Changing Epidemiology of Clinical Isolates of Candida Species during the Coronavirus Disease 2019 Pandemic: Data Analysis from a Korean Tertiary Care Hospital for 6 Years (2017–2022)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Overall Distribution of Candida Species Obtained from Clinical Samples during the Two Study Periods
3.2. Dynamics of Candidemia Incidence Pre-Pandemic and Pandemic Periods
3.3. Distribution of Candidemia Incidence between Intensive-Care-Unit (ICU) and Non-ICU Patients
3.4. The Effect of the COVID-19 Pandemic on Antifungal Susceptibility Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Coronavirus Disease 2019 (COVID-19) Situation Report–51; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- WHO. Statement on the Fifteenth Meeting of the IHR (2005) Emergency Committee on the COVID-19 Pandemic. Available online: http://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations--(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic (accessed on 24 January 2024).
- Seagle, E.E.; Jackson, B.R.; Lockhart, S.R.; Georgacopoulos, O.; Nunnally, N.S.; Roland, J.; Barter, D.M.; Johnston, H.L.; Czaja, C.A.; Kayalioglu, H.; et al. The Landscape of Candidemia During the Coronavirus Disease 2019 (COVID-19) Pandemic. Clin. Infect. Dis. 2022, 74, 802–811. [Google Scholar] [CrossRef]
- Kullberg, B.J.; Arendrup, M.C. Invasive Candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Jones, R.N.; Messer, S.A.; Hollis, R.J.; Group, S.P. Trends in antifungal susceptibility of Candida spp. isolated from pediatric and adult patients with bloodstream infections: SENTRY Antimicrobial Surveillance Program, 1997 to 2000. J. Clin. Microbiol. 2002, 40, 852–856. [Google Scholar] [CrossRef] [PubMed]
- Enoch, D.A.; Yang, H.; Aliyu, S.H.; Micallef, C. The Changing Epidemiology of Invasive Fungal Infections. Methods Mol. Biol. 2017, 1508, 17–65. [Google Scholar] [CrossRef] [PubMed]
- Nucci, M.; Barreiros, G.; Guimaraes, L.F.; Deriquehem, V.A.S.; Castineiras, A.C.; Nouer, S.A. Increased incidence of candidemia in a tertiary care hospital with the COVID-19 pandemic. Mycoses 2021, 64, 152–156. [Google Scholar] [CrossRef]
- Riche, C.V.W.; Cassol, R.; Pasqualotto, A.C. Is the Frequency of Candidemia Increasing in COVID-19 Patients Receiving Corticosteroids? J. Fungi 2020, 6, 286. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, A.; Germinario, B.N.; Ferrante, M.; Frangi, C.; Li Voti, R.; Muccini, C.; Ripa, M.; Group, C.O.-B.S. Candidemia in Coronavirus Disease 2019 (COVID-19) Patients: Incidence and Characteristics in a Prospective Cohort Compared With Historical Non-COVID-19 Controls. Clin. Infect. Dis. 2021, 73, e2838–e2839. [Google Scholar] [CrossRef]
- Arunachalam, P.S.; Wimmers, F.; Mok, C.K.P.; Perera, R.; Scott, M.; Hagan, T.; Sigal, N.; Feng, Y.; Bristow, L.; Tak-Yin Tsang, O.; et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 2020, 369, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Zuo, T.; Zhan, H.; Zhang, F.; Liu, Q.; Tso, E.Y.K.; Lui, G.C.Y.; Chen, N.; Li, A.; Lu, W.; Chan, F.K.L.; et al. Alterations in Fecal Fungal Microbiome of Patients With COVID-19 During Time of Hospitalization until Discharge. Gastroenterology 2020, 159, 1302–1310.e1305. [Google Scholar] [CrossRef]
