Three Genes Involved in Different Signaling Pathways, carS, wcoA, and acyA, Participate in the Regulation of Fusarin Biosynthesis in Fusarium fujikuroi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Conditions
2.2. Fusarin Analysis
2.3. Gene Expression Analysis
2.4. Cloning and Sequencing of Mutant carS Alleles
2.5. RNA-Seq
2.6. Statistical Analysis
3. Results
3.1. Effect of wcoA Mutation on Fusarin Production in F. fujikuroi
3.2. Effects of cryD and vvdA Deletion on Fusarin Production
3.3. Effect of carS Mutations on Fusarin Production
3.4. Effect of ΔacyA Mutation and Nitrogen Concentration on Fusarin Production
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niehaus, E.-M.; Kim, H.-K.; Münsterkötter, M.; Janevska, S.; Arndt, B.; Kalinina, S.A.; Houterman, P.M.; Ahn, I.-P.; Alberti, I.; Tonti, S.; et al. Comparative Genomics of Geographically Distant Fusarium fujikuroi Isolates Revealed Two Distinct Pathotypes Correlating with Secondary Metabolite Profiles. PLoS Pathog. 2017, 13, e1006670. [Google Scholar] [CrossRef]
- Niehaus, E.-M.; von Bargen, K.W.; Espino, J.J.; Pfannmüller, A.; Humpf, H.-U.; Tudzynski, B. Characterization of the Fusaric Acid Gene Cluster in Fusarium fujikuroi. Appl. Microbiol. Biotechnol. 2014, 98, 1749–1762. [Google Scholar] [CrossRef]
- von Bargen, K.W.; Niehaus, E.-M.; Krug, I.; Bergander, K.; Würthwein, E.-U.; Tudzynski, B.; Humpf, H.-U. Isolation and Structure Elucidation of Fujikurins A–D: Products of the PKS19 Gene Cluster in Fusarium fujikuroi. J. Nat. Prod. 2015, 78, 1809–1815. [Google Scholar] [CrossRef]
- Janevska, S.; Arndt, B.; Niehaus, E.-M.; Burkhardt, I.; Rösler, S.M.; Brock, N.L.; Humpf, H.-U.; Dickschat, J.S.; Tudzynski, B. Gibepyrone Biosynthesis in the Rice Pathogen Fusarium fujikuroi Is Facilitated by a Small Polyketide Synthase Gene Cluster. J. Biol. Chem. 2016, 291, 27403–27420. [Google Scholar] [CrossRef] [PubMed]
- Janevska, S.; Arndt, B.; Baumann, L.; Apken, L.H.; Mauriz Marques, L.M.; Humpf, H.-U.; Tudzynski, B. Establishment of the Inducible Tet-on System for the Activation of the Silent Trichosetin Gene Cluster in Fusarium fujikuroi. Toxins 2017, 9, 126. [Google Scholar] [CrossRef] [PubMed]
- Janevska, S.; Tudzynski, B. Secondary Metabolism in Fusarium fujikuroi: Strategies to Unravel the Function of Biosynthetic Pathways. Appl. Microbiol. Biotechnol. 2018, 102, 615–630. [Google Scholar] [CrossRef] [PubMed]
- Niehaus, E.-M.; Münsterkötter, M.; Proctor, R.H.; Brown, D.W.; Sharon, A.; Idan, Y.; Oren-Young, L.; Sieber, C.M.; Novák, O.; Pěnčík, A.; et al. Comparative “Omics” of the Fusarium fujikuroi Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis. Genome Biol. Evol. 2016, 8, 3574–3599. [Google Scholar] [CrossRef]
- Arndt, B.; Janevska, S.; Schmid, R.; Hübner, F.; Tudzynski, B.; Humpf, H.-U. A Fungal N-Dimethylallyltryptophan Metabolite from Fusarium fujikuroi. ChemBioChem 2017, 18, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Farber, J.M.; Sanders, G.W. Production of Fusarin C by Fusarium spp. J. Agric. Food Chem. 1986, 34, 963–966. [Google Scholar] [CrossRef]
- Cantalejo, M.J.; Carrasco, J.M.; Hernández, E. Fusarin C Production by Fusarium Spp. from Spain. J. Food Prot. 1997, 60, 837–842. [Google Scholar] [CrossRef]
- Niehaus, E.-M.; Díaz-Sánchez, V.; von Bargen, K.W.; Kleigrewe, K.; Humpf, H.-U.; Limón, M.C.; Tudzynski, B. Fusarins and Fusaric Acid in Fusaria. In Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites; Martín, J.-F., García-Estrada, C., Zeilinger, S., Eds.; Springer: New York, NY, USA, 2014; pp. 239–262. ISBN 978-1-4939-1190-5. [Google Scholar]
