Endophytic Fungi Volatile Organic Compounds as Crucial Biocontrol Agents Used for Controlling Fruit and Vegetable Postharvest Diseases
Abstract
:1. Introduction
2. Endophytic Fungal Volatile Organic Compounds (VOCs)
3. Endophytic Fungal Species Releasing VOCs of Antifungal Activity
3.1. Trichoderma spp.
3.2. Yeasts
4. Control Mechanism of Endophytic Fungal VOCs on Postharvest Fruit and Vegetable Diseases
5. Application of Endophytic Fungal VOCs as Postharvest Fruit and Vegetable Fumigants
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Q.; Zhang, M.; Xu, B. Application of Ultrasonic Technology in Postharvested Fruits and Vegetables Storage: A Review. Ultrason. Sonochem. 2020, 69, 105261. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, Vegetables, and Health: A Comprehensive Narrative, Umbrella Review of the Science and Recommendations for Enhanced Public Policy to Improve Intake. Crit. Rev. Food Sci. Nutr. 2020, 60, 2174–2211. [Google Scholar] [CrossRef] [PubMed]
- Pétriacq, P.; López, A.; Luna, E. Fruit Decay to Diseases: Can Induced Resistance and Priming Help? Plants 2018, 7, 77. [Google Scholar] [CrossRef] [PubMed]
- Alegbeleye, O.; Odeyemi, O.A.; Strateva, M.; Stratev, D. Microbial Spoilage of Vegetables, Fruits and Cereals. Appl. Food Res. 2022, 2, 100122. [Google Scholar] [CrossRef]
- Droby, S.; Zhimo, V.Y.; Wisniewski, M.; Freilich, S. The Pathobiome Concept Applied to Postharvest Pathology and Its Implication on Biocontrol Strategies. Postharvest Biol. Technol. 2022, 189, 111911. [Google Scholar] [CrossRef]
- Dukare, A.S.; Paul, S.; Nambi, V.E.; Gupta, R.K.; Singh, R.; Sharma, K.; Vishwakarma, R.K. Exploitation of Microbial Antagonists for the Control of Postharvest Diseases of Fruits: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1498–1513. [Google Scholar] [CrossRef]
- Faria, C.B.; Santos, F.C.D.; Castro, F.F.D.; Sutil, A.R.; Sergio, L.M.; Silva, M.V.; Machinski Junior, M.; Barbosa-Tessmann, I.P. Occurrence of Toxigenic Aspergillus Flavus in Commercial Bulgur Wheat. Food Sci. Technol. 2017, 37, 103–111. [Google Scholar] [CrossRef]
- Zapaśnik, A.; Bryła, M.; Waśkiewicz, A.; Ksieniewicz-Woźniak, E.; Podolska, G. Ochratoxin A and 2′R-Ochratoxin A in Selected Foodstuffs and Dietary Risk Assessment. Molecules 2022, 27, 188. [Google Scholar] [CrossRef]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef]
- FAO. Global Food Losses and Food Waste—Extent, Causes and Prevention; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; ISBN 978-92-5-107205-9. [Google Scholar]
- Chinchkar, A.V.; Singh, A.; Singh, S.V.; Acharya, A.M.; Kamble, M.G. Potential Sanitizers and Disinfectants for Fresh Fruits and Vegetables: A Comprehensive Review. Food Process. Preserv. 2022, 46, e16495. [Google Scholar] [CrossRef]
- Ocampo-Suarez, I.B.; López, Z.; Calderón-Santoyo, M.; Ragazzo-Sánchez, J.A.; Knauth, P. Are Biological Control Agents, Isolated from Tropical Fruits, Harmless to Potential Consumers? Food Chem. Toxicol. 2017, 109, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Mani-López, E.; Palou, E.; López-Malo, A. Effect of Different Sanitizers on the Microbial Load and Selected Quality Parameters of “Chile de Árbol” Pepper (Capsicum frutescens L.) Fruit. Postharvest Biol. Technol. 2016, 119, 94–100. [Google Scholar] [CrossRef]
- De Corato, U. Improving the Shelf-Life and Quality of Fresh and Minimally-Processed Fruits and Vegetables for a Modern Food Industry: A Comprehensive Critical Review from the Traditional Technologies into the Most Promising Advancements. Crit. Rev. Food Sci. Nutr. 2020, 60, 940–975. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Tango, C.N.; Miskeen, S.; Lee, B.H.; Oh, D.-H. Hurdle Technology: A Novel Approach for Enhanced Food Quality and Safety—A Review. Food Control 2017, 73, 1426–1444. [Google Scholar] [CrossRef]
- Sánchez-Torres, P.; Tuset, J.J. Molecular Insights into Fungicide Resistance in Sensitive and Resistant Penicillium Digitatum Strains Infecting Citrus. Postharvest Biol. Technol. 2011, 59, 159–165. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An Extensive Review on the Consequences of Chemical Pesticides on Human Health and Environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Wisniewski, M.; Droby, S.; Norelli, J.; Liu, J.; Schena, L. Alternative Management Technologies for Postharvest Disease Control: The Journey from Simplicity to Complexity. Postharvest Biol. Technol. 2016, 122, 3–10. [Google Scholar] [CrossRef]
