From Nature to Design: Tailoring Pure Mycelial Materials for the Needs of Tomorrow
Abstract
:1. Towards Functional Fungi
2. Techniques in the Cultivation of Mycelium
2.1. Solid-State Fermentation
2.2. Liquid-State Fermentation
3. The Growing Profile of Pure Mycelial Materials
3.1. Laying out the Design Space for PMMs
3.2. The Past, Present, and Future of Mycelial Textiles
3.3. Flexible Fungal Foams
3.4. Novel Prospects for Future Functional PMMs
4. Leveraging Unique Species for PMMs
4.1. Functional Species of Fungi
4.2. Tailoring Bespoke Mycelium with Strain Optimization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CMMs | composite mycelial materials |
GPa | gigapascals |
LSF | liquid-state fermentation |
LSSF | liquid-state surface fermentation |
MBLs | mycelium-based leathers |
MPa | megapascals |
MPI | material property index |
PEG | polyethylene glycol |
PMMs | pure mycelial materials |
SEM | scanning electron microscope |
SmF | submerged fermentation |
SSF | solid-state fermentation |
References
- Kendrick, B. Fungi and the History of Mycology. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; ISBN 978-0-470-01590-2. [Google Scholar]
- Naranjo-Ortiz, M.A.; Gabaldón, T. Fungal Evolution: Diversity, Taxonomy and Phylogeny of the Fungi. Biol. Rev. Camb. Philos. Soc. 2019, 94, 2101–2137. [Google Scholar] [CrossRef]
- Gow, N.A.R.; Latge, J.-P.; Munro, C.A. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol. Spectr. 2017, 5, FUNK-0035-2016. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, G.C.; Bisby, G.R.; Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. Ainsworth & Bisby’s Dictionary of the Fungi, 10th ed.; CABI: Wallingford, UK, 2008; ISBN 978-0-85199-826-8. [Google Scholar]
- Jones, M.; Bhat, T.; Huynh, T.; Kandare, E.; Yuen, R.; Wang, C.H.; John, S. Waste-Derived Low-Cost Mycelium Composite Construction Materials with Improved Fire Safety. Fire Mater. 2018, 42, 816–825. [Google Scholar] [CrossRef]
- Pelletier, M.G.; Holt, G.A.; Wanjura, J.D.; Greetham, L.; McIntyre, G.; Bayer, E.; Kaplan-Bie, J. Acoustic Evaluation of Mycological Biopolymer, an All-Natural Closed Cell Foam Alternative. Ind. Crops Prod. 2019, 139, 111533. [Google Scholar] [CrossRef]
- Wijayarathna, E.R.K.B.; Mohammadkhani, G.; Soufiani, A.M.; Adolfsson, K.H.; Ferreira, J.A.; Hakkarainen, M.; Berglund, L.; Heinmaa, I.; Root, A.; Zamani, A. Fungal Textile Alternatives from Bread Waste with Leather-like Properties. Resour. Conserv. Recycl. 2022, 179, 106041. [Google Scholar] [CrossRef]
- Livne, A.; Wösten, H.A.B.; Pearlmutter, D.; Gal, E. Fungal Mycelium Bio-Composite Acts as a CO2-Sink Building Material with Low Embodied Energy. ACS Sustain. Chem. Eng. 2022, 10, 12099–12106. [Google Scholar] [CrossRef]
- Meyer, V.; Basenko, E.Y.; Benz, J.P.; Braus, G.H.; Caddick, M.X.; Csukai, M.; de Vries, R.P.; Endy, D.; Frisvad, J.C.; Gunde-Cimerman, N.; et al. Growing a Circular Economy with Fungal Biotechnology: A White Paper. Fungal Biol. Biotechnol. 2020, 7, 5. [Google Scholar] [CrossRef]
- Cairns, T.C.; Zheng, X.; Zheng, P.; Sun, J.; Meyer, V. Turning Inside Out: Filamentous Fungal Secretion and Its Applications in Biotechnology, Agriculture, and the Clinic. J. Fungi 2021, 7, 535. [Google Scholar] [CrossRef]
- Butu, A.; Rodino, S.; Miu, B.; Butu, M. Mycelium-Based Materials for the Ecodesign of Bioeconomy. Dig. J. Nanomater. Biostructures 2020, 15, 1129–1140. [Google Scholar] [CrossRef]
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered Mycelium Composite Construction Materials from Fungal Biorefineries: A Critical Review. Mater. Des. 2020, 187, 108397. [Google Scholar] [CrossRef]
- Vandelook, S.; Elsacker, E.; Van Wylick, A.; De Laet, L.; Peeters, E. Current State and Future Prospects of Pure Mycelium Materials. Fungal Biol. Biotechnol. 2021, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Bentangan, M.A.; Nugroho, A.R.; Hartantyo, R.; Ilman, R.Z.; Ajidarma, E.; Nurhadi, M.Y. Mycelium Material, Its Method to Produce and Usage as Leather Substitute. WO2020136448A1, 2 July 2020. [Google Scholar]
- Derbyshire, E.J.; Delange, J. Fungal Protein—What Is It and What Is the Health Evidence? A Systematic Review Focusing on Mycoprotein. Front. Sustain. Food Syst. 2021, 5, 581682. [Google Scholar] [CrossRef]
- Kaplan-Bie, J.H.; Bonesteel, I.T.; Greetham, L.; McIntyre, G.R. Increased Homogeneity of Mycological Biopolymer Grown into Void Space. WO2019099474A1, 23 May 2019. [Google Scholar]
- Barabash, A.; Deschenko, V.; Chuk, O. Leather-like Material Biofabrication Using Pleurotus osteatus. Ph.D. Thesis, National Aviation University, Kyiv, Ukraine, 2021. [Google Scholar]