- Won, E.J.; Choi, M.J.; Jeong, S.H.; Kim, D.; Shin, K.S.; Shin, J.H.; Kim, Y.R.; Kim, H.S.; Kim, Y.A.; Uh, Y.; et al. Nationwide Surveillance of Antifungal Resistance of Candida Bloodstream Isolates in South Korean Hospitals: Two Year Report from Kor-GLASS. J. Fungi 2022, 8, 996. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antifungal Susceptibility Testing of Yeast, 2nd ed.; CLSI M60; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Franconi, I.; Rizzato, C.; Tavanti, A.; Falcone, M.; Lupetti, A. Paradigm Shift: Candida parapsilosis sensu stricto as the Most Prevalent Candida Species Isolated from Bloodstream Infections with Increasing Azole-Non-Susceptibility Rates: Trends from 2015-2022 Survey. J. Fungi 2023, 9, 1012. [Google Scholar] [CrossRef] [PubMed]
- Routsi, C.; Meletiadis, J.; Charitidou, E.; Gkoufa, A.; Kokkoris, S.; Karageorgiou, S.; Giannopoulos, C.; Koulenti, D.; Andrikogiannopoulos, P.; Perivolioti, E.; et al. Epidemiology of Candidemia and Fluconazole Resistance in an ICU before and during the COVID-19 Pandemic Era. Antibiotics 2022, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Nucci, M.; Anaissie, E. Revisiting the source of candidemia: Skin or gut? Clin. Infect. Dis. 2001, 33, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Carvalho, A.; Nguyen, M.H.; Hedayati, M.T.; Netea, M.G.; Perlin, D.S.; Hoenigl, M. COVID-19-Associated Candidiasis (CAC): An Underestimated Complication in the Absence of Immunological Predispositions? J. Fungi 2020, 6, 211. [Google Scholar] [CrossRef] [PubMed]
- Guinea, J. Global trends in the distribution of Candida species causing candidemia. Clin. Microbiol. Infect. 2014, 20 (Suppl. S6), 5–10. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Won, E.J.; Jeong, S.H.; Shin, K.S.; Shin, J.H.; Kim, Y.R.; Kim, H.S.; Kim, Y.A.; Uh, Y.; Kim, T.S.; et al. Dynamics and Predictors of Mortality Due to Candidemia Caused by Different Candida Species: Comparison of Intensive Care Unit-Associated Candidemia (ICUAC) and Non-ICUAC. J. Fungi 2021, 7, 597. [Google Scholar] [CrossRef]
- Arastehfar, A.; Lass-Florl, C.; Garcia-Rubio, R.; Daneshnia, F.; Ilkit, M.; Boekhout, T.; Gabaldon, T.; Perlin, D.S. The Quiet and Underappreciated Rise of Drug-Resistant Invasive Fungal Pathogens. J. Fungi 2020, 6, 138. [Google Scholar] [CrossRef]
- Yamin, D.; Akanmu, M.H.; Al Mutair, A.; Alhumaid, S.; Rabaan, A.A.; Hajissa, K. Global Prevalence of Antifungal-Resistant Candida parapsilosis: A Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2022, 7, 188. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Kim, Y.J.; Yong, D.; Byun, J.H.; Kim, T.S.; Chang, Y.S.; Choi, M.J.; Byeon, S.A.; Won, E.J.; Kim, S.H.; et al. Fluconazole-Resistant Candida parapsilosis Bloodstream Isolates with Y132F Mutation in ERG11 Gene, South Korea. Emerg. Infect. Dis. 2018, 24, 1768–1770. [Google Scholar] [CrossRef]