- Leneveu-Jenvrin, C.; Charles, F.; Barba, F.J.; Remize, F. Role of Biological Control Agents and Physical Treatments in Maintaining the Quality of Fresh and Minimally-Processed Fruit and Vegetables. Crit. Rev. Food Sci. Nutr. 2020, 60, 2837–2855. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sui, Y.; Li, J.; Tian, X.; Wang, Q. Biological Control of Postharvest Fungal Decays in Citrus: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 861–870. [Google Scholar] [CrossRef]
- Almeida, O.A.C.; De Araujo, N.O.; Dias, B.H.S.; De Sant’Anna Freitas, C.; Coerini, L.F.; Ryu, C.-M.; De Castro Oliveira, J.V. The Power of the Smallest: The Inhibitory Activity of Microbial Volatile Organic Compounds against Phytopathogens. Front. Microbiol. 2023, 13, 951130. [Google Scholar] [CrossRef]
- Gong, A.-D.; Dong, F.-Y.; Hu, M.-J.; Kong, X.-W.; Wei, F.-F.; Gong, S.-J.; Zhang, Y.-M.; Zhang, J.-B.; Wu, A.-B.; Liao, Y.-C. Antifungal Activity of Volatile Emitted from Enterobacter Asburiae Vt-7 against Aspergillus Flavus and Aflatoxins in Peanuts during Storage. Food Control 2019, 106, 106718. [Google Scholar] [CrossRef]
- Ling, L.; Wang, Y.; Cheng, W.; Jiang, K.; Luo, H.; Pang, M.; Yue, R. Research Progress of Volatile Organic Compounds Produced by Plant Endophytic Bacteria in Control of Postharvest Diseases of Fruits and Vegetables. World J. Microbiol. Biotechnol. 2023, 39, 149. [Google Scholar] [CrossRef] [PubMed]
- Pereyra, M.M.; Garmendia, G.; Rossini, C.; Meinhardt, F.; Vero, S.; Dib, J.R. Volatile Organic Compounds of Clavispora Lusitaniae AgL21 Restrain Citrus Postharvest Pathogens. Biol. Control 2022, 174, 105025. [Google Scholar] [CrossRef]
- Ling, L.; Luo, H.; Zhao, Y.; Yang, C.; Cheng, W.; Pang, M. Fungal Pathogens Causing Postharvest Fruit Rot of Wolfberry and Inhibitory Effect of 2,3-Butanedione. Front. Microbiol. 2023, 13, 1068144. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Pang, M.; Luo, H.; Cheng, W.; Jiang, K.; Wang, Y. Antifungal Activity of Diacetyl, a Volatile Organic Compound, on Trichoderma Lixii F2 Isolated from Postharvest Lanzhou Lily Bulbs. Food Biosci. 2023, 52, 102365. [Google Scholar] [CrossRef]
- Kamaruzzaman, M.; Islam, M.S.; Mahmud, S.; Polash, S.A.; Sultana, R.; Hasan, M.A.; Wang, C.; Jiang, C. In Vitro and in Silico Approach of Fungal Growth Inhibition by Trichoderma Asperellum HbGT6-07 Derived Volatile Organic Compounds. Arab. J. Chem. 2021, 14, 103290. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Endophytic and Epiphytic Microbes as “sources” of Bioactive Agents. Front. Chem. 2015, 3, 34. [Google Scholar] [CrossRef]
- Huang, X.; Ren, J.; Li, P.; Feng, S.; Dong, P.; Ren, M. Potential of Microbial Endophytes to Enhance the Resistance to Postharvest Diseases of Fruit and Vegetables. J. Sci. Food Agric. 2021, 101, 1744–1757. [Google Scholar] [CrossRef]
- Kumari, M.; Qureshi, K.A.; Jaremko, M.; White, J.; Singh, S.K.; Sharma, V.K.; Singh, K.K.; Santoyo, G.; Puopolo, G.; Kumar, A. Deciphering the Role of Endophytic Microbiome in Postharvest Diseases Management of Fruits: Opportunity Areas in Commercial up-Scale Production. Front. Plant Sci. 2022, 13, 1026575. [Google Scholar] [CrossRef]
- Samreen, T.; Naveed, M.; Nazir, M.Z.; Asghar, H.N.; Khan, M.I.; Zahir, Z.A.; Kanwal, S.; Jeevan, B.; Sharma, D.; Meena, V.S.; et al. Seed Associated Bacterial and Fungal Endophytes: Diversity, Life Cycle, Transmission, and Application Potential. Appl. Soil Ecol. 2021, 168, 104191. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, W.; Tao, H.; Zhu, W.; Qi, X.; Chen, Y.; Li, H.; Zhao, C.; Yang, Y.; Hou, Y.; et al. Structural Characterization and Antioxidant Properties of an Exopolysaccharide Produced by the Mangrove Endophytic Fungus Aspergillus sp. Y16. Bioresour. Technol. 2011, 102, 8179–8184. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Jin, Z.; Jin, Q.; Dong, M. Isolation and Fatty Acid Analysis of Lipid-Producing Endophytic Fungi from Wild Chinese Torreya Grandis. Microbiology 2015, 84, 710–716. [Google Scholar] [CrossRef]
