Genome-Wide Identification and Characterization of the Medium-Chain Dehydrogenase/Reductase Superfamily of Trichosporon asahii and Its Involvement in the Regulation of Fluconazole Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Material
2.2. Acquisition of Genomic Information
2.3. Identification of MDR Superfamily Members
2.4. Analysis of the Protein Properties of TaMDRs
2.5. Phylogenetic Analysis
2.6. Gene Structure and Conserved Motif Analysis
2.7. Comparison of Multiple Sequences and Protein Structure Prediction of TaMDRs
2.8. Collinearity Analysis
2.9. Analysis of the Localization of the TaMDR Gene on Chromosomes
2.10. Analysis of TaMDR Expression Pattern in Fluconazole Resistance
2.11. Gene Expression Analysis
3. Results
3.1. Identification and Basic Properties of TaMDRs
3.2. Phylogenetic Analysis
3.3. Multiple Sequence Comparisons of TaMDRs
3.4. Gene Structure and Protein Motif Analysis of the MDRs
3.5. D Structure Prediction of TaMDRs
3.6. Chromosomal Localization of TaMDRs
3.7. Collinearity Analysis
3.8. Transcription and Expression of TaMDRs in Drug-Resistant Strains
3.9. QRT-PCR Analysis of TaMDRs in Fluconazole-Resistant Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arendrup, M.C.; Boekhout, T.; Akova, M.; Meis, J.F.; Cornely, O.A.; Lortholary, O. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin. Microbiol. Infect. 2014, 20, 76–98. [Google Scholar] [CrossRef]
- Vibha, M.; Charu, N.; Neelam, G.; Nidhi, S.; Sunvir, R.; Jagdish, C. A Comprehensive Review of Trichosporon spp.: An Invasive and Emerging Fungus. Cureus 2021, 13, e17345. [Google Scholar]
- Ramírez, I.; Moncada, D. Fatal Disseminated Infection by Trichosporon asahii Under Voriconazole Therapy in a Patient with Acute Myeloid Leukemia: A Review of Breakthrough Infections by Trichosporon spp. Mycopathologia 2020, 185, 377–388. [Google Scholar] [CrossRef]
- Colombo, A.L.; Padovan, A.C.B.; Chaves, G.M. Current Knowledge of Trichosporon spp. and Trichosporonosis. Clin. Microbiol. Rev. 2011, 24, 682–700. [Google Scholar] [CrossRef]
- Li, H.; Guo, M.; Wang, C.; Li, Y.; Fernandez, A.M.; Ferraro, T.N.; Yang, R.; Chen, Y. Epidemiological study of Trichosporon asahii infections over the past 23 years. Epidemiol. Infect. 2020, 148, e169. [Google Scholar] [CrossRef]
- Padovan, A.C.B.; Rocha, W.P.d.S.; Toti, A.C.d.M.; Freitas de Jesus, D.F.; Chaves, G.M.; Colombo, A.L. Exploring the resistance mechanisms in Trichosporon asahii: Triazoles as the last defense for invasive trichosporonosis. Fungal Genet. Biol. 2019, 133, 103267. [Google Scholar] [CrossRef]
- Francisco, E.C.; Junior, J.N.d.A.; Queiroz-Telles, F.; Aquino, V.R.; Mendes, A.V.A.; Silva, M.d.O.; Castro, P.d.T.O.e.; Guimarães, T.; Ponzio, V.; Hahn, R.C.; et al. Correlation of Trichosporon asahii Genotypes with Anatomical Sites and Antifungal Susceptibility Profiles: Data Analyses from 284 Isolates Collected in the Last 22 Years across 24 Medical Centers. Antimicrob. Agents Chemother. 2021, 65, e01104-20. [Google Scholar] [CrossRef]