- Trevijano-Contador, N.; Torres-Cano, A.; Carballo-Gonzalez, C.; Puig-Asensio, M.; Martin-Gomez, M.T.; Jimenez-Martinez, E.; Romero, D.; Nuvials, F.X.; Olmos-Arenas, R.; Moreto-Castellsague, M.C.; et al. Global Emergence of Resistance to Fluconazole and Voriconazole in Candida parapsilosis in Tertiary Hospitals in Spain During the COVID-19 Pandemic. Open Forum Infect. Dis. 2022, 9, ofac605. [Google Scholar] [CrossRef] [PubMed]
- Thomaz, D.Y.; Del Negro, G.M.B.; Ribeiro, L.B.; da Silva, M.; Carvalho, G.; Camargo, C.H.; de Almeida, J.N., Jr.; Motta, A.L.; Siciliano, R.F.; Sejas, O.N.E.; et al. A Brazilian Inter-Hospital Candidemia Outbreak Caused by Fluconazole-Resistant Candida parapsilosis in the COVID-19 Era. J. Fungi 2022, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Prestel, C.; Anderson, E.; Forsberg, K.; Lyman, M.; de Perio, M.A.; Kuhar, D.; Edwards, K.; Rivera, M.; Shugart, A.; Walters, M.; et al. Candida auris Outbreak in a COVID-19 Specialty Care Unit—Florida, July–August 2020. Morb. Mortal. Wkly. Rep. 2021, 70, 56–57. [Google Scholar] [CrossRef] [PubMed]
- Daneshnia, F.; de Almeida Junior, J.N.; Arastehfar, A.; Lombardi, L.; Shor, E.; Moreno, L.; Verena Mendes, A.; Goreth Barberino, M.; Thomaz Yamamoto, D.; Butler, G.; et al. Determinants of fluconazole resistance and echinocandin tolerance in C. parapsilosis isolates causing a large clonal candidemia outbreak among COVID-19 patients in a Brazilian ICU. Emerg. Microbes Infect. 2022, 11, 2264–2274. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Suh, J.W.; Kim, M.J. Epidemiological Trends of Candidemia and the Impact of Adherence to the Candidemia Guideline: Six-Year Single-Center Experience. J. Fungi 2021, 7, 275. [Google Scholar] [CrossRef]
- Byun, J.H.; Won, E.J.; Cho, H.W.; Kim, D.; Lee, H.; Kim, S.H.; Choi, M.J.; Byun, S.A.; Lee, G.Y.; Kee, S.J.; et al. Detection and Characterization of Two Phenotypes of Candida parapsilosis in South Korea: Clinical Features and Microbiological Findings. Microbiol. Spectr. 2023, 11, e0006623. [Google Scholar] [CrossRef]
- Diaz-Garcia, J.; Mesquida, A.; Machado, M.; Sanchez-Carrillo, C.; Munoz, P.; Escribano, P.; Guinea, J. Yeasts from blood cultures in the wake of the COVID-19 pandemic in a tertiary care hospital: Shift in species epidemiology, steady low antifungal resistance and full in vitro ibrexafungerp activity. Med. Mycol. 2023, 61, myad072. [Google Scholar] [CrossRef]
- Jung, J.; Kim, M.J.; Kim, J.Y.; Lee, J.Y.; Kwak, S.H.; Hong, M.J.; Chong, Y.P.; Lee, S.O.; Choi, S.H.; Kim, Y.S.; et al. Candida auris colonization or infection of the ear: A single-center study in South Korea from 2016 to 2018. Med. Mycol. 2020, 58, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Byun, S.A.; Kwon, Y.J.; Lee, G.Y.; Choi, M.J.; Jeong, S.H.; Kim, D.; Choi, M.H.; Kee, S.J.; Kim, S.H.; Shin, M.G.; et al. Virulence Traits and Azole Resistance in Korean Candida auris Isolates. J. Fungi 2023, 9, 979. [Google Scholar] [CrossRef]
Species | Subtotal No. (%) | Number of Clinical Isolates of Candida Species Obtained from 2017 to 2022 | Fold (Pandemic/Pre-Pandemic) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Pre-Pandemic a | Pandemic b | |||
Candida albicans | 5743 (50.4) | 807 | 902 | 946 | 992 | 1006 | 1090 | 2655 | 3088 | 1.2 |