- Cartabia, M.; Girometta, C.E.; Milanese, C.; Baiguera, R.M.; Buratti, S.; Branciforti, D.S.; Vadivel, D.; Girella, A.; Babbini, S.; Savino, E.; et al. Collection and Characterization of Wood Decay Fungal Strains for Developing Pure Mycelium Mats. J. Fungi 2021, 7, 1008. [Google Scholar] [CrossRef] [PubMed]
- Raman, J.; Kim, D.-S.; Kim, H.-S.; Oh, D.-S.; Shin, H.-J. Mycofabrication of Mycelium-Based Leather from Brown-Rot Fungi. J. Fungi 2022, 8, 317. [Google Scholar] [CrossRef]
- Gandia, A.; van den Brandhof, J.G.; Appels, F.V.W.; Jones, M.P. Flexible Fungal Materials: Shaping the Future. Trends Biotechnol. 2021, 39, 1321–1331. [Google Scholar] [CrossRef]
- Gowthaman, M.K.; Krishna, C.; Moo-Young, M. Fungal Solid State Fermentation—An Overview. Appl. Mycol. Biotechnol. 2001, 1, 305–352. [Google Scholar] [CrossRef]
- Grimm, D.; Wösten, H.A.B. Mushroom Cultivation in the Circular Economy. Appl. Microbiol. Biotechnol. 2018, 102, 7795–7803. [Google Scholar] [CrossRef]
- Hölker, U.; Lenz, J. Solid-State Fermentation—Are There Any Biotechnological Advantages? Curr. Opin. Microbiol. 2005, 8, 301–306. [Google Scholar] [CrossRef]
- Machida, M.; Yamada, O.; Gomi, K. Genomics of Aspergillus Oryzae: Learning from the History of Koji Mold and Exploration of Its Future. DNA Res. 2008, 15, 173–183. [Google Scholar] [CrossRef]
- Rahardjo, Y.S.P. Fungal Mats in Solid-State Fermentation; Wageningen University: Wageningen, The Netherlands, 2005. [Google Scholar]
- Fazenda, M.L.; Seviour, R.; McNeil, B.; Harvey, L.M. Submerged Culture Fermentation of “Higher Fungi”: The Macrofungi. In Advances in Applied Microbiology; Academic Press: Cambridge, MA, USA, 2008; Volume 63, pp. 33–103. [Google Scholar]
- Kaplan-Bie, J.H. Solution Based Post-Processing Methods for Mycological Biopolymer Material and Mycological Product Made Thereby. WO2018183735A1, 4 October 2018. [Google Scholar]
- Ross, P.; Scullin, M.; Wenner, N.; Chase, J.; Miller, Q.; Saltidos, R.; McGaughy, P. Mycelium Growth Bed with Perforation Layer and Related Method for Creating a Uniform Sheet of Mycelium from a Solid-State Medium. US20200196541A1, 25 June 2020. [Google Scholar]
- Williams, E.; Cenian, K.; Golsteijn, L.; Morris, B.; Scullin, M.L. Life Cycle Assessment of MycoWorks’ ReishiTM: The First Low-Carbon and Biodegradable Alternative Leather. Environ. Sci. Eur. 2022, 34, 120. [Google Scholar] [CrossRef]
- Thakur, M.P. Advances in Mushroom Production: Key to Food, Nutritional and Employment Security: A Review. Indian. Phytopathol. 2020, 73, 377–395. [Google Scholar] [CrossRef]
- Atlast Food Co. Partners with Whitecrest Mushrooms Ltd. to Scale Production of MyBacon® Strips. Available online: https://myforestfoods.com/myblog/blog-whitecrest (accessed on 19 February 2024).
- César, E.; Canche-Escamilla, G.; Montoya, L.; Ramos, A.; Duarte-Aranda, S.; Bandala, V.M. Characterization and Physical Properties of Mycelium Films Obtained from Wild Fungi: Natural Materials for Potential Biotechnological Applications. J. Polym. Environ. 2021, 29, 4098–4105. [Google Scholar] [CrossRef]
- Jones, M.; Weiland, K.; Kujundzic, M.; Theiner, J.; Kählig, H.; Kontturi, E.; John, S.; Bismarck, A.; Mautner, A. Waste-Derived Low-Cost Mycelium Nanopapers with Tunable Mechanical and Surface Properties. Biomacromolecules 2019, 20, 3513–3523. [Google Scholar] [CrossRef]
- Petre, A.; Ene, M.; Vamanu, E. Submerged Cultivation of Inonotus Obliquus Mycelium Using Statistical Design of Experiments and Mathematical Modeling to Increase Biomass Yield. Appl. Sci. 2021, 11, 4104. [Google Scholar] [CrossRef]
- Cui, Y.Q.; van der Lans, R.G.J.M.; Luyben, K.C.a.M. Effect of Agitation Intensities on Fungal Morphology of Submerged Fermentation. Biotechnol. Bioeng. 1997, 55, 715–726. [Google Scholar] [CrossRef]
- Tang, Y.-J.; Zhu, L.-W.; Li, H.-M.; Li, D.-S. Submerged Culture of Mushrooms in Bioreactors—Challenges, Current State-of-the-Art, and Future Prospects. Food Technol. Biotechnol. 2007, 45, 221–229. [Google Scholar]
- Bakratsas, G.; Polydera, A.; Nilson, O.; Chatzikonstantinou, A.V.; Xiros, C.; Katapodis, P.; Stamatis, H. Mycoprotein Production by Submerged Fermentation of the Edible Mushroom Pleurotus ostreatus in a Batch Stirred Tank Bioreactor Using Agro-Industrial Hydrolysate. Foods 2023, 12, 2295. [Google Scholar] [CrossRef] [PubMed]
- Szilvay, G.; Barrantes, M.A. Mycelium Leather: Sustainable Alternative for Leather. Available online: https://www.vttresearch.com/en/news-and-ideas/alternative-leather-and-synthetic-leather-vtt-succeeded-demonstrating-continuous (accessed on 19 February 2024).