- Malacrida, A.M.; Corrêa, J.L.; Barros, I.L.E.; Veiga, F.F.; Pereira, E.d.C.A.; Negri, M.; Svidzinski, T.I.E. Hospital Trichosporon asahii isolates with simple architecture biofilms and high resistance to antifungals routinely used in clinical practice. J. Med. Mycol. 2023, 33, 101356. [Google Scholar] [CrossRef]
- Jörnvall, H.; Höög, J.F.; Persson, B. SDR and MDR: Completed genome sequences show these protein families to be large, of old origin, and of complex nature. FEBS Lett. 1999, 445, 261–264. [Google Scholar] [CrossRef]
- Jörnvall, H.; Hedlund, J.; Bergman, T.; Kallberg, Y.; Cederlund, E.; Persson, B. Origin and evolution of medium chain alcohol dehydrogenases. Chem. Biol. Interact. 2013, 202, 91–96. [Google Scholar] [CrossRef]
- Persson, B.; Hedlund, J.; Jörnvall, H. Medium- and short-chain dehydrogenase/reductase gene and protein families. Cell. Mol. Life Sci. 2008, 65, 3879. [Google Scholar] [CrossRef]
- Kavanaugh, D.W.; Porrini, C.; Dervyn, R.; Ramarao, N. The pathogenic biomarker alcohol dehydrogenase protein is involved in Bacillus cereus virulence and survival against host innate defence. PLoS ONE 2022, 17, e0259386. [Google Scholar] [CrossRef]
- Shah, A.M.; Mohamed, H.; Fazili, A.B.A.; Yang, W.; Song, Y. Investigating the Effect of Alcohol Dehydrogenase Gene Knockout on Lipid Accumulation in Mucor circinelloides WJ11. J. Fungi 2022, 8, 917. [Google Scholar] [CrossRef]
- Srinivasan, M.P.; Bhopale, K.K.; Caracheo, A.A.; Kaphalia, L.; Popov, V.L.; Boor, P.J.; Kaphalia, B.S. Dysregulated pancreatic lipid phenotype, inflammation and cellular injury in a chronic ethanol feeding model of hepatic alcohol dehydrogenase-deficient deer mice. Life Sci. 2023, 322, 121670. [Google Scholar] [CrossRef]
- Zhang, R.; Xuan, L.; Ni, L.; Yang, Y.; Zhang, Y.; Wang, Z.; Yin, Y.; Hua, J. ADH Gene Cloning and Identification of Flooding-Responsive Genes in Taxodium distichum (L.) Rich. Plants 2023, 12, 678. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, J.-D.; Cao, Y.-B.; Gao, P.-H.; Jiang, Y.-Y. Proteomic Analysis Reveals a Metabolism Shift in a Laboratory Fluconazole-Resistant Candida albicans Strain. J. Proteome Res. 2007, 6, 2248–2256. [Google Scholar] [CrossRef]
- Xiaoli, Z.; Gehua, Z.; Zhiyuan, W.; Hui, G.; Laiqiang, G.; Si, W.; Yanjun, S.; Hong, Z. Proteomic analysis reveals that Adh1p is involved in a synergistic fluconazole and tetrandrine mechanism against Candida albicans. Pharmazie 2013, 68, 951–954. [Google Scholar]
- Hui, G.; Xiaoli, Z.; Laiqiang, G.; Shuixiu, L.; Yanjun, S.; Hong, Z. Alcohol dehydrogenase I expression correlates with CDR1, CDR2 and FLU1 expression in Candida albicans from patients with vulvovaginal candidiasis. Chin. Med. J. 2013, 126, 2098–2102. [Google Scholar]
- Zhang, X.; Guo, H.; Gao, L.; Song, Y.; Li, S.; Zhang, H. Molecular mechanisms underlying the tetrandrine-mediated reversal of the fluconazole resistance of Candida albicans. Pharm. Biol. 2013, 51, 749–752. [Google Scholar] [CrossRef]