- Al-Obaidi, J.R.; Jambari, N.N.; Ahmad-Kamil, E.I. Mycopharmaceuticals and Nutraceuticals: Promising Agents to Improve Human Well-Being and Life Quality. J. Fungi 2021, 7, 503. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Xu, J.; An, X.; Yang, J.; Wang, Y.; Dou, M.; Wang, M.; Huang, J.; Fu, Y. Insight of Endophytic Fungi Promoting the Growth and Development of Woody Plants. Crit. Rev. Biotechnol. 2023, 44, 78–99. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Khan, A.L.; Hamayun, M.; Shahzad, R.; Kim, Y.-H.; Choi, K.-S.; Lee, I.-J. Endophytic Infection Alleviates Biotic Stress in Sunflower through Regulation of Defence Hormones, Antioxidants and Functional Amino Acids. Eur. J. Plant Pathol. 2015, 141, 803–824. [Google Scholar] [CrossRef]
- Santra, H.K.; Banerjee, D. Antifungal Activity of Volatile and Non-Volatile Metabolites of Endophytes of Chloranthus Elatior Sw. Front. Plant Sci. 2023, 14, 1156323. [Google Scholar] [CrossRef] [PubMed]
- Song, X.-Y.; Wang, H.; Ren, F.; Wang, K.; Dou, G.; Lv, X.; Yan, D.-H.; Strobel, G. An Endophytic Diaporthe Apiculatum Produces Monoterpenes with Inhibitory Activity against Phytopathogenic Fungi. Antibiotics 2019, 8, 231. [Google Scholar] [CrossRef] [PubMed]
- Kanchiswamy, C.N.; Malnoy, M.; Maffei, M.E. Chemical Diversity of Microbial Volatiles and Their Potential for Plant Growth and Productivity. Front. Plant Sci. 2015, 6, 133272. [Google Scholar] [CrossRef] [PubMed]
- Mari, M.; Bautista-Baños, S.; Sivakumar, D. Decay Control in the Postharvest System: Role of Microbial and Plant Volatile Organic Compounds. Postharvest Biol. Technol. 2016, 122, 70–81. [Google Scholar] [CrossRef]
- Kaddes, A.; Fauconnier, M.-L.; Sassi, K.; Nasraoui, B.; Jijakli, M.-H. Endophytic Fungal Volatile Compounds as Solution for Sustainable Agriculture. Molecules 2019, 24, 1065. [Google Scholar] [CrossRef]
- Naik, B.S. Volatile Hydrocarbons from Endophytic Fungi and Their Efficacy in Fuel Production and Disease Control. Egypt. J. Biol. Pest Control 2018, 28, 69. [Google Scholar] [CrossRef]
- Kouipou Toghueo, R.M.; Boyom, F.F. Endophytic Fungi from Terminalia Species: A Comprehensive Review. J. Fungi 2019, 5, 43. [Google Scholar] [CrossRef] [PubMed]
- Lemfack, M.C.; Gohlke, B.-O.; Toguem, S.M.T.; Preissner, S.; Piechulla, B.; Preissner, R. mVOC 2.0: A Database of Microbial Volatiles. Nucleic Acids Res. 2018, 46, D1261–D1265. [Google Scholar] [CrossRef] [PubMed]
- Poveda, J. Beneficial Effects of Microbial Volatile Organic Compounds (MVOCs) in Plants. Appl. Soil Ecol. 2021, 168, 104118. [Google Scholar] [CrossRef]
- Hung, R.; Lee, S.; Bennett, J.W. Fungal Volatile Organic Compounds and Their Role in Ecosystems. Appl. Microbiol. Biotechnol. 2015, 99, 3395–3405. [Google Scholar] [CrossRef] [PubMed]
- Effmert, U.; Kalderás, J.; Warnke, R.; Piechulla, B. Volatile Mediated Interactions Between Bacteria and Fungi in the Soil. J. Chem. Ecol. 2012, 38, 665–703. [Google Scholar] [CrossRef]
- Inamdar, A.A.; Morath, S.; Bennett, J.W. Fungal Volatile Organic Compounds: More Than Just a Funky Smell? Annu. Rev. Microbiol. 2020, 74, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Lemfack, M.C.; Nickel, J.; Dunkel, M.; Preissner, R.; Piechulla, B. mVOC: A Database of Microbial Volatiles. Nucl. Acids Res. 2014, 42, D744–D748. [Google Scholar] [CrossRef]
- Sears, J.; Dirkse, E.; Markworth, C.; Strobel, G.A. Volatile Antimicrobials from Muscodor Albus, a Novel Endophytic Fungus. Microbiology 2001, 147, 2943–2950. [Google Scholar] [CrossRef]
- Hallagan, J.B. The Use of Diacetyl (2,3-Butanedione) and Related Flavoring Substances as Flavorings Added to Foods—Workplace Safety Issues. Toxicology 2017, 388, 1–6. [Google Scholar] [CrossRef]
- Bello, F.; Montironi, I.D.; Medina, M.B.; Munitz, M.S.; Ferreira, F.V.; Williman, C.; Vázquez, D.; Cariddi, L.N.; Musumeci, M.A. Mycofumigation of Postharvest Blueberries with Volatile Compounds from Trichoderma Atroviride IC-11 Is a Promising Tool to Control Rots Caused by Botrytis Cinerea. Food Microbiol. 2022, 106, 104040. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, A.; Ugolini, L.; Lazzeri, L.; Mari, M. Production of Volatile Organic Compounds by Aureobasidium Pullulans as a Potential Mechanism of Action against Postharvest Fruit Pathogens. Biol. Control 2015, 81, 8–14. [Google Scholar] [CrossRef]
