Systems Metabolic Engineering of Saccharomyces cerevisiae for the High-Level Production of (2S)-Eriodictyol
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Engineering of the Upstream Pathway Enables the Production of p-Coumaric Acid
3.2. Promoter-Library-Based (2S)-Naringenin Pathway Optimization
3.3. The Half-Life of mRNA Is Regulated Based on Terminator Optimization
3.4. Copy Number Regulation Improves (2S)-Eriodictyol Production
3.5. Biosynthesis of (2S)-Hesperetin from Glucose by Co-Culturing the Engineered S. cerevisiae and E. coli Strains
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, W.; Feng, Y.; Yu, S.; Fan, Z.; Li, X.; Li, J.; Yin, H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021, 22, 12824. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef]
- Santana, F.P.R.; Thevenard, F.; Gomes, K.S.; Taguchi, L.; Câmara, N.O.S.; Stilhano, R.S.; Ureshino, R.P.; Prado, C.M.; Lago, J.H.G. New Perspectives on Natural Flavonoids on Covid-19-Induced Lung Injuries. Phytother. Res. 2021, 35, 4988–5006. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, I.; Iida, T.; Horiuchi, N.; Caterina, M.J. 5-Iodoresiniferatoxin Evokes Hypothermia in Mice and Is a Partial Transient Receptor Potential Vanilloid 1 Agonist in Vitro. J. Pharmacol. Exp. Ther. 2005, 314, 1378–1385. [Google Scholar] [CrossRef]
- Rossato, M.F.; Trevisan, G.; Walker, C.I.; Klafke, J.Z.; de Oliveira, A.P.; Villarinho, J.G.; Zanon, R.B.; Royes, L.F.; Athayde, M.L.; Gomez, M.V.; et al. Eriodictyol: A Flavonoid Antagonist of the Trpv1 Receptor with Antioxidant Activity. Biochem. Pharmacol. 2011, 81, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Yu, J.; Xu, X.; Lu, T.; Xu, F. Eriodictyol Inhibits High Glucose-Induced Oxidative Stress and Inflammation in Retinal Ganglial Cells. J. Cell. Biochem. 2019, 120, 5644–5651. [Google Scholar] [CrossRef]
- Patapoutian, A.; Tate, S.; Woolf, C.J. Transient Receptor Potential Channels: Targeting Pain at the Source. Nat. Rev. Drug Discov. 2009, 8, 55–68. [Google Scholar] [CrossRef]
- Gavva, N.R.; Treanor, J.J.; Garami, A.; Fang, L.; Surapaneni, S.; Akrami, A.; Alvarez, F.; Bak, A.; Darling, M.; Gore, A.; et al. Pharmacological Blockade of the Vanilloid Receptor Trpv1 Elicits Marked Hyperthermia in Humans. Pain 2008, 136, 202–210. [Google Scholar] [CrossRef]
- Lee, E.R.; Kim, J.H.; Kang, Y.J.; Cho, S.G. The Anti-Apoptotic and Anti-Oxidant Effect of Eriodictyol on Uv-Induced Apoptosis in Keratinocytes. Biol. Pharm. Bull. 2007, 30, 32–37. [Google Scholar] [CrossRef]
- Deng, Z.; Hassan, S.; Rafiq, M.; Li, H.; He, Y.; Cai, Y.; Kang, X.; Liu, Z.; Yan, T. Pharmacological Activity of Eriodictyol: The Major Natural Polyphenolic Flavanone. Evid. Based Complement. Altern. Med. 2020, 2020, 6681352. [Google Scholar] [CrossRef]
- Choi, K.R.; Jang, W.D.; Yang, D.; Cho, J.S.; Park, D.; Lee, S.Y. Systems Metabolic Engineering Strategies: Integrating Systems and Synthetic Biology with Metabolic Engineering. Trends Biotechnol. 2019, 37, 817–837. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Y.; Li, G.; Savolainen, O.; Chen, Y.; Nielsen, J. De Novo Biosynthesis of Bioactive Isoflavonoids by Engineered Yeast Cell Factories. Nat. Commun. 2021, 12, 6085. [Google Scholar] [CrossRef]
- Temer, B.; Dos Santos, L.V.; Negri, V.A.; Galhardo, J.P.; Magalhães, P.H.M.; José, J.; Marschalk, C.; Corrêa, T.L.R.; Carazzolle, M.F.; Pereira, G.A.G. Conversion of an Inactive Xylose Isomerase into a Functional Enzyme by Co-Expression of Groel-Groes Chaperonins in Saccharomyces cerevisiae. BMC Biotechnol. 2017, 17, 71. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, H.; Zhou, J.; Chen, J. Promoter-Library-Based Pathway Optimization for Efficient (2S)-Naringenin Production from p-Coumaric Acid in Saccharomyces cerevisiae. J. Agric. Food Chem. 2020, 68, 6884–6891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jin, B.; Hong, K.; Lv, Y.; Wang, Z.; Chen, T. Cell Catalysis of Citrate to Itaconate by Engineered Halomonas Bluephagenesis. ACS Synth. Biol. 2021, 10, 3017–3027. [Google Scholar] [CrossRef]