- Jia, Y.; Wong, D.C.J.; Sweetman, C.; Bruning, J.B.; Ford, C.M. New insights into the evolutionary history of plant sorbitol dehydrogenase. BMC Plant Biol. 2015, 15, 101. [Google Scholar] [CrossRef]
- Sola-Carvajal, A.; García-García, M.I.; García-Carmona, F.; Sánchez-Ferrer, Á. Insights into the evolution of sorbitol metabolism: Phylogenetic analysis of SDR196C family. BMC Evol. Biol. 2012, 12, 147. [Google Scholar] [CrossRef]
- Kumar, A.; Li, J.; Kondaveeti, S.; Singh, B.; Shanmugam, R.; Kalia, V.C.; Kim, I.W.; Lee, J.K. Characterization of a xylitol dehydrogenase from Aspergillus flavus and its application in l-xylulose production. Front. Bioeng. Biotechnol. 2022, 10, 1001726. [Google Scholar] [CrossRef]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef]
- Horton, P.; Park, K.-J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- He, Z.; Zhang, H.; Gao, S.; Lercher, M.J.; Chen, W.-H.; Hu, S. Evolview v2: An online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res. 2016, 44, W236–W241. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.; Guo, A.-Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2014, 31, 1296–1297. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
- Gouet, P.; Robert, X.; Courcelle, E. ESPript/ENDscript: Extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 2003, 31, 3320–3323. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol Plant 2020, 13, 1752–9867. [Google Scholar] [CrossRef]
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 44, W147–W153. [Google Scholar] [CrossRef]
- Kozera, B.; Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 2013, 54, 391–406. [Google Scholar] [CrossRef]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinform. Biomath. 2013, 3, 71–85. [Google Scholar]
- Wang, Q.; Cai, X.; Li, Y.; Zhao, J.; Liu, Z.; Jiang, Y.; Meng, L.; Li, Y.; Pan, S.; Ai, X.; et al. Molecular identification, antifungal susceptibility, and resistance mechanisms of pathogenic yeasts from the China antifungal resistance surveillance trial (CARST-fungi) study. Front. Microbiol. 2022, 6, 1006375. [Google Scholar] [CrossRef]
- McCarthy, C.G.P.; Fitzpatrick, D.A. Pan-genome analyses of model fungal species. Microb. Genom. 2019, 5, e000243. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lin, X. Cryptococcus neoformans: Sex, morphogenesis, and virulence. Infect. Genet. Evol. 2021, 89, 104731. [Google Scholar] [CrossRef]
- Lopes, J.P.; Lionakis, M.S. Pathogenesis and virulence of Candida albicans. Virulence 2022, 13, 89–121. [Google Scholar] [CrossRef] [PubMed]
- Mo, C.; Xie, C.; Wang, G.; Liu, J.; Hao, Q.; Xiao, X.; Xiao, Y. Genome-Wide Identification and Characterization of the Cyclophilin Gene Family in the Nematophagous Fungus Purpureocillium lilacinum. Int. J. Mol. Sci. 2019, 20, 2978. [Google Scholar] [CrossRef] [PubMed]
- Cañestro, C.; Albalat, R.; Hjelmqvist, L.; Godoy, L.; Jörnvall, H.; Gonzàlez-Duarte, R. Ascidian and amphioxus Adh genes correlate functional and molecular features of the ADH family expansion during vertebrate evolution. J. Mol. Evol. 2002, 54, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.T.; Rossmann, M.G. Comparison of super-secondary structures in proteins. J. Mol. Biol. 1973, 76, 241–256. [Google Scholar] [CrossRef]
