Inhibitory Effect and Mechanism of Carvacrol against Black Mold Disease Agent Alternaria alternata in Goji Berries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Strains, and Fruit
2.2. Antifungal Activity
2.2.1. Mycelial Growth Assays
2.2.2. Monitoring Spore Germination and Germ Tube Length
2.3. Ultrastructural Observation
2.4. Determination of Membrane Integrity
2.5. Cytoplasmic Leakage Assays
2.6. Observation of ROS
2.7. Determination of Oxidation Resistance
2.8. Mycotoxin Extraction and HPLC-MS Analysis
2.9. Transcriptomic Analysis
2.9.1. Total RNA Isolation, cDNA Library Construction, and Sequencing
2.9.2. Data Analysis, DEGs Screening, and Bioinformatics Analysis
2.9.3. Gene Expression Using Real-Time RT-PCR Analysis
2.10. Effect of CVR on A. alternata in Goji Berry
2.11. Statistical Analysis
3. Results
3.1. CVR Inhibits the Colony Growth, Spore Germination, and Germ Tube Length of A. alternata
3.2. Morphological and Ultrastructural Alterations of A. alternata
3.3. Alterations to the Cell Membrane Integrity of A. alternata following CVR Treatment
3.4. Damages of the Permeability of Plasma Membrane of A. alternata after CVR Treatment
3.5. Distribution of Endogenous ROS in A. alternata Mycelia after CVR Treatment
3.6. Disarrangement of Redox Homeostasis of A. alternata after CVR Treatment
3.7. Repression of Mycotoxins Produced by A. alternata following CVR Treatment
3.8. Global Analysis of Transcriptomic Profile
3.9. Functional Annotation of DEGs
3.10. Analysis of DEGs
3.11. qRT-PCR Analyses of Selected DEGs
3.12. Inhibition of the Lesion Development of Black Mold in Goji Berry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alam, M.W.; Rehman, A.; Malik, A.U.; Ali, S.; Khan, S.M. First report of Alternaria alternata causing postharvest fruit rot of jujube in Pakistan. Plant Dis. 2017, 102, 452–453. [Google Scholar] [CrossRef]
- Ghuffar, S.; Irshad, G.; Shahid, M.; Naz, F. First report of Alternaria alternata causing fruit rot of grapes in Pakistan. Plant Dis. 2018, 102, 1659. [Google Scholar] [CrossRef]
- Youssuf, G.; Hussein, M.A.; Runge, F.; Spring, O. Molecular characterization of Alternaria alternata population isolated from Upper Egyptian tomato fruits. J. Phytopathol. 2018, 166, 709–721. [Google Scholar] [CrossRef]
- Alam, M.W.; Rehman, A.; Malik, A.U.; Aslam, S. First report of Alternaria alternata causing postharvest fruit rot of peach in Pakistan. J. Plant Pathol. 2018, 101, 209. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.; Zhou, J.; Cai, G.L. Alternaria alternata causing postharvest fruit rot of Mangifera indica in China. Plant Dis. 2019, 103, 2683–2684. [Google Scholar] [CrossRef]
- Ahmad, T.; Yang, L.; Huang, S.J.; Moosa, A. First record of Alternaria alternata causing postharvest fruit rot of sweet cherry (Prunus avium) in China. Plant Dis. 2020, 104, 2030. [Google Scholar] [CrossRef]
- Zhao, L.N.K.; Wang, J.J.; Zhang, H.Y.; Wang, P.; Wang, C.; Zhou, Y.L.; Li, H.H.; Yu, S.K.; Wu, R.N. Inhibitory effect of carvacrol against Alternaria alternata causing goji fruit rot by disrupting the integrity and composition of cell wall. Front. Microbiol. 2023, 14, 1139749. [Google Scholar] [CrossRef] [PubMed]
- Sanzani, S.M.; Reverberi, M.; Geisen, R. Mycotoxins in harvested fruits and vegetables: Insights in producing fungi, biological role, conducive conditions, and tools to manage postharvest contamination. Postharvest Biol. Technol. 2016, 122, 95–105. [Google Scholar] [CrossRef]
- Estiarte, N.; Lawrence, C.B.; Sanchis, V.; Ramos, A.J.; Crespo-Sempere, A. LaeA and VeA are involved in growth morphology, asexual development, and mycotoxin production in Alternaria alternata. Int. J. Food Microbiol. 2016, 238, 153–164. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, N.; Wang, Y.; Jiang, D.M.; Feng, X.Y. Characterization of phenolic compounds from early and late ripening sweet cherries and their antioxidant and antifungal activities. J. Agric. Food Chem. 2017, 65, 5413–5420. [Google Scholar] [CrossRef]