- Li, J.; Tian, C.; Xia, Y.; Mutanda, I.; Wang, K.; Wang, Y. Production of Plant-Specific Flavones Baicalein and Scutellarein in an Engineered E. coli from Available Phenylalanine and Tyrosine. Metab. Eng. 2019, 52, 124–133. [Google Scholar] [PubMed]
- Ki, M.-R.; Pack, S.P. Fusion Tags to Enhance Heterologous Protein Expression. Appl. Microbiol. Biot. 2020, 104, 2411–2425. [Google Scholar] [CrossRef]
- Sun, C.; Li, G.; Li, H.; Lyu, Y.; Yu, S.; Zhou, J. Enhancing Flavan-3-ol Biosynthesis in Saccharomyces cerevisiae. J. Agric. Food Chem. 2021, 69, 12763–12772. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.K.; Marsafari, M.; Koffas, M.; Zhou, J.W.; Xu, P. Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis. ACS Synth. Biol. 2019, 8, 2514–2523. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Li, H.; Lyu, Y.; Zeng, W.; Zhou, J. Enhanced Biosynthesis of Dihydromyricetin in Saccharomyces cerevisiae by Coexpression of Multiple Hydroxylases. J. Agric. Food Chem. 2020, 68, 14221–14229. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, T.; Li, X.; Chen, Y.; Campbell, K.; Nielsen, J.; Chen, Y. Rewiring Carbon Metabolism in Yeast for High Level Production of Aromatic Chemicals. Nat. Commun. 2019, 10, 4976–4988. [Google Scholar] [CrossRef]
- Zhou, S.; Yuan, S.F.; Nair, P.H.; Alper, H.S.; Deng, Y.; Zhou, J. Development of a Growth Coupled and Multi-Layered Dynamic Regulation Network Balancing Malonyl-Coa Node to Enhance (2S)-Naringenin Biosynthesis in Escherichia coli. Metab. Eng. 2021, 67, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tian, M.; Wang, Z.; Xiao, F.; Huang, X.; Shan, Y. Production of Hesperetin from Naringenin in an Engineered Escherichia coli Consortium. J. Biotechnol. 2022, 347, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Schoenbohm, C.; Martens, S.; Eder, C.; Forkmann, G.; Weisshaar, B. Identification of the Arabidopsis thaliana Flavonoid 3’-Hydroxylase Gene and Functional Expression of the Encoded P450 Enzyme. Biol. Chem. 2000, 381, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Xu, X.; Zeng, W.; Xu, S.; Lyv, Y.; Feng, Y.; Kai, G.; Zhou, J.; Chen, J. Efficient Biosynthesis of (2S)-Eriodictyol from (2S)-Naringenin in Saccharomyces cerevisiae through a Combination of Promoter Adjustment and Directed Evolution. ACS Synth. Biol. 2020, 9, 3288–3297. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, J.; Du, G.; Zhou, J.; Chen, J. Efficient Synthesis of Eriodictyol from L-Tyrosine in Escherichia coli. Appl. Environ. Microb. 2014, 80, 3072–3080. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, M.D.; Buron, L.D.; Salomonsen, B.; Olsen, C.E.; Hansen, B.G.; Mortensen, U.H.; Halkier, B.A. Microbial Production of Indolylglucosinolate through Engineering of a Multi-Gene Pathway in a Versatile Yeast Expression Platform. Metab. Eng. 2012, 14, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Wu, Y.; Deng, J.; Chen, N.; Zheng, Z.; Wei, Y.; Luo, X.; Keasling, J.D. Promoter Architecture and Promoter Engineering in Saccharomyces cerevisiae. Metabolites 2020, 10, 320. [Google Scholar] [CrossRef]
- Curran, K.A.; Morse, N.J.; Markham, K.A.; Wagman, A.M.; Gupta, A.; Alper, H.S. Short Synthetic Terminators for Improved Heterologous Gene Expression in Yeast. ACS Synth. Biol. 2015, 4, 824–832. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, L.; Sheng, Y.; Zhang, G. Yeast Synthetic Terminators: Fine Regulation of Strength through Linker Sequences. Chembiochem 2019, 20, 2383–2389. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Ikram, S.; Rasool, A.; Li, C. Design and Construction of Short Synthetic Terminators for β-Amyrin Production in Saccharomyces cerevisiae. Biochem. Eng. J. 2019, 146, 105–116. [Google Scholar] [CrossRef]
- Curran, K.A.; Karim, A.S.; Gupta, A.; Alper, H.S. Use of Expression-Enhancing Terminators in Saccharomyces cerevisiae to Increase Mrna Half-Life and Improve Gene Expression Control for Metabolic Engineering Applications. Metab. Eng. 2013, 19, 88–97. [Google Scholar] [CrossRef]