- Taneja, B.; Mande, S.C. Conserved structural features and sequence patterns in the GroES fold family. Protein Eng. Des. Sel. 1999, 12, 815–818. [Google Scholar] [CrossRef]
- Su, W.; Ren, Y.; Wang, D.; Su, Y.; Feng, J.; Zhang, C.; Tang, H.; Xu, L.; Muhammad, K.; Que, Y. The alcohol dehydrogenase gene family in sugarcane and its involvement in cold stress regulation. BMC Genom. 2020, 21, 521. [Google Scholar] [CrossRef]
- Raj, S.B.; Ramaswamy, S.; Plapp, B.V. Yeast Alcohol Dehydrogenase Structure and Catalysis. Biochemistry 2014, 53, 5791–5803. [Google Scholar] [CrossRef]
- Sanghani, P.C.; Bosron, W.F.; Hurley, T.D. Human Glutathione-Dependent Formaldehyde Dehydrogenase. Structural Changes Associated with Ternary Complex Formation. Biochemistry 2002, 41, 15189–15194. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, C.; Liu, W.; Tang, Y.; Qi, H.; Chen, H.; Cao, S. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.): Bioinformatic Analysis and Expression Patterns. Front. Plant Sci. 2016, 7, 670. [Google Scholar] [CrossRef]
- de Smidt, O.; du Preez, J.C.; Albertyn, J. Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae. FEMS Yeast Res. 2012, 12, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; He, P.; Wang, Q.; Lu, D.; Li, Z.; Wu, C.; Jiang, N. The Alcohol Dehydrogenase System in the Xylose-Fermenting Yeast Candida maltosa. PLoS ONE 2010, 5, e11752. [Google Scholar] [CrossRef]
- Jeffries, T.W. Utilization of Xylose by Bacteria, Yeasts, and Fungi; Springer: Berlin/Heidelberg, Germany, 1983; pp. 1–32. [Google Scholar]
- Lima, L.H.; Pinheiro, C.G.; de Moraes, L.M.; de Freitas, S.M.; Torres, F.A. Xylitol dehydrogenase from Candida tropicalis: Molecular cloning of the gene and structural analysis of the protein. Appl. Microbiol. Biotechnol. 2006, 73, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Corona, J.F.; González-Hernández, G.A.; Padilla-Guerrero, I.E.; Olmedo-Monfil, V.; Martínez-Rocha, A.L.; Patiño-Medina, J.A.; Meza-Carmen, V.; Torres-Guzmán, J.C. Fungal Alcohol Dehydrogenases: Physiological Function, Molecular Properties, Regulation of Their Production, and Biotechnological Potential. Cells 2023, 12, 2239. [Google Scholar] [CrossRef] [PubMed]
- Bailey-Serres, J.; Voesenek, L.A.C.J. Flooding Stress: Acclimations and Genetic Diversity. Annu. Rev. Plant Biol. 2008, 59, 313–339. [Google Scholar] [CrossRef] [PubMed]
- Bakker, B.M.; Bro, C.; Kötter, P.; Luttik, M.A.H.; Dijken, J.P.v.; Pronk, J.T. The Mitochondrial Alcohol Dehydrogenase Adh3p Is Involved in a Redox Shuttle in Saccharomyces cerevisiae. J. Bacteriol. 2000, 182, 4730–4737. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Goffeau, A. Yeast ATP-binding cassette transporters conferring multidrug resistance. Annu. Rev. Microbiol. 2012, 66, 39–63. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.A.; Munro, C.A.; de Bruijn, I.; Lenardon, M.D.; McKinnon, A.; Gow, N.A.R. Stimulation of Chitin Synthesis Rescues Candida albicans from Echinocandins. PLoS Pathog. 2008, 4, e1000040. [Google Scholar] [CrossRef]