- Krasnoff, S.B.; Sommers, C.H.; Moon, Y.-S.; Donzelli, B.G.G.; Vandenberg, J.D.; Churchill, A.C.L.; Gibson, D.M. Production of Mutagenic Metabolites by Metarhizium anisopliae. J. Agric. Food Chem. 2006, 54, 7083–7088. [Google Scholar] [CrossRef]
- Song, Z.; Cox, R.J.; Lazarus, C.M.; Simpson FRS, T.J. Fusarin C Biosynthesis in Fusarium moniliforme and Fusarium venenatum. ChemBioChem 2004, 5, 1196–1203. [Google Scholar] [CrossRef] [PubMed]
- Gaffoor, I.; Brown, D.W.; Plattner, R.; Proctor, R.H.; Qi, W.; Trail, F. Functional Analysis of the Polyketide Synthase Genes in the Filamentous Fungus Gibberella zeae (Anamorph Fusarium graminearum). Eukaryot. Cell 2005, 4, 1926–1933. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Sánchez, V.; Avalos, J.; Limón, M.C. Identification and Regulation of fusA, the Polyketide Synthase Gene Responsible for Fusarin Production in Fusarium fujikuroi. Appl. Environ. Microbiol. 2012, 78, 7258–7266. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.W.; Butchko, R.A.E.; Busman, M.; Proctor, R.H. Identification of Gene Clusters Associated with Fusaric Acid, Fusarin, and Perithecial Pigment Production in Fusarium verticillioides. Fungal Genet. Biol. 2012, 49, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Villani, A.; Proctor, R.H.; Kim, H.-S.; Brown, D.W.; Logrieco, A.F.; Amatulli, M.T.; Moretti, A.; Susca, A. Variation in Secondary Metabolite Production Potential in the Fusarium Incarnatum-Equiseti Species Complex Revealed by Comparative Analysis of 13 Genomes. BMC Genom. 2019, 20, 314. [Google Scholar] [CrossRef] [PubMed]
- Niehaus, E.-M.; Kleigrewe, K.; Wiemann, P.; Studt, L.; Sieber, C.M.K.; Connolly, L.R.; Freitag, M.; Güldener, U.; Tudzynski, B.; Humpf, H.-U. Genetic Manipulation of the Fusarium fujikuroi Fusarin Gene Cluster Yields Insight into the Complex Regulation and Fusarin Biosynthetic Pathway. Chem. Biol. 2013, 20, 1055–1066. [Google Scholar] [CrossRef]
- Tudzynski, B. Nitrogen Regulation of Fungal Secondary Metabolism in Fungi. Front. Microbiol. 2014, 5, 656. [Google Scholar] [CrossRef]
- Giese, H.; Sondergaard, T.E.; Sørensen, J.L. The AreA Transcription Factor in Fusarium graminearum Regulates the Use of Some Nonpreferred Nitrogen Sources and Secondary Metabolite Production. Fungal Biol. 2013, 117, 814–821. [Google Scholar] [CrossRef]
- Wiemann, P.; Brown, D.W.; Kleigrewe, K.; Bok, J.W.; Keller, N.P.; Humpf, H.-U.; Tudzynski, B. FfVel1 and FfLae1, Components of a Velvet-like Complex in Fusarium fujikuroi, Affect Differentiation, Secondary Metabolism and Virulence. Mol. Microbiol. 2010, 77, 972–994. [Google Scholar] [CrossRef]
- Fischer, R.; Aguirre, J.; Herrera-Estrella, A.; Corrochano, L.M. The Complexity of Fungal Vision. Microbiol. Spectr. 2016, 4, 1–22. [Google Scholar] [CrossRef]
- Corrochano, L.M. Light in the Fungal World: From Photoreception to Gene Transcription and Beyond. Annu. Rev. Genet. 2019, 53, 149–170. [Google Scholar] [CrossRef]
- Pardo-Medina, J.; Limón, M.C.; Avalos, J. Fusarium Photoreceptors. J. Fungi 2023, 9, 319. [Google Scholar] [CrossRef]
