Res. 2020, 80, 101063. [Google Scholar] [CrossRef]
- Senik, S.V.; Psurtseva, N.V.; Shavarda, A.L.; Kotlova, E.R. Role of lipids in the thermal plasticity of basidial fungus Favolaschia manipularis. Can. J. Microbiol. 2019, 65, 870–879. [Google Scholar] [CrossRef]
- Moraitis, C.; Curran, B.P.G. Reactive oxygen species may influence the heat shock response and stress tolerance in the yeast Saccharomyces cerevisiae. Yeast 2004, 21, 313–323. [Google Scholar] [CrossRef]
- Zhang, X.; St Leger, R.J.; Fang, W. Pyruvate accumulation is the first line of cell defense against heat stress in a fungus. mBio 2017, 8, e01284-17. [Google Scholar] [CrossRef] [PubMed]
- Tibpromma, S.; Dong, Y.; Ranjitkar, S.; Schaefer, D.A.; Karunarathna, S.C.; Hyde, K.D.; Jayawardena, R.S.; Manawasinghe, I.S.; Bebber, D.P.; Promputtha, I.; et al. Climate-fungal pathogen modeling predicts loss of up to one-third of tea growing areas. Front. Cell. Infect. Microbiol. 2021, 11, 610567. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant-pathogen warfare under changing climate conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef]
- Kazan, K.; Lyons, R. Intervention of Phytohormone Pathways by Pathogen Effectors. Plant Cell 2014, 26, 2285–2309. [Google Scholar] [CrossRef] [PubMed]
- Rabe, F.; Ajami-Rashidi, Z.; Doehlemann, G.; Kahmann, R.; Djamei, A. Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis. Mol. Microbiol. 2013, 89, 179–188. [Google Scholar] [CrossRef]
- De Jonge, R.; Peter van Esse, H.; Kombrink, A.; Shinya, T.; Desaki, Y.; Bours, R.; van der Krol, S.; Shibuya, N.; Joosten, M.H.; Thomma, B.P. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 2010, 329, 953–955. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; MacKenzie, C.I.; Rodriguez-Moreno, L.; van den Berg, G.C.; Chen, H.; Rudd, J.J.; Mesters, J.R.; Thomma, B.P. Three LysM effectors of Zymoseptoria tritici collectively disarm chitin-triggered plant immunity. Mol. Plant Pathol. 2021, 22, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Mentlak, T.A.; Kombrink, A.; Shinya, T.; Ryder, L.S.; Otomo, I.; Saitoh, H.; Terauchi, R.; Nishizawa, Y.; Shibuya, N.; Thomma, B.P.; et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 2012, 24, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Trinh, J.; Li, T.; Franco, J.Y.; Toruño, T.Y.; Stevens, D.M.; Thapa, S.P.; Wong, J.; Pineda, R.; de Dios, E.; Kahn, T.; et al. Variation in microbial feature perception in the Rutaceae family with immune receptor conservation in citrus. Plant Physiol. 2023, 193, 689–707. [Google Scholar] [CrossRef]
- Ma, Z.; Zhu, L.; Song, T.; Wang, Y.; Zhang, Q.; Xia, Y.; Qiu, M.; Lin, Y.; Li, H.; Kong, L.; et al. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 2017, 355, 710–714. [Google Scholar] [CrossRef]
Features | Chromosome | |
---|---|---|
CQWZ | SXCG | |
Genome Size (bp) | 44,005,176 | 45,377,339 |
GC Content (%) | 44.71 | 44.54 |
CDS No. | 14,193 | 14,110 |
rRNA No. | 4 | 13 |
tRNA No. | 163 | 215 |
PHI ID | Protein ID | Homologous Name | NCBI Tax ID | Pathogen Species | Number | Sample |
---|---|---|---|---|---|---|
PHI:7376 | J4URT3 | Blys2 | 176275 | Beauveria bassiana | 1 | SXCG/CQWZ |
PHI:6833 | G2XA95 | Vd6LysM | 27337 | Verticillium dahliae | 2 | SXCG/CQWZ |
PHI:9334 | D2TI55 | map | 67825 | Citrobacter rodentium | 2 | SXCG/CQWZ |
PHI:2216 | A0N0D1 | PemG1 | 318829 | Magnaporthe oryzae | 1 | SXCG/CQWZ |
PHI:5495 | B3VBK9 | Ecp6 | 5507; 5499 | Passalora fulva; Fusarium oxysporum | 3 | SXCG/CQWZ |
PHI:7664 | A0A0A2ILW0 | LysM1 | 27334 | Penicillium expansum | 2 | SXCG/CQWZ |
PHI:7667 | A0A0A2JB06 | LysM4 | 27334 | P. expansum | 1 | SXCG/CQWZ |
PHI:2404 | G4N906 | SLP 1 | 318829 | M. oryzae | 1 | CQWZ |
PHI:3216 | G4MVX4 | MoCDIP4 | 318829 | M. oryzae | 3 | SXCG/CQWZ |
PHI:3213 | G4N8Y3 | MoCDIP1 | 318829 | M. oryzae | 1 | SXCG/CQWZ |
PHI:5335 | A0A0H3HVK0 | clpV-5 | 28450 | Burkholderia pseudomallei | 1 | SXCG/CQWZ |
PHI:325 | Q6ZX14 | ACE1 | 318829 | M. oryzae | 5 | SXCG/CQWZ |
PHI:6868 | G4ZHR2 | PsXEG1 | 67593 | Phytophthora sojae | 2 | SXCG/CQWZ |
PHI:981 | Q8RP09 | hopI1 | 317 | Pseudomonas syringae | 1 | SXCG/CQWZ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Chen, L.; Qiao, X.; Ren, J.; Zhou, C.; Yang, Y. Functional Evolution of Pseudofabraea citricarpa as an Adaptation to Temperature Change. J. Fungi 2024, 10, 109. https://doi.org/10.3390/jof10020109
Liu S, Chen L, Qiao X, Ren J, Zhou C, Yang Y. Functional Evolution of Pseudofabraea citricarpa as an Adaptation to Temperature Change. Journal of Fungi. 2024; 10(2):109. https://doi.org/10.3390/jof10020109
Chicago/Turabian StyleLiu, Saifei, Li Chen, Xinghua Qiao, Jiequn Ren, Changyong Zhou, and Yuheng Yang. 2024. "Functional Evolution of Pseudofabraea citricarpa as an Adaptation to Temperature Change" Journal of Fungi 10, no. 2: 109. https://doi.org/10.3390/jof10020109
APA StyleLiu, S., Chen, L., Qiao, X., Ren, J., Zhou, C., & Yang, Y. (2024). Functional Evolution of Pseudofabraea citricarpa as an Adaptation to Temperature Change. Journal of Fungi, 10(2), 109. https://doi.org/10.3390/jof10020109