- Bae, B.; Kim, M.; Kim, S.; Ro, H.-S. Growth Characteristics of Polyporales Mushrooms for the Mycelial Mat Formation. Mycobiology 2021, 49, 280–284. [Google Scholar] [CrossRef]
- Ashby, M.F. Materials Selection in Mechanical Design, 5th ed.; Butterworth-Heinemann: Amsterdam, The Netherlands; Cambridge, MA, USA, 2017; ISBN 978-0-08-100599-6. [Google Scholar]
- Ashby, M.F. Overview No. 80: On the Engineering Properties of Materials. Acta Metall. 1989, 37, 1273–1293. [Google Scholar] [CrossRef]
- Ashby, M.F.; Cebon, D. Materials Selection in Mechanical Design. J. Phys. Arch. 1993, 3, C7-1–C7-9. [Google Scholar] [CrossRef]
- Ashby, M.F.; Gibson, L.J.; Wegst, U.; Olive, R. The Mechanical Properties of Natural Materials. I. Material Property Charts. Proc. R. Soc. Lond. A 1995, 450, 123–140. [Google Scholar] [CrossRef]
- Jones, M.; Gandia, A.; John, S.; Bismarck, A. Leather-like Material Biofabrication Using Fungi. Nat. Sustain. 2021, 4, 9–16. [Google Scholar] [CrossRef]
- Appels, F.V.W.; van den Brandhof, J.G.; Dijksterhuis, J.; de Kort, G.W.; Wösten, H.A.B. Fungal Mycelium Classified in Different Material Families Based on Glycerol Treatment. Commun. Biol. 2020, 3, 334. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Sadowy, S. Vartest Report on Mycoworks REISHITM Brown Natural; Vartest Laboratories: New York, NY, USA, 2020. [Google Scholar]
- Lin, J.; Sadowy, S. Vartest Report on Mycoworks REISHITM Brown Natural—High Strength; Vartest Laboratories: New York, NY, USA, 2020. [Google Scholar]
- Lin, J.; Sadowy, S. Vartest Report on Mycoworks REISHITM Black Emboss; Vartest Laboratories: New York, NY, USA, 2020. [Google Scholar]
- Mylea Technical Data Sheet. Available online: https://mycl.bio/storage/app/media/mylea/Mylea%20Technical%20Data%20Sheet.pdf (accessed on 10 May 2023).
- Kuijk, A. Biofabricated Mycelium Mylea Leather Sheets~HauteMatter. Available online: https://www.hautematter.com/product-deck/mylea (accessed on 5 October 2023).
- GRANTA EduPack; ANSYS, Inc.: Cambridge, UK; Available online: https://www.ansys.com/materials (accessed on 20 January 2024).
- Meyer, M.; Dietrich, S.; Schulz, H.; Mondschein, A. Comparison of the Technical Performance of Leather, Artificial Leather, and Trendy Alternatives. Coatings 2021, 11, 226. [Google Scholar] [CrossRef]
- Quito, A. Mushroom Leather: How Fungi Became Fashionable. Available online: https://qz.com/emails/quartz-obsession/1849446383/mushroom-leather-how-fungi-became-fashionable (accessed on 7 December 2022).
- Papp, N.; Rudolf, K.; Bencsik, T.; Czégényi, D. Ethnomycological Use of Fomes fomentarius (L.) Fr. and Piptoporus betulinus (Bull.) P. Karst. in Transylvania, Romania. Genet. Resour. Crop Evol. 2017, 64, 101–111. [Google Scholar] [CrossRef]
- Pegler, D.N. Useful Fungi of the World: Amadou and Chaga. Mycologist 2001, 15, 153–154. [Google Scholar] [CrossRef]
- Hahn, J. Traditional Transylvanian Mushroom Leather Wraps Seating Collection by Mari Koppanen. Available online: https://www.dezeen.com/2022/02/02/mari-koppanen-fomes-amadou-seating-design/ (accessed on 7 December 2022).
- Kalitukha, L.; Sari, M. Fascinating Vital Mushrooms. Tinder Fungus (Fomes fomentarius (L.) Fr.) as a Dietary Supplement. Int. J. Res. Stud. Sci. Eng. Technol. 2019, 6, 1–9. [Google Scholar]
- Blanchette, R.A.; Haynes, D.T.; Held, B.W.; Niemann, J.; Wales, N. Fungal Mycelial Mats Used as Textile by Indigenous People of North America. Mycologia 2021, 113, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Amadou Tulip Hat—EDEN Power Corp. Available online: https://web.archive.org/web/20220829223510/https://edenpowercorp.com/collections/fungus-yeasts-molds-and-mushrooms/products/pre-order-amadou-tulip-hat (accessed on 24 May 2023).
- Hordon How to Make Amadou Tinder. Available online: https://www.beaverbushcraft.co.uk/page_4140610.html (accessed on 24 May 2023).
- Deeg, K.; Gima, Z.T.; Smith, A.; Stoica, O.C.; Tran, K. Greener Solutions: Improving Performance of Mycelium-Based Leather. Final Report to MycoWorks. 2017. Available online: https://bcgctest.files.wordpress.com/2018/03/gs_2017_mycoworks_finalreport.pdf (accessed on 20 January 2024).
- Bustillos, J.; Loganathan, A.; Agrawal, R.; Gonzalez, B.A.; Perez, M.G.; Ramaswamy, S.; Boesl, B.; Agarwal, A. Uncovering the Mechanical, Thermal, and Chemical Characteristics of Biodegradable Mushroom Leather with Intrinsic Antifungal and Antibacterial Properties. ACS Appl. Bio Mater. 2020, 3, 3145–3156. [Google Scholar] [CrossRef]
- Scullin, M.; Rigas, N. A Story of Superior Quality. ReishiTM. 2020. Available online: https://www.madewithreishi.com/stories/ (accessed on 20 January 2024).
- Roh, E.K. Mechanical Properties and Preferences of Natural and Artificial Leathers, and Their Classification with a Focus on Leather for Bags. J. Eng. Fibers Fabr. 2020, 15, 155892502096882. [Google Scholar] [CrossRef]
- Eun, J.H.; Lee, J.S. Study on the NCO Index and Base Knitted Fabric Substrates on the Thermal, Chemical, and Mechanical Properties of Solvent-Less Formulations Polyurethane Artificial Leather. J. Eng. Fibers Fabr. 2020, 15, 1558925020916458. [Google Scholar] [CrossRef]
- Ettinger, J. Balenciaga Goes “Livestock-Free” With a New €9,000 Coat Made From Mycelium. Ethos. 2022. Available online: https://the-ethos.co/balenciaga-mycelium-leather-coat/ (accessed on 20 January 2024).