Gene | Gene Accession No | Length | MW (Da) | PI | Subcellular Localization |
---|---|---|---|---|---|
TaMDR_1 | evm.model.Chr01.121 | 416 | 44,464.9 | 6.78 | cytoplasm |
TaMDR_2 | evm.model.Chr01.194 | 409 | 43,551.6 | 6.64 | cytoplasm |
TaMDR_3 | evm.model.Chr02.245 | 386 | 40,935.1 | 6.96 | cytoplasm |
TaMDR_4 | evm.model.Chr02.483 | 380 | 40,665.7 | 5.65 | cytoplasm |
TaMDR_5 | evm.model.Chr02.694 | 341 | 37,556.9 | 7.90 | cytoplasm |
TaMDR_6 | evm.model.Chr02.955 | 308 | 32,819.7 | 7.39 | cytoplasm |
TaMDR_7 | evm.model.Chr03.1119 | 369 | 39,170.8 | 7.19 | cytoplasm |
TaMDR_8 | evm.model.Chr03.31 | 366 | 39,926.4 | 5.89 | mitochondrial |
TaMDR_9 | evm.model.Chr03.653 | 373 | 40,057.9 | 6.24 | cytoplasm |
TaMDR_10 | evm.model.Chr03.899 | 326 | 35,447.7 | 5.98 | cytoplasm |
TaMDR_11 | evm.model.Chr04.188 | 371 | 39,685.2 | 6.50 | cytoplasm |
TaMDR_12 | evm.model.Chr04.287 | 373 | 39,975.8 | 6.83 | mitochondrial |
TaMDR_13 | evm.model.Chr04.387 | 405 | 43,332.5 | 7.84 | mitochondrial |
TaMDR_14 | evm.model.Chr04.73 | 340 | 36,507.9 | 6.13 | cytoplasm |
TaMDR_15 | evm.model.Chr04.76 | 322 | 34,674.5 | 5.69 | mitochondrial |
TaMDR_16 | evm.model.Chr04.938 | 387 | 41,339.5 | 8.08 | cytoplasm |
TaMDR_17 | evm.model.Chr06.247 | 359 | 38,170.5 | 5.74 | cytoplasm |
TaMDR_18 | evm.model.Chr08.307 | 341 | 36,122.1 | 6.25 | cytoplasm |
TaMDR_19 | evm.model.Chr08.320 | 344 | 36,829.0 | 6.96 | cytoplasm |
TaMDR_20 | evm.model.Chr08.391 | 366 | 38,786.3 | 6.18 | cytoplasm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Liu, Z.; Zeng, X.; Li, Z.; Luo, R.; Liu, R.; Wang, C.; Gu, Y. Genome-Wide Identification and Characterization of the Medium-Chain Dehydrogenase/Reductase Superfamily of Trichosporon asahii and Its Involvement in the Regulation of Fluconazole Resistance. J. Fungi 2024, 10, 123. https://doi.org/10.3390/jof10020123
Ma X, Liu Z, Zeng X, Li Z, Luo R, Liu R, Wang C, Gu Y. Genome-Wide Identification and Characterization of the Medium-Chain Dehydrogenase/Reductase Superfamily of Trichosporon asahii and Its Involvement in the Regulation of Fluconazole Resistance. Journal of Fungi. 2024; 10(2):123. https://doi.org/10.3390/jof10020123
Chicago/Turabian StyleMa, Xiaoping, Zhen Liu, Xiangwen Zeng, Zhiguo Li, Rongyan Luo, Ruiguo Liu, Chengdong Wang, and Yu Gu. 2024. "Genome-Wide Identification and Characterization of the Medium-Chain Dehydrogenase/Reductase Superfamily of Trichosporon asahii and Its Involvement in the Regulation of Fluconazole Resistance" Journal of Fungi 10, no. 2: 123. https://doi.org/10.3390/jof10020123
APA StyleMa, X., Liu, Z., Zeng, X., Li, Z., Luo, R., Liu, R., Wang, C., & Gu, Y. (2024). Genome-Wide Identification and Characterization of the Medium-Chain Dehydrogenase/Reductase Superfamily of Trichosporon asahii and Its Involvement in the Regulation of Fluconazole Resistance. Journal of Fungi, 10(2), 123. https://doi.org/10.3390/jof10020123