- Lu, J.; Li, J.; Li, L.; Qi, L.; Wang, Y.; Yang, S.; Xu, G.; Dou, D.; Liu, J.; Wang, X. Natural Product 2-Phenylethanol Inhibits ATP Synthesis of P. Infestans by Blocking the Oxidative Phosphorylation Pathway to Prevent Potato Late Blight. Postharvest Biol. Technol. 2023, 199, 112310. [Google Scholar] [CrossRef]
- Jaibangyang, S.; Nasanit, R.; Limtong, S. Biological Control of Aflatoxin-Producing Aspergillus Flavus by Volatile Organic Compound-Producing Antagonistic Yeasts. BioControl 2020, 65, 377–386. [Google Scholar] [CrossRef]
- Liarzi, O.; Bar, E.; Lewinsohn, E.; Ezra, D. Use of the Endophytic Fungus Daldinia Cf. Concentrica and Its Volatiles as Bio-Control Agents. PLoS ONE 2016, 11, e0168242. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Motaal, F.F.; Kamel, N.M.; El-Sayed, M.A.; Abou-Ellail, M. Biocontrol of Okra-Rot-Causing Cochliobolus Spicifer-CSN-20 Using Secondary Metabolites of Endophytic Fungi Associated with Solenostemma Arghel. Ann. Agric. Sci. 2022, 67, 24–33. [Google Scholar] [CrossRef]
- Mitra, M.; Venkatesh, P.; Ghissing, U.; Biswas, A.; Mitra, A.; Mandal, M.; Mishra, H.N.; Maiti, M.K. Fruity-Scented Antifungal Volatiles from Endophytic Geotrichum Candidum PF005: Broad-Spectrum Bioactivity against Stored Grain Pathogens, Mode of Action and Suitable Formulation for Mycofumigation. Biol. Control 2023, 177, 105129. [Google Scholar] [CrossRef]
- Macías-Rubalcava, M.L.; Sánchez-Fernández, R.E.; Roque-Flores, G.; Lappe-Oliveras, P.; Medina-Romero, Y.M. Volatile Organic Compounds from Hypoxylon Anthochroum Endophytic Strains as Postharvest Mycofumigation Alternative for Cherry Tomatoes. Food Microbiol. 2018, 76, 363–373. [Google Scholar] [CrossRef]
- Ruiz-Moyano, S.; Hernández, A.; Galvan, A.I.; Córdoba, M.G.; Casquete, R.; Serradilla, M.J.; Martín, A. Selection and Application of Antifungal VOCs-Producing Yeasts as Biocontrol Agents of Grey Mould in Fruits. Food Microbiol. 2020, 92, 103556. [Google Scholar] [CrossRef]
- Park, M.-S.; Ahn, J.-Y.; Choi, G.-J.; Choi, Y.-H.; Jang, K.-S.; Kim, J.-C. Potential of the Volatile-Producing Fungus Nodulisporium Sp. CF016 for the Control of Postharvest Diseases of Apple. Plant Pathol. J. 2010, 26, 253–259. [Google Scholar] [CrossRef]
- Pimenta, R.S.; Moreira da Silva, J.F.; Buyer, J.S.; Janisiewicz, W.J. Endophytic Fungi from Plums (Prunus Domestica) and Their Antifungal Activity against Monilinia Fructicola. J. Food Prot. 2012, 75, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, Y.; Cai, J.; Liu, X.; Huang, G. Antifungal Activity of Volatile Compounds Generated by Endophytic Fungi Sarocladium Brachiariae HND5 against Fusarium oxysporum f. sp. Cubense. PLoS ONE 2021, 16, e0260747. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Wang, C.; Li, C.; Sun, R.; Yang, M. Antagonistic Effects of Volatile Organic Compounds of Saccharomyces Cerevisiae NJ-1 on the Growth and Toxicity of Aspergillus Flavus. Biol. Control 2023, 177, 105093. [Google Scholar] [CrossRef]
- Inayati, A.; Sulistyowati, L.; Aini, L.Q.; Yusnawan, E. Antifungal Activity of Volatile Organic Compounds from Trichoderma Virens. In Proceedings of the International Conference on Biology and Applied Science (ICOBAS), Malang, Indonesia, 13–14 March 2019; p. 080012. [Google Scholar]
- Ayyandurai, M.; Akila, R.; Manonmani, K.; Harish, S.; Mini, M.L.; Vellaikumar, S. Deciphering the Mechanism of Trichoderma Spp. Consortia Possessing Volatile Organic Compounds and Antifungal Metabolites in the Suppression of Sclerotium Rolfsii in Groundnut. Physiol. Mol. Plant Pathol. 2023, 125, 102005. [Google Scholar] [CrossRef]
- Chen, J.-L.; Liu, K.; Miao, C.-P.; Sun, S.-Z.; Chen, Y.-W.; Xu, L.-H.; Guan, H.-L.; Zhao, L.-X. Salt Tolerance of Endophytic Trichoderma Koningiopsis YIM PH30002 and Its Volatile Organic Compounds (VOCs) Allelopathic Activity against Phytopathogens Associated with Panax notoginseng. Ann. Microbiol. 2016, 66, 981–990. [Google Scholar] [CrossRef]