- Davidson, L. Ecovative Announces Partners to Bring Mycelium Foam to the Fashion Industry. Available online: https://www.businesswire.com/news/home/20220322005069/en/Ecovative-Announces-Partners-To-Bring-Mycelium-Foam-to-the-Fashion-Industry (accessed on 8 December 2022).
- Greetham, L.; McIntyre, G.R.; Bayer, E.; Winiski, J.; Araldi, S. Mycological Biopolymers Grown in Void Space Tooling. Patent US11277979B2, 22 March 2022. Available online: https://patents.google.com/patent/US20150033620A1/en (accessed on 20 January 2024).
- Compostable Foam: Breathable, Insulating, Water-Repellant|Ecovative. Available online: https://www.ecovative.com/pages/foams (accessed on 23 November 2023).
- Pelletier, M.G.; Holt, G.A.; Wanjura, J.D.; Bayer, E.; McIntyre, G. An Evaluation Study of Mycelium Based Acoustic Absorbers Grown on Agricultural By-Product Substrates. Ind. Crops Prod. 2013, 51, 480–485. [Google Scholar] [CrossRef]
- Asdrubali, F.; Schiavoni, S.; Horoshenkov, K.V. A Review of Sustainable Materials for Acoustic Applications. Build. Acoust. 2012, 19, 283–311. [Google Scholar] [CrossRef]
- Bird, E.T.; Bowden, A.E.; Seeley, M.K.; Fullwood, D.T. Materials Selection of Flexible Open-Cell Foams in Energy Absorption Applications. Mater. Des. 2018, 137, 414–421. [Google Scholar] [CrossRef]
- Hamlyn, P.F.; Schmidt, R.J. Potential Therapeutic Application of Fungal Filaments in Wound Management. Mycologist 1994, 8, 147–152. [Google Scholar] [CrossRef]
- Khamrai, M.; Banerjee, S.L.; Kundu, P.P. A Sustainable Production Method of Mycelium Biomass Using an Isolated Fungal Strain Phanerochaete chrysosporium (Accession No: KY593186): Its Exploitation in Wound Healing Patch Formation. Biocatal. Agric. Biotechnol. 2018, 16, 548–557. [Google Scholar] [CrossRef]
- Antinori, M.E.; Contardi, M.; Suarato, G.; Armirotti, A.; Bertorelli, R.; Mancini, G.; Debellis, D.; Athanassiou, A. Advanced Mycelium Materials as Potential Self-Growing Biomedical Scaffolds. Sci. Rep. 2021, 11, 12630. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, K.B.; Zo, S.M.; Han, S.S. Novel Biomimetic Chitin-Glucan Polysaccharide Nano/Microfibrous Fungal-Scaffolds for Tissue Engineering Applications. Int. J. Biol. Macromol. 2020, 149, 724–731. [Google Scholar] [CrossRef]
- Ifuku, S.; Nomura, R.; Morimoto, M.; Saimoto, H. Preparation of Chitin Nanofibers from Mushrooms. Materials 2011, 4, 1417–1425. [Google Scholar] [CrossRef]
- Zhu, K.; Shi, S.; Cao, Y.; Lu, A.; Hu, J.; Zhang, L. Robust Chitin Films with Good Biocompatibility and Breathable Properties. Carbohydr. Polym. 2019, 212, 361–367. [Google Scholar] [CrossRef]
- Huang, J.; Zhong, Y.; Zhang, L.; Cai, J. Extremely Strong and Transparent Chitin Films: A High-Efficiency, Energy-Saving, and “Green” Route Using an Aqueous KOH/Urea Solution. Adv. Funct. Mater. 2017, 27, 1701100. [Google Scholar] [CrossRef]
- King, C.; Shamshina, J.L.; Gurau, G.; Berton, P.; Khan, N.F.A.F.; Rogers, R.D. A Platform for More Sustainable Chitin Films from an Ionic Liquid Process. Green Chem. 2017, 19, 117–126. [Google Scholar] [CrossRef]
- Müller, C.; Klemm, S.; Fleck, C. Bracket Fungi, Natural Lightweight Construction Materials: Hierarchical Microstructure and Compressive Behavior of Fomes fomentarius Fruit Bodies. Appl. Phys. A 2021, 127, 178. [Google Scholar] [CrossRef]
- van den Brandhof, J.G.; Wösten, H.A.B. Risk Assessment of Fungal Materials. Fungal Biol. Biotechnol. 2022, 9, 3. [Google Scholar] [CrossRef]
- Ko, K.S.; Jung, H.S. Molecular Phylogeny of Trametes and Related Genera. Antonie Leeuwenhoek 1999, 75, 191–199. [Google Scholar] [CrossRef]
- Pleszczyńska, M.; Lemieszek, M.K.; Siwulski, M.; Wiater, A.; Rzeski, W.; Szczodrak, J. Fomitopsis betulina (Formerly Piptoporus betulinus): The Iceman’s Polypore Fungus with Modern Biotechnological Potential. World J. Microbiol. Biotechnol. 2017, 33, 83. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Tajvidi, M.; Hunt, C.G.; Howell, C. All-Natural Smart Mycelium Surface with Tunable Wettability. ACS Appl. Bio Mater. 2021, 4, 1015–1022. [Google Scholar] [CrossRef]
- Piątek, M.; Seta, D.; Szczepkowski, A. Notes on Polish Polypores 5. Synopsis of the Genus Spongipellis. Acta Mycol. 2004, 39, 25–32. [Google Scholar] [CrossRef]
- Nagadesi, P.K.; Rampilla, V. New Records of Wood Inhabiting Fungal Species from Kondapalli Reserved Forest of Central Eastern Ghats, India. Plant Sci. Today 2021, 8, 693–698. [Google Scholar] [CrossRef]
- Storck, R.; Nobles, M.K.; Alexopoulos, C.J. The Nucleotide Composition of Deoxyribonucleic Acid of Some Species of Hymenochaetaceae and Polyporaceae. Mycologia 1971, 63, 38–49. [Google Scholar] [CrossRef]
- Fischer, M. A New Wood-Decaying Basidiomycete Species Associated with Esca of Grapevine: Fomitiporia mediterranea (Hymenochaetales). Mycol. Progress. 2002, 1, 315–324. [Google Scholar] [CrossRef]
- Estévez, S.C.; Lago, J.M.C. Fomitopsis iberica, un políporo agente de pudrición marrón. Micolucus 2018, 38–43. [Google Scholar]
