Metabolic Engineering of Saccharomyces cerevisiae for Production of Canthaxanthin, Zeaxanthin, and Astaxanthin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strain, Media, and Transformation
2.2. Plasmid Construction
2.3. Strain Construction
2.4. Small Scale Fermentation
2.5. Quantitative Analysis of Carotenoids and Other Metabolites
2.6. Bioprocess Development at the 5 L Scale
3. Results and Discussion
3.1. Optimizing Carotenoid Biosynthesis: Screening of CrtW and CrtZ Enzymatic Variants in S. cerevisiae
3.2. Enhanced Carotenoid Production through Enzyme Fusion
3.3. Construction of Astaxanthin-Producing Yeast Strain
3.4. Compartmentalizing Astaxanthin Biosynthesis: Targeting Organelles
3.5. Integration of Carotenoid Biosynthetic Genes into Yeast Genome
3.6. GAL80 Deletion and Its Impact on Carotenoid Production
3.7. Bioprocess Development for Canthaxanthin Production Using Sucrose
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ko, Y.S.; Kim, J.W.; Lee, J.A.; Han, T.; Kim, G.B.; Park, J.E.; Lee, S.Y. Tools and Strategies of Systems Metabolic Engineering for the Development of Microbial Cell Factories for Chemical Production. Chem. Soc. Rev. 2020, 49, 4615–4636. [Google Scholar] [CrossRef]
- Watcharawipas, A.; Runguphan, W. Red Yeasts and Their Carotenogenic Enzymes for Microbial Carotenoid Production. FEMS Yeast Res. 2023, 23, foac063. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Jiang, H.; Mao, X. Biotechnology Advances in β-Carotene Production by Microorganisms. Trends Food Sci. Technol. 2021, 111, 322–332. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, S.; Shao, X.; Park, J.; Bin; Jeong, S.H.; Park, H.J.; Kwak, W.J.; Wei, G.; Kim, S.W. Challenges and Tackles in Metabolic Engineering for Microbial Production of Carotenoids. Microb. Cell Fact. 2019, 18, 55. [Google Scholar] [CrossRef] [PubMed]
- Stahl, W.; Sies, H. Bioactivity and Protective Effects of Natural Carotenoids. Biochim. Acta BBA Mol. Basis Dis. 2005, 1740, 101–107. [Google Scholar] [CrossRef]
- Joshi, K.; Kumar, P.; Kataria, R. Microbial Carotenoid Production and Their Potential Applications as Antioxidants: A Current Update. Process Biochem. 2023, 128, 190–205. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Winterburn, J.; Santos-Ebinuma, V.C.; Pereira, J.F.B. Production and Extraction of Carotenoids Produced by Microorganisms. Appl. Microbiol. Biotechnol. 2019, 103, 1095–1114. [Google Scholar] [CrossRef] [PubMed]
- Rabeharindranto, H.; Castaño-Cerezo, S.; Lautier, T.; Garcia-Alles, L.F.; Treitz, C.; Tholey, A.; Truan, G. Enzyme-Fusion Strategies for Redirecting and Improving Carotenoid Synthesis in S. cerevisiae. Metab. Eng. Commun. 2019, 8, e00086. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; DeLoache, W.C.; Dueber, J.E. Spatial Organization of Enzymes for Metabolic Engineering. Metab. Eng. 2012, 14, 242–251. [Google Scholar] [CrossRef]
- Watcharawipas, A.; Sansatchanon, K.; Phithakrotchanakoon, C.; Tanapongpipat, S.; Runguphan, W.; Kocharin, K. Novel Carotenogenic Gene Combinations from Red Yeasts Enhanced Lycopene and Beta-Carotene Production in Saccharomyces Cerevisiae from the Low-Cost Substrate Sucrose. FEMS Yeast Res. 2021, 21, foab062. [Google Scholar] [CrossRef]
- Promdonkoy, P.; Sornlek, W.; Preechakul, T.; Tanapongpipat, S.; Runguphan, W. Metabolic Engineering of Saccharomyces cerevisiae for Production of Fragrant Terpenoids from Agarwood and Sandalwood. Fermentation 2022, 8, 429. [Google Scholar] [CrossRef]