- Ito, Y.; Kitagawa, T.; Yamanishi, M.; Katahira, S.; Izawa, S.; Irie, K.; Furutani-Seiki, M.; Matsuyama, T. Enhancement of Protein Production Via the Strong DIT1 Terminator and Two Rna-Binding Proteins in Saccharomyces cerevisiae. Sci. Rep. 2016, 6, 36997. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xiao, Z.; Zhang, S.; Wang, Z.; Chen, Y.; Shan, Y. Restricting Promiscuity of Plant Flavonoid 3′-Hydroxylase and 4′-O-Methyltransferase Improves the Biosynthesis of (2S)-Hesperetin in E. coli. J. Agric. Food Chem. 2023, 71, 9826–9835. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Mohedano, M.T.; Fu, J.; Li, X.; Liu, Q.; Nielsen, J.; Siewers, V.; Chen, Y. Fine-Tuning of p-Coumaric Acid Synthesis to Increase (2S)-Naringenin Production in Yeast. Metab. Eng. 2023, 79, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, W.; Lyv, Y.; Gao, S.; Zhou, J. Glycosylation Modification Enhances (2S)-Naringenin Production in Saccharomyces cerevisiae. ACS Synth. Biol. 2022, 11, 2339–2347. [Google Scholar] [CrossRef] [PubMed]
- Koopman, F.; Beekwilder, J.; Crimi, B.; van Houwelingen, A.; Hall, R.D.; Bosch, D.; van Maris, A.J.; Pronk, J.T.; Daran, J.M. De Novo Production of the Flavonoid Naringenin in Engineered Saccharomyces cerevisiae. Microb. Cell Factories 2012, 11, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Lyu, Y.; Xu, S.; Zhang, L.; Zhou, J. Optimum Chalcone Synthase for Flavonoid Biosynthesis in Microorganisms. Crit. Rev. Biotechnol. 2021, 41, 1194–1208. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Lu, S.; Wu, J.; Liang, C.; Wang, W.; Wang, W.; Jin, J.M.; Tang, S.Y. Improving Key Enzyme Activity in Phenylpropanoid Pathway with a Designed Biosensor. Metab. Eng. 2017, 40, 115–123. [Google Scholar] [CrossRef]
- Lehka, B.J.; Eichenberger, M.; Bjorn-Yoshimoto, W.E.; Vanegas, K.G.; Buijs, N.; Jensen, N.B.; Dyekjaer, J.D.; Jenssen, H.; Simon, E.; Naesby, M. Improving Heterologous Production of Phenylpropanoids in Saccharomyces cerevisiae by Tackling an Unwanted Side Reaction of Tsc13, an Endogenous Double-bond Reductase. FEMS Yeast Res. 2017, 17, fox004. [Google Scholar] [CrossRef]
- Richard, P.; Viljanen, K.; Penttila, M. Overexpression of PAD1 and FDC1 Results in Significant Cinnamic Acid Decarboxylase Activity in Saccharomyces cerevisiae. AMB Express. 2015, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.K.; Tan, Y.S.; Cui, Y.Z.; Xin, X.; Liu, Z.H.; Li, B.Z.; Yuan, Y.J. Lignin Valorization for Protocatechuic Acid Production in Engineered Saccharomyces cerevisiae. Green. Chem. 2021, 23, 6515–6526. [Google Scholar] [CrossRef]
- Wei, L.; Wang, Z.; Zhang, G.; Ye, B. Characterization of Terminators in Saccharomyces Cerevisiae and an Exploration of Factors Affecting Their Strength. ChemBioChem 2017, 18, 2422–2427. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Yamanishi, M.; Ikeuchi, A.; Matsuyama, T. A Highly Tunable System for the Simultaneous Expression of Multiple Enzymes in Saccharomyces Cerevisiae. ACS Synth. Biol. 2015, 4, 12–16. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Liu, J.; Xiao, Z.; Tan, X.; Wang, Y.; Zhao, Y.; Jiang, N.; Shan, Y. Systems Metabolic Engineering of Saccharomyces cerevisiae for the High-Level Production of (2S)-Eriodictyol. J. Fungi 2024, 10, 119. https://doi.org/10.3390/jof10020119
Zhang S, Liu J, Xiao Z, Tan X, Wang Y, Zhao Y, Jiang N, Shan Y. Systems Metabolic Engineering of Saccharomyces cerevisiae for the High-Level Production of (2S)-Eriodictyol. Journal of Fungi. 2024; 10(2):119. https://doi.org/10.3390/jof10020119
Chicago/Turabian StyleZhang, Siqi, Juan Liu, Zhiqiang Xiao, Xinjia Tan, Yongtong Wang, Yifei Zhao, Ning Jiang, and Yang Shan. 2024. "Systems Metabolic Engineering of Saccharomyces cerevisiae for the High-Level Production of (2S)-Eriodictyol" Journal of Fungi 10, no. 2: 119. https://doi.org/10.3390/jof10020119
APA StyleZhang, S., Liu, J., Xiao, Z., Tan, X., Wang, Y., Zhao, Y., Jiang, N., & Shan, Y. (2024). Systems Metabolic Engineering of Saccharomyces cerevisiae for the High-Level Production of (2S)-Eriodictyol. Journal of Fungi, 10(2), 119. https://doi.org/10.3390/jof10020119