- Kim, K.M.; Yoon, Y.-G.; Jung, H.S. Evaluation of the Monophyly of Fomitopsis Using Parsimony and MCMC Methods. Mycologia 2005, 97, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Bhosle, S.; Ranadive, K.; Bapat, G.; Garad, S.; Deshpande, G.; Vaidya, J. Taxonomy and Diversity of Ganoderma from the Western Parts of Maharashtra (India). Mycosphere 2010, 1, 249–262. [Google Scholar]
- Miettinen, O.; Larsson, E.; Sjökvist, E.; Larsson, K.-H. Comprehensive Taxon Sampling Reveals Unaccounted Diversity and Morphological Plasticity in a Group of Dimitic Polypores (Polyporales, Basidiomycota). Cladistics 2012, 28, 251–270. [Google Scholar] [CrossRef]
- Wang, C.-G.; Dai, Y.-C. Phylogeny and Taxonomy of Spongipellis (Polyporales, Basidiomycota) and Its Micromorphological Similar Genera. Mycol. Prog. 2022, 21, 73. [Google Scholar] [CrossRef]
- Sotome, K.; Akagi, Y.; Lee, S.S.; Ishikawa, N.K.; Hattori, T. Taxonomic Study of Favolus and Neofavolus Gen. Nov. Segregated from Polyporus (Basidiomycota, Polyporales). Fungal Divers. 2013, 58, 245–266. [Google Scholar] [CrossRef]
- Li, J.; Han, L.-H.; Liu, X.-B.; Zhao, Z.-W.; Yang, Z.L. The Saprotrophic Pleurotus Ostreatus Species Complex: Late Eocene Origin in East Asia, Multiple Dispersal, and Complex Speciation. IMA Fungus 2020, 11, 10. [Google Scholar] [CrossRef]
- Pildain, M.B.; Rajchenberg, M. The Phylogenetic Position of Postia s.1. (Polyporales, Basidiomycota) from Patagonia, Argentina. Mycologia 2013, 105, 357–367. [Google Scholar] [CrossRef]
- Lentz, P.L. Taxonomy of Stereum and allied genera. Sydowia 1960, 14, 116–135. [Google Scholar]
- Wu, S.H.; Chen, Z.C. Pulcherricium Caeruleum New Record Fr. Parm. Corticiaceae Basidiomycetes a New Record from Taiwan. Taiwania 1989, 34, 1–4. [Google Scholar]
- Antinori, M.E.; Ceseracciu, L.; Mancini, G.; Heredia-Guerrero, J.A.; Athanassiou, A. Fine-Tuning of Physicochemical Properties and Growth Dynamics of Mycelium-Based Materials. ACS Appl. Bio Mater. 2020, 3, 1044–1051. [Google Scholar] [CrossRef]
- Cabarroi-Hernández, M.; Villalobos-Arámbula, A.R.; Torres-Torres, M.G.; Decock, C.; Guzmán-Dávalos, L. The Ganoderma Weberianum-Resinaceum Lineage: Multilocus Phylogenetic Analysis and Morphology Confirm G. Mexicanum and G. Parvulum in the Neotropics. MycoKeys 2019, 59, 95–131. [Google Scholar] [CrossRef]
- Pegler, D.N. Lentinus Fr. and Related Genera from Congo-Kinshasa (Fungi). Bull. Du Jard. Bot. Natl. De Belg./Bull. Van De Natl. Plantentuin Van Belg. 1971, 41, 273–281. [Google Scholar] [CrossRef]
- Johnson, J. A Biosystematic Study of Panus conchatus (Basidiomycetes; Agaricales). Master’s Thesis, Eastern Illinois University, Charleston, IL, USA, 1992. [Google Scholar]
- Appels, F.V.W.; Dijksterhuis, J.; Lukasiewicz, C.E.; Jansen, K.M.B.; Wösten, H.A.B.; Krijgsheld, P. Hydrophobin Gene Deletion and Environmental Growth Conditions Impact Mechanical Properties of Mycelium by Affecting the Density of the Material. Sci. Rep. 2018, 8, 4703. [Google Scholar] [CrossRef] [PubMed]
- Géry, A.; Dubreule, C.; André, V.; Rioult, J.-P.; Bouchart, V.; Heutte, N.; Eldin de Pécoulas, P.; Krivomaz, T.; Garon, D. Chaga (Inonotus obliquus), a Future Potential Medicinal Fungus in Oncology? A Chemical Study and a Comparison of the Cytotoxicity Against Human Lung Adenocarcinoma Cells (A549) and Human Bronchial Epithelial Cells (BEAS-2B). Integr. Cancer Ther. 2018, 17, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Vincent-Davies, S. Relationships between Mycogone Perniciosa magnus and Its Host Agaricus bisporus (Ige.) Sing—The Cultivated Mushroom. Ph.D. Thesis, University of Bath, Bath, UK, 1972. [Google Scholar]
- Gargano, M.L.; Zervakis, G.I.; Isikhuemhen, O.S.; Venturella, G.; Calvo, R.; Giammanco, A.; Fasciana, T.; Ferraro, V. Ecology, Phylogeny, and Potential Nutritional and Medicinal Value of a Rare White “Maitake” Collected in a Mediterranean Forest. Diversity 2020, 12, 230. [Google Scholar] [CrossRef]
- Blum, D. Breeding and Preliminary Characterization of Novel Lentinula edodes (Shiitake) Strains. Ph.D. Thesis, North Carolina Agricultural and Technical State University, Greensboro, NC, USA, 2013. [Google Scholar]
- Koc, B.; Akyuz, L.; Cakmak, Y.S.; Sargin, I.; Salaberria, A.M.; Labidi, J.; Ilk, S.; Cekic, F.O.; Akata, I.; Kaya, M. Production and Characterization of Chitosan-Fungal Extract Films. Food Biosci. 2020, 35, 100545. [Google Scholar] [CrossRef]
- Justo, A.; Miettinen, O.; Floudas, D.; Ortiz-Santana, B.; Sjökvist, E.; Lindner, D.; Nakasone, K.; Niemelä, T.; Larsson, K.-H.; Ryvarden, L.; et al. A Revised Family-Level Classification of the Polyporales (Basidiomycota). Fungal Biol. 2017, 121, 798–824. [Google Scholar] [CrossRef] [PubMed]
- Chien, M.-Y.; Chen, L.-C.; Chen, Y.-C.; Sheu, M.-T.; Tsai, Y.-C.; Ho, H.-O.; Su, C.-H.; Liu, D.-Z. Mycelial Mattress from a Sporangia Formation-Delayed Mutant of Rhizopus Stolonifer as Wound Healing-Enhancing Biomaterial. PLoS ONE 2015, 10, e0134090. [Google Scholar] [CrossRef]
- Global Biodiversity Information Facility (GBIF). Available online: https://www.gbif.org/ (accessed on 10 May 2023).