- Estrada, A.F.; Avalos, J. The White Collar Protein WcoA of Fusarium fujikuroi Is Not Essential for Photocarotenogenesis, but Is Involved in the Regulation of Secondary Metabolism and Conidiation. Fungal Genet. Biol. 2008, 45, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Pardo-Medina, J.; Gutiérrez, G.; Limón, M.C.; Avalos, J. Impact of the White Collar Photoreceptor WcoA on the Fusarium fujikuroi Transcriptome. Front. Microbiol. 2021, 11, 619474. [Google Scholar] [CrossRef]
- Avalos, J.; Pardo-Medina, J.; Parra-Rivero, O.; Ruger-Herreros, M.; Rodríguez-Ortiz, R.; Hornero-Méndez, D.; Limón, M.C. Carotenoid Biosynthesis in Fusarium. J. Fungi 2017, 3, 39. [Google Scholar] [CrossRef] [PubMed]
- Castrillo, M.; García-Martínez, J.; Avalos, J. Light-Dependent Functions of the Fusarium fujikuroi CryD DASH Cryptochrome in Development and Secondary Metabolism. Appl. Environ. Microbiol. 2013, 79, 2777–2788. [Google Scholar] [CrossRef] [PubMed]
- Castrillo, M.; Avalos, J. Light-Mediated Participation of the VIVID-like Protein of Fusarium fujikuroi VvdA in Pigmentation and Development. Fungal Genet. Biol. 2014, 71, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Castrillo, M.; Bernhardt, A.; Avalos, J.; Batschauer, A.; Pokorny, R. Biochemical Characterization of the DASH-Type Cryptochrome CryD from Fusarium fujikuroi. Photochem. Photobiol. 2015, 91, 1356–1367. [Google Scholar] [CrossRef] [PubMed]
- Ruger-Herreros, M.; Parra-Rivero, O.; Pardo-Medina, J.; Romero-Campero, F.J.; Limón, M.C.; Avalos, J. Comparative Transcriptomic Analysis Unveils Interactions between the Regulatory CarS Protein and Light Response in Fusarium. BMC Genom. 2019, 20, 67. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, P.; Ma, Y.; Jiang, R.; Jiang, C.; Wang, G. Insights into Intracellular Signaling Network in Fusarium Species. Int. J. Biol. Macromol. 2022, 222, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-E.; Xu, J.-R. The cAMP Signaling Pathway in Fusarium verticillioides Is Important for Conidiation, Plant Infection, and Stress Responses but Not Fumonisin Production. Mol. Plant Microbe Interact. 2010, 23, 522–533. [Google Scholar] [CrossRef] [PubMed]
- Bormann, J.; Boenisch, M.J.; Brückner, E.; Firat, D.; Schäfer, W. The Adenylyl Cyclase Plays a Regulatory Role in the Morphogenetic Switch from Vegetative to Pathogenic Lifestyle of Fusarium graminearum on Wheat. PLoS ONE 2014, 9, e91135. [Google Scholar] [CrossRef]
- Hu, S.; Zhou, X.; Gu, X.; Cao, S.; Wang, C.; Xu, J.-R. The cAMP-PKA Pathway Regulases Growth, Sexual and Asexual Differentiation, and Pathogenesis in Fusarium graminearum. Mol. Plant Microbe Interact. 2014, 27, 557–566. [Google Scholar] [CrossRef]
- Michielse, C.B.; Studt, L.; Janevska, S.; Sieber, C.M.K.; Arndt, B.; Espino, J.J.; Humpf, H.-U.; Güldener, U.; Tudzynski, B. The Global Regulator FfSge1 Is Required for Expression of Secondary Metabolite Gene Clusters but Not for Pathogenicity in Fusarium fujikuroi. Environ. Microbiol. 2015, 17, 2690–2708. [Google Scholar] [CrossRef] [PubMed]
- Kohut, G.; Oláh, B.; Ádám, A.L.; García-Martínez, J.; Hornok, L. Adenylyl Cyclase Regulates Heavy Metal Sensitivity, Bikaverin Production and Plant Tissue Colonization in Fusarium proliferatum. J. Basic Microbiol. 2010, 50, 59–71. [Google Scholar] [CrossRef]
- Blum, A.; Benfield, A.H.; Stiller, J.; Kazan, K.; Batley, J.; Gardiner, D.M. High-Throughput FACS-Based Mutant Screen Identifies a Gain-of-Function Allele of the Fusarium Graminearum Adenylyl Cyclase Causing Deoxynivalenol over-Production. Fungal Genet. Biol. 2016, 90, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Studt, L.; Humpf, H.-U.; Tudzynski, B. Signaling Governed by G Proteins and cAMP Is Crucial for Growth, Secondary Metabolism and Sexual Development in Fusarium fujikuroi. PLoS ONE 2013, 8, e58185. [Google Scholar] [CrossRef]