- Khruengsai, S.; Pripdeevech, P.; D’Souza, P.E.; Panuwet, P. Biofumigation Activities of Volatile Compounds from Two Trichoderma Afroharzianum Strains against Fusarium Infections in Fresh Chilies. J. Sci. Food Agric. 2021, 101, 5861–5871. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, A.P.; Thankappan, S.; Karthikeyan, G.; Uthandi, S. Comprehensive Profiling of the VOCs of Trichoderma Longibrachiatum EF5 While Interacting with Sclerotium Rolfsii and Macrophomina Phaseolina. Microbiol. Res. 2020, 236, 126436. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, R.; Duan, Y.; Jiang, W.; Chen, X.; Shen, X.; Yin, C.; Mao, Z. The Endophytic Strain Trichoderma Asperellum 6S-2: An Efficient Biocontrol Agent against Apple Replant Disease in China and a Potential Plant-Growth-Promoting Fungus. J. Fungi 2021, 7, 1050. [Google Scholar] [CrossRef] [PubMed]
- Wonglom, P.; Ito, S.; Sunpapao, A. Volatile Organic Compounds Emitted from Endophytic Fungus Trichoderma Asperellum T1 Mediate Antifungal Activity, Defense Response and Promote Plant Growth in Lettuce (Lactuca sativa). Fungal Ecol. 2020, 43, 100867. [Google Scholar] [CrossRef]
- Zhi-Lin, Y.; Yi-Cun, C.; Bai-Ge, X.; Chu-Long, Z. Current Perspectives on the Volatile-Producing Fungal Endophytes. Crit. Rev. Biotechnol. 2012, 32, 363–373. [Google Scholar] [CrossRef]
- Tchameni, S.N.; Cotârleț, M.; Ghinea, I.O.; Bedine, M.A.B.; Sameza, M.L.; Borda, D.; Bahrim, G.; Dinică, R.M. Involvement of Lytic Enzymes and Secondary Metabolites Produced by Trichoderma spp. in the Biological Control of Pythium myriotylum. Int. Microbiol. 2020, 23, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Siebatcheu, E.C.; Wetadieu, D.; Youassi Youassi, O.; Bedine Boat, M.A.; Bedane, K.G.; Tchameni, N.S.; Sameza, M.L. Secondary Metabolites from an Endophytic Fungus Trichoderma Erinaceum with Antimicrobial Activity towards Pythium ultimum. Nat. Prod. Res. 2023, 37, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, M.; Bakht, J.; Iqbal, A.; Shafi, M. Growth, Protein Expression and Heavy Metal Uptake by Tobacco under Heavy Metals Contaminated Soil. Pak. J. Bot. 2020, 52, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Stracquadanio, C.; Quiles, J.M.; Meca, G.; Cacciola, S.O. Antifungal Activity of Bioactive Metabolites Produced by Trichoderma Asperellum and Trichoderma Atroviride in Liquid Medium. J. Fungi 2020, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Intana, W.; Kheawleng, S.; Sunpapao, A. Trichoderma Asperellum T76-14 Released Volatile Organic Compounds against Postharvest Fruit Rot in Muskmelons (Cucumis Melo) Caused by Fusarium incarnatum. J. Fungi 2021, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Baiyee, B.; Pornsuriya, C.; Ito, S.; Sunpapao, A. Trichoderma Spirale T76-1 Displays Biocontrol Activity against Leaf Spot on Lettuce (Lactuca sativa L.) Caused by Corynespora cassiicola or Curvularia aeria. Biol. Control 2019, 129, 195–200. [Google Scholar] [CrossRef]
- Madbouly, A.K.; Abo Elyousr, K.A.M.; Ismail, I.M. Biocontrol of Monilinia Fructigena, Causal Agent of Brown Rot of Apple Fruit, by Using Endophytic Yeasts. Biol. Control 2020, 144, 104239. [Google Scholar] [CrossRef]
- Spadaro, D.; Droby, S. Development of Biocontrol Products for Postharvest Diseases of Fruit: The Importance of Elucidating the Mechanisms of Action of Yeast Antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Contarino, R.; Brighina, S.; Fallico, B.; Cirvilleri, G.; Parafati, L.; Restuccia, C. Volatile Organic Compounds (VOCs) Produced by Biocontrol Yeasts. Food Microbiol. 2019, 82, 70–74. [Google Scholar] [CrossRef]
- Mitra, M.; Singh, R.; Ghissing, U.; Das, A.K.; Mitra, A.; Maiti, M.K. Characterization of an Alcohol Acetyltransferase GcAAT Responsible for the Production of Antifungal Volatile Esters in Endophytic Geotrichum Candidum PF005. Microbiol. Res. 2022, 260, 127021. [Google Scholar] [CrossRef]
- Ssemanda, J.N.; Reij, M.W.; van Middendorp, G.; Bouw, E.; van der Plaats, R.; Franz, E.; Muvunyi, C.M.; Bagabe, M.C.; Zwietering, M.H.; Joosten, H. Foodborne Pathogens and Their Risk Exposure Factors Associated with Farm Vegetables in Rwanda. Food Control 2018, 89, 86–96. [Google Scholar] [CrossRef]
- Schreuder, W.; du Plooy, W.; Erasmus, A.; Savage, C.; Basson, E.; Lennox, C.; Fourie, P.H. Postharvest Fungicide Treatments and Cold Storage Control Citrus Black Spot Infections. Crop Prot. 2018, 112, 332–342. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, J.; Tian, R.; Liu, Y. Microbial Volatile Organic Compounds: Antifungal Mechanisms, Applications, and Challenges. Front. Microbiol. 2022, 13, 922450. [Google Scholar] [CrossRef] [PubMed]