Candida glabrata | 2588 (22.7) | 353 | 368 | 395 | 455 | 538 | 479 | 1116 | 1472 | 1.3 |
Candida tropicalis | 1419 (12.5) | 212 | 185 | 231 | 272 | 242 | 277 | 628 | 791 | 1.3 |
Candida parapsilosis complex c | 893 (7.8) | 114 | 132 | 133 | 138 | 181 | 195 | 379 | 514 | 1.4 |
Clavispora lusitaniae | 187 (1.6) | 16 | 25 | 28 | 34 | 28 | 56 | 69 | 118 | 1.7 |
Candida auris | 181 (1.6) | 43 | 27 | 31 | 31 | 21 | 28 | 101 | 80 | 0.8 |
Pichia kudriavzevii | 163 (1.4) | 26 | 33 | 23 | 25 | 34 | 22 | 82 | 81 | 1.0 |
Meyerozyma guilliermondii | 52 (0.5) | 11 | 9 | 12 | 7 | 9 | 4 | 32 | 20 | 0.6 |
Kluyveromyces marxianus | 38 (0.3) | 1 | 4 | 9 | 9 | 9 | 6 | 14 | 24 | 1.7 |
Cyberlindnera jadinii | 21 (0.2) | 2 | 8 | 1 | 5 | 3 | 2 | 11 | 10 | 0.9 |
Trichomonascus ciferrii | 10 (0.1) | 4 | 2 | 3 | 1 | 6 | 4 | 0.7 | ||
Candida dubliniensis | 10 (0.1) | 1 | 4 | 2 | 1 | 2 | 7 | 3 | 0.4 | |
Candida intermedia | 7 (0.1) | 2 | 2 | 1 | 2 | 2 | 5 | 2.5 | ||
Other Candida species d | 12 (0.1) | 1 | 2 | 5 | 1 | 2 | 1 | 8 | 4 | 0.5 |
Candida, not albicans | 72 (0.6) | 13 | 8 | 6 | 24 | 6 | 15 | 27 | 45 | 1.7 |
Total | 11,396 (100) | 1600 | 1711 | 1826 | 1996 | 2083 | 2180 | 5137 | 6259 | 1.2 |
Incidence/10,000 patient-days | 17.29 | 18.20 | 19.69 | 22.69 | 22.66 | 23.98 | 18.39 | 23.11 | 1.3 |
Incidence/10,000 Patient-Days | Incidence of Candidemia Patients (Episodes/10,000 Patient-Days) | Fold | |||||||
---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Pre-Pandemic a | Pandemic b | (Pandemic/Pre-Pandemic) | |
Candida albicans | 0.58 | 0.45 | 0.45 | 0.53 | 0.63 | 0.63 | 0.49 | 0.60 | 1.2 |
Candida glabrata | 0.36 | 0.57 | 0.44 | 0.6 | 0.58 | 0.54 | 0.46 | 0.57 | 1.2 |
Candida tropicalis | 0.28 | 0.22 | 0.3 | 0.36 | 0.39 | 0.27 | 0.27 | 0.34 | 1.3 |
Candida parapsilosis complex c | 0.13 | 0.11 | 0.12 | 0.14 | 0.2 | 0.22 | 0.12 | 0.18 | 1.6 |
Pichia kudriavzevii | 0.05 | 0.04 | 0.03 | 0.03 | 0.03 | 0.05 | 0.04 | 0.04 | 1.0 |
Total candidemia | 1.44 | 1.48 | 1.42 | 1.7 | 1.88 | 1.77 | 1.45 | 1.79 | 1.2 |
Species | Number of Candidemia Patients | Relative Ratio of Candidemia Incidence (Pandemic/Pre-Pandemic) | ||||
---|---|---|---|---|---|---|
ICU | Non-ICU | |||||
Pre-Pandemic | Pandemic | Pre-Pandemic | Pandemic | ICU | non-ICU | |
Candida albicans | 31 | 47 | 107 | 115 | 1.5 | 1.1 |
Candida glabrata | 39 | 35 | 89 | 120 | 0.9 | 1.3 |
Candida parapsilosis complex a | 13 | 9 | 20 | 41 | 0.7 | 2.1 |
Candida tropicalis | 18 | 26 | 57 | 67 | 1.4 | 1.2 |
Pichia kudriavzevii | 4 | 2 | 8 | 9 | 0.5 | 1.1 |
Meyerozyma guilliermondii | 0 | 0 | 6 | 1 | N/A | 0.2 |
Other Candida species b | 5 | 6 | 7 | 6 | 1.2 | 0.9 |
Total | 110 | 125 | 294 | 359 | 1.1 | 1.2 |
Antifungal Agent a | Pre-Pandemic | Pandemic | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
/Species | No. | %R | %SDD/I | No. | %R | %SDD/I | No. | %R | %SDD/I | %NS | |
Fluconazole | Candida albicans | 111 | 8.1 | 1.8 | 165 | 0.0 | 0.6 | 276 | 3.3 | 1.1 | 4.4 |
Candida tropicalis | 62 | 0.0 | 0.0 | 93 | 0.0 | 1.1 | 155 | 0.0 | 0.7 | 0.7 | |
Candida glabrata | 120 | 2.5 | 97.5 | 159 | 0.0 | 100.0 | 279 | 1.1 | 98.9 | 100.0 | |