- García-Martínez, J.; Ádám, A.L.; Avalos, J. Adenylyl Cyclase Plays a Regulatory Role in Development, Stress Resistance and Secondary Metabolism in Fusarium fujikuroi. PLoS ONE 2012, 7, e28849. [Google Scholar] [CrossRef]
- Ruger-Herreros, M.; Nordzieke, S.; Vega-Álvarez, C.; Avalos, J.; Limón, M.C. Relation between CarS Expression and Activation of Carotenogenesis by Stress in Fusarium fujikuroi. Front. Bioeng. Biotechnol. 2022, 10, 1000129. [Google Scholar] [CrossRef]
- Díaz-Sánchez, V.; Estrada, A.F.; Trautmann, D.; Al-Babili, S.; Avalos, J. The Gene carD Encodes the Aldehyde Dehydrogenase Responsible for Neurosporaxanthin Biosynthesis in Fusarium fujikuroi. FEBS J. 2011, 278, 3164–3176. [Google Scholar] [CrossRef]
- Rodríguez-Ortiz, L.R. Análisis Genético y Molecular del Fenotipo carS en Fusarium. Ph.D. Thesis, Universidad de Sevilla, Sevilla, Spain, 2012. Available online: https://idus.us.es/handle/11441/15164 (accessed on 2 March 2024).
- Myung, K.; Li, S.; Butchko, R.A.E.; Busman, M.; Proctor, R.H.; Abbas, H.K.; Calvo, A.M. FvVE1 Regulates Biosynthesis of the Mycotoxins Fumonisins and Fusarins in Fusarium verticillioides. J. Agric. Food Chem. 2009, 57, 5089–5094. [Google Scholar] [CrossRef]
- Niehaus, E.-M.; Rindermann, L.; Janevska, S.; Münsterkötter, M.; Güldener, U.; Tudzynski, B. Analysis of the Global Regulator Lae1 Uncovers a Connection between Lae1 and the Histone Acetyltransferase HAT1 in Fusarium fujikuroi. Appl. Microbiol. Biotechnol. 2018, 102, 279–295. [Google Scholar] [CrossRef]
- Bachleitner, S.; Sulyok, M.; Sørensen, J.L.; Strauss, J.; Studt, L. The H4K20 Methyltransferase Kmt5 Is Involved in Secondary Metabolism and Stress Response in Phytopathogenic Fusarium Species. Fungal Genet. Biol. 2021, 155, 103602. [Google Scholar] [CrossRef]
- Janevska, S.; Güldener, U.; Sulyok, M.; Tudzynski, B.; Studt, L. Set1 and Kdm5 Are Antagonists for H3K4 Methylation and Regulators of the Major Conidiation-Specific Transcription Factor Gene ABA1 in Fusarium fujikuroi. Environ. Microbiol. 2018, 20, 3343–3362. [Google Scholar] [CrossRef]
- Gao, S.; Gold, S.E.; Wisecaver, J.H.; Zhang, Y.; Guo, L.; Ma, L.-J.; Rokas, A.; Glenn, A.E. Genome-Wide Analysis of Fusarium verticillioides Reveals Inter-Kingdom Contribution of Horizontal Gene Transfer to the Expansion of Metabolism. Fungal Genet. Biol. 2019, 128, 60–73. [Google Scholar] [CrossRef]
- Pfannmüller, A.; Leufken, J.; Studt, L.; Michielse, C.B.; Sieber, C.M.K.; Güldener, U.; Hawat, S.; Hippler, M.; Fufezan, C.; Tudzynski, B. Comparative Transcriptome and Proteome Analysis Reveals a Global Impact of the Nitrogen Regulators AreA and AreB on Secondary Metabolism in Fusarium fujikuroi. PLoS ONE 2017, 12, e0176194. [Google Scholar] [CrossRef]
- Shen, L.; Chapeland-Leclerc, F.; Ruprich-Robert, G.; Chen, Q.; Chen, S.; Adnan, M.; Wang, J.; Liu, G.; Xie, N. Involvement of VIVID in White Light-Responsive Pigmentation, Sexual Development and Sterigmatocystin Biosynthesis in the Filamentous Fungus Podospora Anserina. Environ. Microbiol. 2022, 24, 2907–2923. [Google Scholar] [CrossRef]
- Merhi, A.; André, B. Internal Amino Acids Promote Gap1 Permease Ubiquitylation via TORC1/Npr1/14-3-3-Dependent Control of the Bul Arrestin-like Adaptors. Mol. Cell. Biol. 2012, 32, 4510–4522. [Google Scholar] [CrossRef]