- Jones, M.; Huynh, T.; John, S. Inherent Species Characteristic Influence and Growth Performance Assessment for Mycelium Composite Applications. Adv. Mater. Lett. 2018, 9, 71–80. [Google Scholar] [CrossRef]
- Porter, D.L.; Naleway, S.E. Hyphal Systems and Their Effect on the Mechanical Properties of Fungal Sporocarps. Acta Biomater. 2022, 145, 272–282. [Google Scholar] [CrossRef]
- Pegler, D.N. Hyphal Analysis of Basidiomata. Mycol. Res. 1996, 100, 129–142. [Google Scholar] [CrossRef]
- Porter, D.L.; Malik, H.; Elliott, C.; Carlson, K.; Naleway, S.E. Bioinspired Hydrophilic and Oleophilic Absorption Media from Biotemplated Fungi. Adv. Eng. Mater. 2022, 25, 2200945. [Google Scholar] [CrossRef]
- Pylkkänen, R.; Werner, D.; Bishoyi, A.; Weil, D.; Scoppola, E.; Wagermaier, W.; Safeer, A.; Bahri, S.; Baldus, M.; Paananen, A.; et al. The Complex Structure of Fomes fomentarius Represents an Architectural Design for High-Performance Ultralightweight Materials. Sci. Adv. 2023, 9, eade5417. [Google Scholar] [CrossRef]
- Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R.C. Morphology and Mechanics of Fungal Mycelium. Sci. Rep. 2017, 7, 13070. [Google Scholar] [CrossRef]
- Feofilova, E.P. The Fungal Cell Wall: Modern Concepts of Its Composition and Biological Function. Microbiology 2010, 79, 711–720. [Google Scholar] [CrossRef]
- Whiteford, J.R.; Spanu, P.D. Hydrophobins and the Interactions between Fungi and Plants. Mol. Plant Pathol. 2002, 3, 391–400. [Google Scholar] [CrossRef]
- van Wetter, M.-A.; Schuren, F.H.J.; Schuurs, T.A.; Wessels, J.G.H. Targeted Mutation of the SC3 Hydrophobin Gene of Schizophyllum commune Affects Formation of Aerial Hyphae. FEMS Microbiol. Lett. 1996, 140, 265–269. [Google Scholar] [CrossRef]
- van Wetter, M.-A.; Wösten, H.A.B.; Wessels, J.G.H. SC3 and SC4 Hydrophobins Have Distinct Roles in Formation of Aerial Structures in Dikaryons of Schizophyllum commune. Mol. Microbiol. 2002, 36, 201–210. [Google Scholar] [CrossRef]
- van Wetter, M.-A.; Wösten, H.A.B.; Sietsma, J.H.; Wessels, J.G.H. Hydrophobin Gene Expression Affects Hyphal Wall Composition in Schizophyllum commune. Fungal Genet. Biol. 2000, 31, 99–104. [Google Scholar] [CrossRef]
- Valiante, V.; Macheleidt, J.; Föge, M.; Brakhage, A.A. The Aspergillus fumigatus Cell Wall Integrity Signaling Pathway: Drug Target, Compensatory Pathways, and Virulence. Front. Microbiol. 2015, 6, 325. [Google Scholar] [CrossRef]
- Lugones, L.G.; Wösten, H.A.B.; Birkenkamp, K.U.; Sjollema, K.A.; Zagers, J.; Wessels, J.G.H. Hydrophobins Line Air Channels in Fruiting Bodies of Schizophyllum commune and Agaricus bisporus. Mycol. Res. 1999, 103, 635–640. [Google Scholar] [CrossRef]
- Wösten, H.A.; Bohlmann, R.; Eckerskorn, C.; Lottspeich, F.; Bölker, M.; Kahmann, R. A Novel Class of Small Amphipathic Peptides Affect Aerial Hyphal Growth and Surface Hydrophobicity in Ustilago maydis. EMBO J. 1996, 15, 4274–4281. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Wang, Y.; Keerio, A.A.; Ma, A. Identification of Hydrophobin Genes and Their Physiological Functions Related to Growth and Development in Pleurotus ostreatus. Microbiol. Res. 2021, 247, 126723. [Google Scholar] [CrossRef] [PubMed]
- Schaak, D. Bio-Manufacturing Process. US20190322997A1, 24 October 2019. [Google Scholar]
- Dighton, J.; White, J.; Oudemans, P. The Fungal Community: Its Organization and Role in the Ecosystem, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1992; ISBN 978-0-8247-8605-2. [Google Scholar]
- Xu, J. Assessing global fungal threats to humans. mLife 2022, 1, 223–240. [Google Scholar] [CrossRef]
Materials Property | Definition | Unit |
---|---|---|
Density (ρ) | A material’s mass per unit of volume. | kg/m3 |
Percent elongation (%EL) | A material’s deformation when it fractures due to a tensile load. | % |
Ultimate tensile strength (σUTS) | The maximum amount of strength a material can withstand under tension. | Megapascals (MPa) |
Young’s modulus (E) | The modulus of elasticity or the material’s ability to stretch and deform. | Gigapascals (GPa) |
Textile | ρ (kg/m3) | %EL | σUTS (MPa) | E (GPa) | MPI1 (Pa·m3/g) | MPI2 (Pa·m3/g) | References |
---|---|---|---|---|---|---|---|
Fomitella fraxinea MBL (oak & bran substrate) | 1580 | 4.30–4.98 | 1.18–1.62 | 0.00117–0.00157 | 0.0875 | 893 | [19] |