- Medina-Romero, Y.M.; Roque-Flores, G.; Macías-Rubalcava, M.L. Volatile Organic Compounds from Endophytic Fungi as Innovative Postharvest Control of Fusarium Oxysporum in Cherry Tomato Fruits. Appl. Microbiol. Biotechnol. 2017, 101, 8209–8222. [Google Scholar] [CrossRef] [PubMed]
- Alpha, C.J.; Campos, M.; Jacobs-Wagner, C.; Strobel, S.A. Mycofumigation by the Volatile Organic Compound-Producing Fungus Muscodor Albus Induces Bacterial Cell Death through DNA Damage. Appl. Environ. Microbiol. 2015, 81, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Phoka, N.; Suwannarach, N.; Lumyong, S.; Ito, S.; Matsui, K.; Arikit, S.; Sunpapao, A. Role of Volatiles from the Endophytic Fungus Trichoderma Asperelloides PSU-P1 in Biocontrol Potential and in Promoting the Plant Growth of Arabidopsis thaliana. J. Fungi 2020, 6, 341. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Behringer, G.; Hung, R.; Bennett, J. Effects of Fungal Volatile Organic Compounds on Arabidopsis thaliana Growth and Gene Expression. Fungal Ecol. 2019, 37, 1–9. [Google Scholar] [CrossRef]
- Sánchez-Fernández, R.E.; Diaz, D.; Duarte, G.; Lappe-Oliveras, P.; Sánchez, S.; Macías-Rubalcava, M.L. Antifungal Volatile Organic Compounds from the Endophyte Nodulisporium sp. Strain GS4d2II1a: A Qualitative Change in the Intraspecific and Interspecific Interactions with Pythium aphanidermatum. Microb. Ecol. 2016, 71, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ortiz, B.L.; Sánchez-Fernández, R.E.; Duarte, G.; Lappe-Oliveras, P.; Macías-Rubalcava, M.L. Antifungal, Anti-Oomycete and Phytotoxic Effects of Volatile Organic Compounds from the Endophytic Fungus Xylaria sp. Strain PB3f3 Isolated from Haematoxylon Brasiletto. J. Appl. Microbiol. 2016, 120, 1313–1325. [Google Scholar] [CrossRef]
- Mari, M.; Martini, C.; Spadoni, A.; Rouissi, W.; Bertolini, P. Biocontrol of Apple Postharvest Decay by Aureobasidium Pullulans. Postharvest Biol. Technol. 2012, 73, 56–62. [Google Scholar] [CrossRef]
- Suwannarach, N.; Kumla, J.; Bussaban, B.; Nuangmek, W.; Matsui, K.; Lumyong, S. Biofumigation with the Endophytic Fungus Nodulisporium Spp. CMU-UPE34 to Control Postharvest Decay of Citrus Fruit. Crop Prot. 2013, 45, 63–70. [Google Scholar] [CrossRef]
- Stolz, J.F. Gaia and Her Microbiome. FEMS Microbiol. Ecol. 2017, 93, fiw247. [Google Scholar] [CrossRef] [PubMed]
- Ulloa-Benítez, Á.; Medina-Romero, Y.M.; Sánchez-Fernández, R.E.; Lappe-Oliveras, P.; Roque-Flores, G.; Duarte Lisci, G.; Herrera Suárez, T.; Macías-Rubalcava, M.L. Phytotoxic and Antimicrobial Activity of Volatile and Semi-Volatile Organic Compounds from the Endophyte Hypoxylon Anthochroum Strain Blaci Isolated from Bursera Lancifolia (Burseraceae). J. Appl. Microbiol. 2016, 121, 380–400. [Google Scholar] [CrossRef] [PubMed]
- Brandhorst, T.T.; Klein, B.S. Uncertainty Surrounding the Mechanism and Safety of the Post-Harvest Fungicide Fludioxonil. Food Chem. Toxicol. 2019, 123, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Fallik, E.; Ilić, Z. The Influence of Physical Treatments on Phytochemical Changes in Fresh Produce after Storage and Marketing. Agronomy 2021, 11, 788. [Google Scholar] [CrossRef]
- Fenta, L.; Mekonnen, H.; Gashaw, T. Biocontrol Potential of Trichoderma and Yeast against Post Harvest Fruit Fungal Diseases: A Review. Int. J. Life Sci. 2020, 8, 15–28. [Google Scholar]
- Rathore, S.; Desai, P.M.; Liew, C.V.; Chan, L.W.; Heng, P.W.S. Microencapsulation of Microbial Cells. J. Food Eng. 2013, 116, 369–381. [Google Scholar] [CrossRef]
- Chen, L.; Gnanaraj, C.; Arulselvan, P.; El-Seedi, H.; Teng, H. A Review on Advanced Microencapsulation Technology to Enhance Bioavailability of Phenolic Compounds: Based on Its Activity in the Treatment of Type 2 Diabetes. Trends Food Sci. Technol. 2019, 85, 149–162. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, T.; Wang, G.; Cao, C.; Mu, W.; Li, B.; Dou, D.; Liu, F. Polyurea Microcapsule Encapsulation Improves the Contact Toxicity, Inhibition Time and Control Effect of Trans-2-Hexenal against Fusarium Graminearum. Ind. Crops Prod. 2023, 195, 116463. [Google Scholar] [CrossRef]