- Thomidis, T.; Michailides, T.; Exadaktylou, E. Contribution of pathogens to peach fruit rot in northern Greece and their sensitivity to iprodione, carbendazim, thiophanate-methyl and tebuconazole fungicides. J. Phytopathol. 2009, 157, 194–200. [Google Scholar] [CrossRef]
- Nallathambi, P.; Umamaheswari, C.; Thakore, B.B.L.; More, T.A. Post-harvest management of ber (Ziziphus mauritiana Lamk) fruit rot (Alternaria alternata Fr. Keissler) using Trichoderma species, fungicides and their combinations. Crop Prot. 2009, 28, 525–532. [Google Scholar] [CrossRef]
- Yuan, S.Z.; Li, W.S.; Li, Q.Q.; Wang, L.M.; Cao, J.K.; Jiang, W.B. Defense responses, induced by p-Coumaric acid and methyl p-Coumarate, of jujube (Ziziphus jujuba mill.) fruit against black spot rot caused by Alternaria alternata. J. Agric. Food Chem. 2019, 67, 2801–2810. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef] [PubMed]
- Holley, R.A.; Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 2005, 22, 273–292. [Google Scholar] [CrossRef]
- Hu, W.; Li, C.Z.; Dai, J.M.; Cui, H.Y. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Ind. Crop. Prod. 2019, 130, 34–41. [Google Scholar] [CrossRef]
- Liu, F.; Jin, P.P.; Sun, Z.L.; Du, L.H.; Wang, D.Y.; Zhao, T.; Doyle, M.P. Carvacrol oil inhibits biofilm formation and exopolysaccharide production of Enterobacter cloacae. Food Control 2021, 119, 107473. [Google Scholar] [CrossRef]
- Prakash, B.; Kedia, A.; Mishra, P.K.; Dubey, N.K. Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities—Potentials and challenges. Food Control 2015, 47, 381–391. [Google Scholar] [CrossRef]
- Abbaszadeh, S.; Sharifzadeh, A.; Shokri, H.; Khosravi, A.R.; Abbaszadeh, A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J. Mycol. Med. 2014, 24, e51–e56. [Google Scholar] [CrossRef]
- Wang, L.Q.; Jiang, N.; Wang, D.; Wang, M. Effects of essential oil citral on the growth, mycotoxin biosynthesis and transcriptomic profile of Alternaria alternata. Toxins 2019, 11, 553. [Google Scholar] [CrossRef]
- Wang, L.Q.; Wang, D.; Yuan, S.Z.; Feng, X.Y. Transcriptomic insights into the antifungal effects of magnolol on the growth and mycotoxin production of Alternaria alternata. Toxins 2020, 12, 665. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.; Zhao, H.D.; Jiao, W.X.; Liu, B.D.; Cao, J.K.; Jiang, W.B. Antifungal efficacy of ursolic acid in control of Alternaria alternata causing black spot rot on apple fruit and possible mechanisms involved. Sci. Hortic. 2019, 256, 108636. [Google Scholar] [CrossRef]
- Li, W.S.; Yuan, S.Z.; Sun, J.; Li, Q.Q.; Jiang, W.B.; Cao, J.K. Ethyl p-coumarate exerts antifungal activity in vitro and in vivo against fruit Alternaria alternata via membrane-targeted mechanism. Int. J. Food Microbiol. 2018, 278, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Baser, K.H.C. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharm. Des. 2008, 14, 3106–3119. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Varoni, E.; Iriti, M.; Martorell, M.; Setzer, W.N.; Contreras, M.M.; Salehi, B.; Soltani, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and human health: A comprehensive review. Phytother. Res. 2018, 32, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.P.; Liu, R.L.; Gao, H.Y.; Chen, H.J.; Wu, W.J.; Fang, X.J.; Han, Y.C. Inhibitory effect and possible mechanism of carvacrol against Colletotrichum fructicola. Postharvest Biol. Technol. 2020, 163, 111126. [Google Scholar] [CrossRef]
- Pérez-Alfonso, C.O.; Martínez-Romero, D.; Zapata, P.J.; Serrano, M.; Valero, D.; Castillo, S. The effects of essential oils carvacrol and thymol on growth of Penicillium digitatum and P. italicum involved in lemon decay. Int. J. Food Microbiol. 2012, 158, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Feng, K.W.; Yang, H.H.; Zhang, Z.W.; Yuan, Y.H.; Yue, T.L. Effect of cinnamaldehyde and citral combination on transcriptional profile, growth, oxidative damage and patulin biosynthesis of Penicillium expansum. Front. Microbiol. 2018, 9, 597. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.B.; Shao, X.F.; Wei, Y.Y.; Dai, K.; Xu, J.Y.; Xu, F.; Wang, H.F. Transcriptome analysis of botrytis cinerea in response to tea tree oil and its two characteristic components. Appl. Microbiol. Biotechnol. 2020, 104, 2163–2178. [Google Scholar] [CrossRef]