Fomitella fraxinea MBL polyethylene glycol treated with 120 °C heat press (oak & bran substrate) | 1460 | 13.87–17.91 | 6.28–8.14 | 0.00669–0.00736 | 4.9 | 4990 | [19] |
Rhizopus delemar MBL (bread substrate) | 884–922 | 1.7–2.3 | 19.04–20.74 | 1.38–1.50 | 2.2 | 304 | [7] |
Rhizopus delemar MBL, tannin/glycerol treated (bread substrate) | 695–739 | 14.5–18.6 | 2.51–2.93 | 0.199–0.201 | 0.378 | 5.14 | [7] |
MuSkinTM MBL (Grado Zero Innovation, Firenze, Italy) * | 1000 | 17.3–38.6 | 0.3–0.4 | 0.0018–0.0028 | 0.0346 | 53.5 | [52,62] |
ReishiTM Brown Natural MBL (MycoWorks, Emeryville, CA, USA) * | 480–540 | 16–36 | 5.6–7.4 | - | 1.27 | - | [46,63] |
ReishiTM Brown Natural High Strength MBL (MycoWorks) * | 8400 | 55–80 | 8.8–12.5 | - | 0.125 | - | [47,63] |
ReishiTM Black Emboss MBL (MycoWorks) * | 740–880 | 51–52 | 9.2–10.2 | - | 1.2 | - | [48,63] |
MyleaTM MBL (Mycotech; Aurora, CO, USA) * | 1330–4440 | 22–35 | 8–11 | - | 0.386 | - | [49,50] |
Artificial leather (Polyurethane composites) | 340–470 | - | 9.4–24.5 | 0.012–0.036 | 12 | 87,700 | [52,64,65] |
Bovine leather | 810–1050 | 18–75 | 20–50 | 0.10–0.50 | 3.43 | 4560 | [51] |
Application | Species | Cultivation | Substrate | References |
---|---|---|---|---|
Amadou | Fomes fomentarius IIIb | natural growth | beech, birch, oak, poplar, willow, and maple trees | [54,55,83] |
Piptoporus betulinus IIb | natural growth | birch trees | [54,84] | |
Flexible foam | Ganoderma sp. b | SSF | corn stover, grain spawn, maltodextrin, calcium sulfate, and minerals | [6] |
Trametes versicolor IIIb | SSF | proprietary fabrication by Ecovative LLC. | [83,85] | |
Leather | Abortiporus biennis Ib | LSF (LSSF) | homogenized millet slurry | [18,86] |
Bjerkandera adusta Ib | LSF (LSSF) | homogenized millet slurry | [18,87] | |
Bjerkandera adusta Ib | SSF | oak sawdust and rice bran | [19,87] | |
Coriolopsis gallica IIIb | LSF (LSSF) | homogenized millet slurry | [18,83] | |
Coriolopsis trogii IIIb | LSF (LSSF) | homogenized millet slurry | [18,83] | |
Daedaleopsis confragosa IIIb | LSF (LSSF) | homogenized millet slurry | [18,83] | |
Daedaleopsis tricolor IIIb | LSF (LSSF) | homogenized millet slurry | [18,83] | |
Elfvingia applanate IIb | SSF | oak sawdust and rice bran | [19,88] | |
Fomes fomentarius IIIb | LSF (LSSF) | homogenized millet slurry | [18,83] | |
Fomitella fraxinea b | SSF | oak sawdust and rice bran | [19] | |
Fomitiporia mediterranea IIb | LSF (LSSF) | homogenized millet slurry | [18,89] | |
Fomitopsis iberica IIIb | LSF (LSSF) | homogenized millet slurry | [18,90] | |
Fomitopsis pinicola IIIb | LSF (LSSF) | homogenized millet slurry | [18,83] | |
Fomitopsis pinicola IIIb | SSF | oak sawdust and rice bran | [19,83] | |
Fomitopsis rosea II-IIIb | SSF | oak sawdust and rice bran | [19,91] | |
Ganoderma applanatum IIIb | SSF | oak sawdust and rice bran | [19,88,92] | |
Ganoderma carnosum b | LSF (LSSF) | homogenized millet slurry | [18] | |
Ganoderma lucidum IIIb | SSF | proprietary fabrication by MycoWorks | [61,88,92] | |
Ganoderma lucidum IIIb | LSF (LSSF) | homogenized millet slurry | [18,88,92] | |
Ganoderma lucidum IIIb | SSF | oak sawdust and rice bran | [19,88,92] | |
Irpex lacteus IIb | LSF (LSSF) | homogenized millet slurry | [18,93] | |
Irpiciporus pachyodon Ib | LSF (LSSF) | homogenized millet slurry | [18,94] | |
Lenzites betulinus IIIb | LSF (LSSF) | homogenized millet slurry | [18,83] | |
Microporus affinis IIIb | SSF | oak sawdust and rice bran | [19,87] | |
Neofavolus alveolaris IIb | LSF (LSSF) | homogenized millet slurry | [18,95] | |
Phellinus ellipsoideus b | - | proprietary fabrication by Grado Zero Innovation | [62] | |
Pleurotus ostreatus Ib | LSF (LSSF) | Czapek medium | [17,96] | |
Postia balsamea Ib | SSF | oak sawdust and rice bran | [19,97] | |
Rhizopus delemar d | LSF (LSSF) | bread waste | [7] | |
Stereum hirsutum IIb | LSF (LSSF) | homogenized millet slurry | [18,98] | |
Terana caerulea Ib | LSF (LSSF) | homogenized millet slurry | [18,99] | |
Trametes hirsuta IIIb | LSF (LSSF) | homogenized millet slurry | [18,83] | |
Trametes hirsuta IIIb | SSF | oak sawdust and rice bran | [19,83] | |
Trametes suaveolens IIIb | LSF (LSSF) | homogenized millet slurry | [18,83] | |
Trametes suaveolens IIIb | SSF | oak sawdust and rice bran | [19,83] | |
Trametes versicolor IIIb | SSF | oak sawdust and rice bran | [19,83] | |