- Sharifi, R.; Ryu, C.-M. Biogenic Volatile Compounds for Plant Disease Diagnosis and Health Improvement. Plant Pathol. J. 2018, 34, 459–469. [Google Scholar] [CrossRef]
Endophytic Fungi | Endophytic Fungal Host Plants | Main VOCs | Pathogen | Pathogen Hosts | References |
---|---|---|---|---|---|
Aureobasidium pullulans (L1 and L8) | ‘Redhaven’ peaches (Prunus persica (L.) Batsch) | 2-phenethyl alcohol 1-butanol-3-methyl 1-butanol-2-methyl 1-propanol-2-methyl | Botrytis cinerea Colletotrichum acutatum Penicillium expansum Penicillium digitatum Penicillium italicum | ‘Golden Delicious’ apples (Malus domestica L. Borkh) ‘Navel’ oranges (Citrus sinensis L. Osbeck) | [53] |
Candida quercitrusa strain Cq-1 | Litchi (Litchi chinensis Sonn.) | 2-Phenylethanol | Phytophthora infestans | Potato (Solanum tuberosum L.) | [54] |
Candida nivariensis DMKU-CE18 | Leaves of rice (Oryza sativa L.), sugarcane (Saccharum officenarum L.) and corn (Zea mays L.) | 1-pentanol | Aspergillus flavus A39 | Corn grains (Zea mays L.) | [55] |
Daldinia cf. concentrica | Olive tree (Olea europaea L.) | Alcohols Dienes Ketones Aldehydes Sesquiterpenes | Molds Aspergillus niger | Wheat grains (Triticum aestivum L.) Peanuts (Arachis hypogaea L.) | [56] |
Fusarium solani-F4-1007 | Argel (Solenostemma arghel) | 3,4-dihydro-2H-1,5-(3″-t-butyl) benzodioxepine 4-(2-hydroxyethyl) phenol phenylethyl alcohol | Cochliobolus spicifer-CSN-20 | Okra (Abelmoschus esculentus) | [57] |
Geotrichum candidum PF005 | Eggplant (Solanum melongena) | Ethyl isovalerate | Rhizoctonia solani Curvularia oryzae | Rice (Oryza sativa L.) Wheat (Triticum aestivum L.) | [58] |
Hypoxylon anthochroum strains Blaeg1, Gseg1, Haeg2 and Smeg4 | Burseraceae (Bursera lancifolia) Fabaceae (Gliricidia sepium) Celastraceae (Hippocratea acapulcensis) Euphorbiaceae (Sapium macrocarpum) | Sesquiterpenes Monoterpenes(eucalyptol) | Fusarium oxysporum | Cherry tomatoes (Solanum lycopersicum var. cerasiforme) | [59] |
Hanseniaspora uvarum 793 | Figs (Ficus carica L.) | Acids (acetic acid and octanoic acid) Esters (ethyl propionate, n-Propyl acetate, Isobutyl acetate, 2-methylbutyl acetate, furfuryl acetate, phenylmethyl acetate, 2-phenylethyl acetate) | Botrytis cinerea | Strawberries (Fragaria × ananassa Duch.) Cherries (Prunus pseudocerasus Lindl.) | [60] |
Nodulisporium spp. CF016 | Lauraceae trees (Lauraceae Juss.) | 1-methyl-1,4-cyclo-hexadiene β-selinene α-selinene | Botrytis cinerea Penicillium expansum | Apple (Malus pumila Mill.) | [61] |
Phaeosphaeria nodorum | Plum (Prunus domestica) | Ethyl acetate 3-methyl-1-butanol Acetic acid 2-propyn-1-ol 2-propenenitrile | Monilinia fructicola | Plum (Prunus domestica) | [62] |
Sarocladium brachiariae HND5 | The coastal grass | 2-methoxy-4-vinylphenol 3,4-dimethoxystyrol Caryophyllene | Fusarium oxysporum f. sp. cubense (FOC) | Banana (Musa nana Lour.) | [63] |
Saccharomyces cerevisiae NJ-1 | Fig (Ficus carica L.) | 3-methyl-1-butanol | Aspergillus flavus | Walnuts (Juglans regia L.) | [64] |
Trichoderma virens | Crops | Sesquiterpenes (aromanderen, element, cadinene, and 2-Octanone) Monoterpene (limonene and bisnorhopane) Fatty acids (oleic acid, and monopalmtin) Caryophyllene Thojupsene | Rhizoctonia solani | Plants | [65] |
Trichoderma longibrachiatum T (SP)-20 | Groundnut (Arachis hypogaea L.) | Isolongifolan-7-ol Trans-sesquisabinene hydrate | Sclerotium rolfsii | Groundnut (Arachis hypogaea L.) | [66] |
Trichoderma koningiopsis YIM PH30002 | 2-year-old healthy Sanqi (Panax notoginseng) | Alkanes Monoterpenes Aromatic hydrocarbons Heterocyclic Aldehydes | Phoma herbarum Fusarium flocciferum Scytalidium lignicola Epicoccum nigrum | Sanqi (Panax notoginseng) | [67] |
Trichoderma afroharzianum strain MFLUCC19-0090 Trichoderma afroharzianum strain MFLUCC19-0091 | Schefflera leucantha leaves | Phenylethyl alcohol | Fusarium oxysporum Fusarium proliferatum | Chili (Capsicum annuum L.) | [68] |
Trichoderma longibrachiatum EF5 | Rice (Oryza sativa L.) | Longifolene Caryophyllene Butanol 2-methyl Cedrene Cuprenene | Sclerotium rolfsii Macrophomina phaseolina | Plants | [69] |
Trichoderma asperellum 6S-2 | Roots of healthy apple (Malus pumila Mill.) trees | 6-pentyl-2H-pyran-2-one | Fusarium proliferatum f. sp malus domestica MR5 | Apple (Malus pumila Mill.) | [70] |