- Zhao, L.N.K.; Wang, J.J.; Zhang, H.Y.; Zhou, Y.L.; Wang, C.; Wang, P.; Wei, Z.J.; Li, H.H.; Ding, Y. Integration analysis of transcriptomics and proteomics reveals the inhibitory effect of carvacrol on Alternaria alternata by interfering with carbohydrate metabolism. Postharvest Biol. Technol. 2024, 213, 112928. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.C.; Bi, Y.; Wang, T.L.; Dong, Y.P.; Yang, Q.; Zhang, T.T. 2-Phenylethyl isothiocyanate exerts antifungal activity against Alternaria alternata by affecting membrane integrity and mycotoxin production. Toxins 2020, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- OuYang, Q.L.; Duan, X.F.; Li, L.; Tao, N.G. Cinnamaldehyde exerts its antifungal activity by disrupting the cell wall integrity of Geotrichum citri-aurantii. Front. Microbiol. 2019, 10, 55. [Google Scholar] [CrossRef]
- OuYang, Q.L.; Tao, N.G.; Zhang, M.L. A damaged oxidative phosphorylation mechanism is involved in the antifungal activity of citral against Penicillium digitatum. Front. Microbiol. 2018, 9, 239. [Google Scholar] [CrossRef]
- Wang, T.L.; Li, Y.C.; Bi, Y.; Zhang, M.; Zhang, T.T.; Zheng, X.Y.; Dong, Y.P.; Huang, Y. Benzyl isothiocyanate fumigation inhibits growth, membrane integrity and mycotoxin production in Alternaria alternata. RSC Adv. 2020, 10, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.X.; Sun, J.; Zhang, Y.; Zhang, M.; Liu, X.; Yang, L.F.; Yin, Y.J. Dehydrocostus lactone inhibits Candida albicans growth and biofilm formation. AMB Express 2023, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, D.; Bautista-Baños, S. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Prot. 2014, 64, 27–37. [Google Scholar] [CrossRef]
- Khetabi, A.E.; Lahlali, R.; Ezrari, S.; Radouane, N.; Lyousfi, N.; Banani, H.; Askarne, L.; Tahiri, A.; Ghadraoui, L.E.; Belmalha, S.; et al. Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: A review. Trends Food Sci. Technol. 2022, 120, 27–37. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, Z.; Li, M.; Xing, M.; Xian, T.; Tu, K. Carvacrol and eugenol effectively inhibit Rhizopus stolonifer and control postharvest soft rot decay in peaches. J. Appl. Microbiol. 2018, 124, 166–178. [Google Scholar] [CrossRef]
- Ostry, V. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J. 2008, 1, 175–188. [Google Scholar] [CrossRef]
- Logrieco, A.; Moretti, A.; Solfrizzo, M. Alternaria toxins and plant diseases: An overview of origin, occurrence and risks. World Mycotoxin J. 2009, 2, 129–140. [Google Scholar] [CrossRef]
- Xu, L.C.; Tao, N.G.; Yang, W.H.; Jing, G.X. Cinnamaldehyde damaged the cell membrane of Alternaria alternata and induced the degradation of mycotoxins in vivo. Ind. Crop. Prod. 2018, 112, 427–433. [Google Scholar] [CrossRef]
- Pani, G.; Scherm, B.; Azara, E.; Balmas, V.; Jahanshiri, Z.; Carta, P.; Fabbri, D.; Dettori, M.A.; Fadda, A.; Dessì, A.; et al. Natural and natural-like phenolic inhibitors of type b trichothecene in vitro production by the wheat (Triticum sp.) pathogen Fusarium culmorum. J. Agric. Food Chem. 2014, 62, 4969–4978. [Google Scholar] [CrossRef] [PubMed]
- Atanasova-Penichon, V.; Barreau, C.; Richard-Forget, F. Antioxidant secondary metabolites in cereals: Potential involvement in resistance to fusarium and mycotoxin accumulation. Front. Microbiol. 2016, 7, 566. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, J.D.; O’Keeffe, T.L.; Mahoney, N.E. Inhibition of ochratoxin a production and growth of Aspergillus species by phenolic antioxidant compounds. Mycopathologia 2007, 164, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.X.; Zhi, Q.Q.; Li, J.Y.; Keller, N.; He, Z.M. The antioxidant gallic acid inhibits aflatoxin formation in Aspergillus flavus by modulating transcription factors farb and crea. Toxins 2018, 10, 270. [Google Scholar] [CrossRef]