- Estrella, L.A.; Krishnamurthy, S.; Timme, C.R.; Hampsey, M. The Rsp5 E3 Ligase Mediates Turnover of Low Affinity Phosphate Transporters in Saccharomyces cerevisiae. J. Biol. Chem. 2008, 283, 5327–5334. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Mukherjee, P.K.; Kale, S.P. cAMP Signalling Is Involved in Growth, Germination, Mycoparasitism and Secondary Metabolism in Trichoderma virens. Microbiology 2007, 153, 1734–1742. [Google Scholar] [CrossRef]
- Yang, K.; Qin, Q.; Liu, Y.; Zhang, L.; Liang, L.; Lan, H.; Chen, C.; You, Y.; Zhang, F.; Wang, S. Adenylate Cyclase AcyA Regulates Development, Aflatoxin Biosynthesis and Fungal Virulence in Aspergillus flavus. Front. Cell. Infect. Microbiol. 2016, 6, 190. [Google Scholar] [CrossRef]
- Reithner, B.; Brunner, K.; Schuhmacher, R.; Peissl, I.; Seidl, V.; Krska, R.; Zeilinger, S. The G Protein α Subunit Tga1 of Trichoderma atroviride Is Involved in Chitinase Formation and Differential Production of Antifungal Metabolites. Fungal Genet. Biol. 2005, 42, 749–760. [Google Scholar] [CrossRef]
- Yin, T.; Zhang, Q.; Wang, J.; Liu, H.; Wang, C.; Xu, J.-R.; Jiang, C. The Cyclase-Associated Protein FgCap1 Has Both Protein Kinase A-Dependent and -Independent Functions during Deoxynivalenol Production and Plant Infection in Fusarium graminearum. Mol. Plant Pathol. 2018, 19, 552–563. [Google Scholar] [CrossRef]
- Yang, K.; Liu, Y.; Wang, S.; Wu, L.; Xie, R.; Lan, H.; Fasoyin, O.E.; Wang, Y.; Wang, S. Cyclase-Associated Protein Cap with Multiple Domains Contributes to Mycotoxin Biosynthesis and Fungal Virulence in Aspergillus flavus. J. Agric. Food Chem. 2019, 67, 4200–4213. [Google Scholar] [CrossRef]
Strains | Affected Gene | Protein Function | Mutation Procedure | Reference |
---|---|---|---|---|
SF225 and SF226 | wcoA | WC 1 flavin photoreceptor | Targeted gene disruption | [25] |
SF236 and SF237 | cryD | DASH 2 cryptochrome | Gene deletion | [29] |
SF256 and SF258 | vvdA | Flavin photoreceptor | Gene deletion | [30] |
SF271 and SF272 | acyA | Adenylate cyclase | Gene deletion | [43] |
SF114, SF136, and SF134 | carS | RING 3 finger protein | NTG 4-induced mutagenesis | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Sánchez, V.; Castrillo, M.; García-Martínez, J.; Avalos, J.; Limón, M.C. Three Genes Involved in Different Signaling Pathways, carS, wcoA, and acyA, Participate in the Regulation of Fusarin Biosynthesis in Fusarium fujikuroi. J. Fungi 2024, 10, 203. https://doi.org/10.3390/jof10030203
Díaz-Sánchez V, Castrillo M, García-Martínez J, Avalos J, Limón MC. Three Genes Involved in Different Signaling Pathways, carS, wcoA, and acyA, Participate in the Regulation of Fusarin Biosynthesis in Fusarium fujikuroi. Journal of Fungi. 2024; 10(3):203. https://doi.org/10.3390/jof10030203
Chicago/Turabian StyleDíaz-Sánchez, Violeta, Marta Castrillo, Jorge García-Martínez, Javier Avalos, and M. Carmen Limón. 2024. "Three Genes Involved in Different Signaling Pathways, carS, wcoA, and acyA, Participate in the Regulation of Fusarin Biosynthesis in Fusarium fujikuroi" Journal of Fungi 10, no. 3: 203. https://doi.org/10.3390/jof10030203
APA StyleDíaz-Sánchez, V., Castrillo, M., García-Martínez, J., Avalos, J., & Limón, M. C. (2024). Three Genes Involved in Different Signaling Pathways, carS, wcoA, and acyA, Participate in the Regulation of Fusarin Biosynthesis in Fusarium fujikuroi. Journal of Fungi, 10(3), 203. https://doi.org/10.3390/jof10030203