Trichoderma atroviride IC-11 | Rhizosphere of citrus(Citrus reticulata Blanco) tree | 6-pentyl-α-pyrone | Botrytis cinerea | Blueberry (Vaccinium spp.) | [52] |
Trichoderma asperellum T1 | Lettuce (Lactuca sativa) | Thyl-1-hexanol 1-nonanol 6-pentyl-2H-pyran-2-one | Corynespora cassiicola Curvularia aeria | Lettuce (Lactuca sativa) | [71] |
Main VOCs | Endophytic Fungi | Pathogen | Endophytic Fungal Usage and Dosage | Mechanisms | References |
---|---|---|---|---|---|
2-Phenylethanol | Candida quercitrusa strain Cq-1 | Phytophthora infestans | 20 µL cell concentration of 1 × 103 CFU/mL | Inhibition of pathogen fungal mycelial development, blockage of the oxidative phosphorylation pathway | [54] |
Ethyl isovalerate | Geotrichum candidum PF005 | Curvularia oryzae Rhizoctonia solani | 200 μL, OD600 = 5 | Alteration of pathogen fungal mycelial morphology, influence on mycelial chitin distribution, and generation of oxidative stress | [58] |
Ethyl acetate 3-methyl-1-butanol Acetic acid 2-propyn-1-ol 2-propenenitrile | Phaeosphaeria nodorum | Monilinia fructicola | 5-mm-diameter plug of endophytic fungi | Reduced width of the pathogen fungal mycelial, causing disintegration of the mycelial content. | [62] |
2-methoxy-4-vinylphenol 3,4-dimethoxystyrol Caryophyllene | Sarocladium brachiariae HND5 | Fusarium oxysporum f. sp. | Plug of endophytic fungi | Induction of pathogenic fungal reactive oxygen species and chitinase gene accumulation and expression | [63] |
3-methyl-1-butanol | Saccharomyces cerevisiae NJ-1 | Aspergillus flavus | 20 µL cell concentration of 1 × 107 CFU/mL | Disruption of pathogen fungal cell membrane | [64] |
6-pentyl-2H-pyran-2-one | Trichoderma asperellum 6S-2 | Fusarium proliferatum f. sp malus domestica MR5 | Plug of endophytic fungi | Destroys hyphae morphology and spore shape | [70] |
Thyl-1-hexanol 1-nonanol 6-pentyl-2H-pyran-2-one | Trichoderma asperellum T1 | Corynespora cassiicola Curvularia aeria | 5-mm-diameter plug of endophytic fungi | Enhanced accumulation of cell wall degrading enzymes in lettuce | [71] |
2-methyl-1-butanol 2-pentylfuran Acetic acid 6-pentyl-2H-pyran-2-one | Trichoderma asperelloides PSU-P1 | Colletotrichum sp. Corynespora cassiicola Curvularia lunata Ganoderma sp. Macrophomina phaseolina Neopestalotiopsis clavispora Penicillium oxalicum Sclerotium rolfsii Stagonosporosis cucurbitacearm | 5-mm-diameter plug of endophytic fungi | Antagonism of fungal pathogens, activation of plant defense responses, and promotion of plant growth | [88] |
Longifolene Caryophyllene Butanol 2-methyl Cedrene Cuprenene | Trichoderma longibrachiatum EF5 | Sclerotium rolfsii | 8-mm-diameter plug of endophytic fungi | Alteration of mycelial structure | [69] |
Sesquiterpenes (aromanderen, element, cadinene, and 2-Octanone) Monoterpene (limonene and bisnorhopane) Fatty acids (oleic acid, and monopalmtin) Caryophyllene Thojupsene | Trichoderma virens | Rhizoctoniasolani | 5-mm-diameter plug of endophytic fungi | Destruction of pathogenic fungal hyphae morphology | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, L.; Feng, L.; Li, Y.; Yue, R.; Wang, Y.; Zhou, Y. Endophytic Fungi Volatile Organic Compounds as Crucial Biocontrol Agents Used for Controlling Fruit and Vegetable Postharvest Diseases. J. Fungi 2024, 10, 332. https://doi.org/10.3390/jof10050332
Ling L, Feng L, Li Y, Yue R, Wang Y, Zhou Y. Endophytic Fungi Volatile Organic Compounds as Crucial Biocontrol Agents Used for Controlling Fruit and Vegetable Postharvest Diseases. Journal of Fungi. 2024; 10(5):332. https://doi.org/10.3390/jof10050332
Chicago/Turabian StyleLing, Lijun, Lijun Feng, Yao Li, Rui Yue, Yuanyuan Wang, and Yongpeng Zhou. 2024. "Endophytic Fungi Volatile Organic Compounds as Crucial Biocontrol Agents Used for Controlling Fruit and Vegetable Postharvest Diseases" Journal of Fungi 10, no. 5: 332. https://doi.org/10.3390/jof10050332
APA StyleLing, L., Feng, L., Li, Y., Yue, R., Wang, Y., & Zhou, Y. (2024). Endophytic Fungi Volatile Organic Compounds as Crucial Biocontrol Agents Used for Controlling Fruit and Vegetable Postharvest Diseases. Journal of Fungi, 10(5), 332. https://doi.org/10.3390/jof10050332