Candida parapsilosis complex b | 43 | 7.0 | 2.3 | 62 | 0.0 | 1.6 | 105 | 2.9 | 1.9 | 4.8 | |
Pichia kudriavzevii | 12 | 100.0 | 0.0 | 15 | 100.0 | 0.0 | 27 | 100.0 | 0.0 | 100.0 | |
Total | 348 | 7.8 | 34.5 | 494 | 3.0 | 32.8 | 842 | 5.0 | 33.5 | 38.5 | |
Voriconazole | Candida albicans | 111 | 7.2 | 1.8 | 165 | 0.0 | 0.0 | 276 | 2.9 | 0.7 | 3.6 |
Candida tropicalis | 62 | 0.0 | 0.0 | 93 | 0.0 | 0.0 | 155 | 0.0 | 0.0 | 0.0 | |
Candida parapsilosis complex b | 43 | 2.3 | 2.3 | 62 | 0.0 | 0.0 | 105 | 1.0 | 1.0 | 2.0 | |
Pichia kudriavzevii | 12 | 0.0 | 8.3 | 15 | 0.0 | 0.0 | 27 | 0.0 | 3.7 | 3.7 | |
Total | 228 | 3.9 | 1.8 | 335 | 0.0 | 0.0 | 563 | 1.6 | 0.7 | 2.3 | |
Caspofungin | Candida albicans | 111 | 0.9 | 0.0 | 165 | 0.6 | 0.0 | 276 | 0.7 | 0.0 | 0.7 |
Candida tropicalis | 62 | 0.0 | 0.0 | 93 | 0.0 | 0.0 | 155 | 0.0 | 0.0 | 0.0 | |
Candida glabrata | 120 | 10.0 | 1.7 | 159 | 5.7 | 4.4 | 279 | 7.5 | 3.2 | 10.7 | |
Candida parapsilosis complex b | 43 | 0.0 | 0.0 | 62 | 0.0 | 0.0 | 105 | 0.0 | 0.0 | 0.0 | |
Meyerozyma guilliermondii | 5 | 0.0 | 0.0 | 1 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | |
Pichia kudriavzevii | 12 | 8.3 | 0.0 | 15 | 6.7 | 0.0 | 27 | 7.4 | 0.0 | 7.4 | |
Total | 353 | 4.0 | 0.6 | 495 | 2.2 | 1.4 | 848 | 2.9 | 1.1 | 4.0 | |
Micafungin | Candida albicans | 111 | 0.9 | 0.0 | 165 | 0.6 | 0.0 | 276 | 0.7 | 0.0 | 0.7 |
Candida tropicalis | 62 | 0.0 | 0.0 | 93 | 0.0 | 0.0 | 155 | 0.0 | 0.0 | 0.0 | |
Candida glabrata | 120 | 0.0 | 6.7 | 159 | 0.6 | 1.9 | 279 | 0.4 | 3.9 | 4.3 | |
Candida parapsilosis complex b | 43 | 0.0 | 0.0 | 62 | 0.0 | 0.0 | 105 | 0.0 | 0.0 | 0.0 | |
Meyerozyma guilliermondii | 5 | 0.0 | 0.0 | 1 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | |
Pichia kudriavzevii | 12 | 0.0 | 8.3 | 15 | 6.7 | 0.0 | 27 | 3.7 | 3.7 | 7.4 | |
Total | 353 | 0.3 | 2.5 | 495 | 0.6 | 0.6 | 848 | 0.5 | 1.4 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, E.J.; Sung, H.; Kim, M.-N. Changing Epidemiology of Clinical Isolates of Candida Species during the Coronavirus Disease 2019 Pandemic: Data Analysis from a Korean Tertiary Care Hospital for 6 Years (2017–2022). J. Fungi 2024, 10, 193. https://doi.org/10.3390/jof10030193
Won EJ, Sung H, Kim M-N. Changing Epidemiology of Clinical Isolates of Candida Species during the Coronavirus Disease 2019 Pandemic: Data Analysis from a Korean Tertiary Care Hospital for 6 Years (2017–2022). Journal of Fungi. 2024; 10(3):193. https://doi.org/10.3390/jof10030193
Chicago/Turabian StyleWon, Eun Jeong, Heungsup Sung, and Mi-Na Kim. 2024. "Changing Epidemiology of Clinical Isolates of Candida Species during the Coronavirus Disease 2019 Pandemic: Data Analysis from a Korean Tertiary Care Hospital for 6 Years (2017–2022)" Journal of Fungi 10, no. 3: 193. https://doi.org/10.3390/jof10030193
APA StyleWon, E. J., Sung, H., & Kim, M. -N. (2024). Changing Epidemiology of Clinical Isolates of Candida Species during the Coronavirus Disease 2019 Pandemic: Data Analysis from a Korean Tertiary Care Hospital for 6 Years (2017–2022). Journal of Fungi, 10(3), 193. https://doi.org/10.3390/jof10030193