Wolfiporia extensa b | SSF | oak sawdust and rice bran | [19] | |
Mycelial film | Aurantiporus sp. b | LSF (LSSF) | potato dextrose broth | [32] |
Coriolus brevis b | LSF (LSSF) | potato dextrose broth with glycerol and skim milk | [39] | |
Coriolus hirsutus b | LSF (LSSF) | potato dextrose broth with glycerol and skim milk | [39] | |
Coriolus versicolor b | LSF (LSSF) | potato dextrose broth with glycerol and skim milk | [39] | |
Fomitella fraxinea b | LSF (LSSF) | potato dextrose broth with glycerol and skim milk | [39] | |
Ganoderma curtisii IIIb | LSF (LSSF) | potato dextrose broth | [32,92] | |
Ganoderma lucidum IIIb | LSF (LSSF) | potato dextrose broth with d-glucose and lignin | [88,92,100] | |
Ganoderma lucidum IIIb | LSF (LSSF) | potato dextrose broth with glycerol and skim milk | [39,88,92] | |
Ganoderma mexicanum IIb | LSF (LSSF) | potato dextrose broth | [32,101] | |
Lentinus crinitus IIb | LSF (LSSF) | potato dextrose broth | [32,102] | |
Panus conchatus I-IIb | LSF (LSSF) | potato dextrose broth | [32,103] | |
Pleurotus ostreatus Ib | LSF (LSSF) | potato dextrose broth | [32,96] | |
Polyporus arcularius IIb | LSF (LSSF) | potato dextrose broth with glycerol and skim milk | [39,83] | |
Polyporus squamosus IIb | LSF (LSSF) | potato dextrose broth with glycerol and skim milk | [39,83] | |
Pycnoporus coccineus IIIb | LSF (LSSF) | potato dextrose broth with glycerol and skim milk | [39,83] | |
Schizophyllum commune b | LSF (SmF) | minimal media with glucose and asparagine | [45,104] | |
Trametes fuciformis b | LSF (LSSF) | potato dextrose broth with glycerol and skim milk | [39] | |
Trametes gibbosa b | LSF (LSSF) | potato dextrose broth with glycerol and skim milk | [39] | |
Trametes orientalis b | LSF (LSSF) | potato dextrose broth with glycerol and skim milk | [39] | |
Inonotus obliquus Ib | LSF (SmF) | potato dextrose broth | [34,105] | |
Nanofilms | Agaricus bisporus Ib | mushroom isolation | - | [77,106] |
Grifola frondosa IIb | mushroom isolation | - | [77,107] | |
Hypsizygus marmoreus b | mushroom isolation | - | [77] | |
Lentinula edodes Ib | mushroom isolation | - | [77,108] | |
Pleurotus eryngii Ib | mushroom isolation | - | [77,96] | |
Tricholoma terreum b | mushroom isolation | - | [109] | |
Nanopapers | Agaricus bisporus Ib | LSF (SmF) | diluted blackstrap molasses | [33,106] |
Allomyces arbuscula c | LSF (SmF) | diluted blackstrap molasses | [33] | |
Mucor genevensis d | LSF (SmF) | diluted blackstrap molasses | [33] | |
Trametes versicolor IIIb | LSF (SmF) | diluted blackstrap molasses | [33,83] | |
Scaffold | Aspergillus sp. a | LSF (LSSF) | potato dextrose broth | [76] |
Pleurotus ostreatus Ib | LSF (LSSF) | potato dextrose broth | [75,96] | |
Trametes versicolor IIIb | LSF (LSSF) | potato dextrose broth | [75,83] | |
Tinder | Fomes fomentarius IIIb | natural growth | beech, birch, oak, poplar, willow, and maple trees | [54,83] |
Wound dressing | Agaricus bisporus Ib | stipe isolation | - | [73,106] |
Fomes fomentarius IIIb | natural growth | beech, birch, oak, poplar, willow, and maple trees | [54,55,83] | |
Fusarium graminearum a | mycelium isolation | - | [73] | |
Phanerochaete chrysosporium IIb | LSF (LSSF) | malt, dextrose, and peptone broth | [74,110] | |
Phycomyces blakesleeanus d | spore isolation | - | [73] | |
Rhizomucor miehei d | mycelium isolation | - | [73] | |
Rhizopus oryzae d | mycelium isolation | - | [73] | |
Rhizopus stolonifer d | mycelium isolation | potato dextrose agar | [111] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whabi, V.; Yu, B.; Xu, J. From Nature to Design: Tailoring Pure Mycelial Materials for the Needs of Tomorrow. J. Fungi 2024, 10, 183. https://doi.org/10.3390/jof10030183
Whabi V, Yu B, Xu J. From Nature to Design: Tailoring Pure Mycelial Materials for the Needs of Tomorrow. Journal of Fungi. 2024; 10(3):183. https://doi.org/10.3390/jof10030183
Chicago/Turabian StyleWhabi, Viraj, Bosco Yu, and Jianping Xu. 2024. "From Nature to Design: Tailoring Pure Mycelial Materials for the Needs of Tomorrow" Journal of Fungi 10, no. 3: 183. https://doi.org/10.3390/jof10030183
APA StyleWhabi, V., Yu, B., & Xu, J. (2024). From Nature to Design: Tailoring Pure Mycelial Materials for the Needs of Tomorrow. Journal of Fungi, 10(3), 183. https://doi.org/10.3390/jof10030183