- Wenderoth, M.; Garganese, F.; Schmidt-Heydt, M.; Soukup, S.T.; Ippolito, A.; Sanzani, S.M.; Fischer, R. Alternariol as virulence and colonization factor of Alternaria alternata during plant infection. Mol. Microbiol. 2019, 112, 131–146. [Google Scholar] [CrossRef]
- Brzonkalik, K.; Herrling, T.; Syldatk, C.; Neumann, A. The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata. Int. J. Food Microbiol. 2011, 147, 120–126. [Google Scholar] [CrossRef]
- Akhtar, N.; Karabika, E.; Kinghorn, J.R.; Glass, A.; Rouch, D.A. High-affinity nitrate/nitrite transporters NrtA and NrtB of Aspergillus nidulans exhibit high specificity and different inhibitor sensitivity. Microbiology 2015, 161, 1435. [Google Scholar] [CrossRef]
- Han, X.Y.; Qiu, M.G.; Wang, B.; Yin, W.B.; Nie, X.Y.; Qin, Q.P.; Ren, S.L.; Yang, K.L.; Zhang, F.; Zhuang, Z.H.; et al. Functional analysis of the nitrogen metabolite repression regulator gene nmrA in Aspergillus flavus. Front. Microbiol. 2016, 7, 1794. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Chi, Z.; Liu, G.L.; Hu, Z.; Zhao, S.Z.; Chi, Z.M. Melanin biosynthesis in the desert-derived Aureobasidium melanogenum XJ5-1 is controlled mainly by the CWI signal pathway via a transcriptional activator Cmr1. Curr. Genet. 2019, 66, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Pfannmüller, A.; Boysen, J.M.; Tudzynski, B. Nitrate assimilation in Fusarium Fujikuroi is controlled by multiple levels of regulation. Front. Microbiol. 2017, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Peña, J.M.; García, R.; Nombela, C.; Arroyo, J. The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: A yeast dialogue between mapk routes. Yeast 2010, 27, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz Cabral, L.; Delgado, J.; Patriarca, A.; Rodríguez, A. Differential response to synthetic and natural antifungals by Alternaria tenuissima in wheat simulating media: Growth, mycotoxin production and expression of a gene related to cell wall integrity. Int. J. Food Microbiol. 2019, 292, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Shang, B.; Wang, L.; Lu, Z.; Liu, Y. Cinnamaldehyde inhibits fungal growth and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus. Appl. Microbiol. Biotechnol. 2016, 100, 1355–1364. [Google Scholar] [CrossRef]
- Kumar, K.N.; Venkataramana, M.; Allen, J.A.; Chandranayaka, S.; Murali, H.S.; Batra, H.V. Role of Curcuma longa L. essential oil in controlling the growth and zearalenone production of Fusarium graminearum. LWT-Food Sci. Technol. 2016, 69, 522–528. [Google Scholar] [CrossRef]
- Montibus, M.; Pinson-Gadais, L.; Richard-Forget, F.; Barreau, C.; Ponts, N. Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Crit. Rev. Microbiol. 2015, 41, 295–308. [Google Scholar] [CrossRef]
- Marschall, R.; Tudzynski, P. Reactive oxygen species in development and infection processes. Semin. Cell Dev. Biol. 2016, 57, 138–146. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhou, Y.; Wang, P.; Zhao, L.; Zhang, H.; Qu, H.; Xu, F. Inhibitory Effect and Mechanism of Carvacrol against Black Mold Disease Agent Alternaria alternata in Goji Berries. J. Fungi 2024, 10, 402. https://doi.org/10.3390/jof10060402
Wang J, Zhou Y, Wang P, Zhao L, Zhang H, Qu H, Xu F. Inhibitory Effect and Mechanism of Carvacrol against Black Mold Disease Agent Alternaria alternata in Goji Berries. Journal of Fungi. 2024; 10(6):402. https://doi.org/10.3390/jof10060402
Chicago/Turabian StyleWang, Junjie, Yueli Zhou, Peng Wang, Lunaike Zhao, Huaiyu Zhang, Huan Qu, and Fei Xu. 2024. "Inhibitory Effect and Mechanism of Carvacrol against Black Mold Disease Agent Alternaria alternata in Goji Berries" Journal of Fungi 10, no. 6: 402. https://doi.org/10.3390/jof10060402
APA StyleWang, J., Zhou, Y., Wang, P., Zhao, L., Zhang, H., Qu, H., & Xu, F. (2024). Inhibitory Effect and Mechanism of Carvacrol against Black Mold Disease Agent Alternaria alternata in Goji Berries. Journal of Fungi, 10(6), 402. https://doi.org/10.3390/jof10060402