- Froger, A.; Hall, J.E. Transformation of Plasmid DNA into E. Coli Using the Heat Shock Method. J. Vis. Exp. 2007, 6, e253. [Google Scholar] [CrossRef] [PubMed]
- Gietz, R.D.; Schiestl, R.H. Frozen Competent Yeast Cells That Can Be Transformed with High Efficiency Using the LiAc/SS Carrier DNA/PEG Method. Nat. Protoc. 2007, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Gueldener, U.; Heinisch, J.; Koehler, G.J.; Voss, D.; Hegemann, J.H. A Second Set of LoxP Marker Cassettes for Cre-Mediated Multiple Gene Knockouts in Budding Yeast. Nucleic Acids Res. 2002, 30, e23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Z.; Sun, J.; Xue, C.; Mao, X. Biotechnological Production of Zeaxanthin by Microorganisms. Trends Food Sci. Technol. 2018, 71, 225–234. [Google Scholar] [CrossRef]
- Rebelo, B.A.; Farrona, S.; Rita Ventura, M.; Abranches, R. Canthaxanthin, a Red-Hot Carotenoid: Applications, Synthesis, and Biosynthetic Evolution. Plants 2020, 9, 1039. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Wang, Y.; Yao, M.; Gu, X.; Li, B.; Liu, H.; Ding, M.; Xiao, W.; Yuan, Y. Astaxanthin Overproduction in Yeast by Strain Engineering and New Gene Target Uncovering. Biotechnol. Biofuels 2018, 11, 230. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.; Enfissi, E.M.A.; Welsch, R.; Beyer, P.; Zurbriggen, M.D.; Fraser, P.D. Construction of a Fusion Enzyme for Astaxanthin Formation and Its Characterisation in Microbial and Plant Hosts: A New Tool for Engineering Ketocarotenoids. Metab. Eng. 2019, 52, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Y.; Nielsen, J.; Liu, Z. Production of β-Carotene in Saccharomyces cerevisiae through Altering Yeast Lipid Metabolism. Biotechnol. Bioeng. 2021, 118, 2043–2052. [Google Scholar] [CrossRef] [PubMed]
- Sornlek, W.; Sonthirod, C.; Tangphatsornruang, S.; Ingsriswang, S.; Runguphan, W.; Eurwilaichtr, L.; Champreda, V.; Tanapongpipat, S.; Schaap, P.J.; Martins dos Santos, V.A.P. Genes Controlling Hydrolysate Toxin Tolerance Identified by QTL Analysis of the Natural Saccharomyces cerevisiae BCC39850. Appl. Microbiol. Biotechnol. 2024, 108, 21. [Google Scholar] [CrossRef]
- Conrado, R.J.; Varner, J.D.; DeLisa, M.P. Engineering the Spatial Organization of Metabolic Enzymes: Mimicking Nature’s Synergy. Curr. Opin. Biotechnol. 2008, 19, 492–499. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, Y.J.; Bao, J.; Huang, L.; Nielsen, J.; Krivoruchko, A. Metabolic Engineering of Saccharomyces cerevisiae for Production of Germacrene A, a Precursor of Beta-Elemene. J. Ind. Microbiol. Biotechnol. 2017, 44, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Hammer, S.K.; Avalos, J.L. Harnessing Yeast Organelles for Metabolic Engineering. Nat. Chem. Biol. 2017, 13, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Su, Y.; Yang, W.; Zhang, H.; Wang, J.; Gao, W. Enhanced Precision and Efficiency in Metabolic Regulation: Compartmentalized Metabolic Engineering. Bioresour. Technol. 2024, 402, 130786. [Google Scholar] [CrossRef]
- Ma, Y.; Li, J.; Huang, S.; Stephanopoulos, G. Targeting Pathway Expression to Subcellular Organelles Improves Astaxanthin Synthesis in Yarrowia lipolytica. Metab. Eng. 2021, 68, 152–161. [Google Scholar] [CrossRef]
- Wolins, N.E.; Donaldson, R.P. Binding of the Peroxisomal Targeting Sequence SKL Is Specified by a Low-Affinity Site in Castor Bean Glyoxysomal Membranes (A Domain Next to the SKL Binds to a High-Affinity Site). Plant Physiol. 1997, 113, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Mei, M.; Zhai, C.; Li, X.; Zhou, Y.; Peng, W.; Ma, L.; Wang, Q.; Iverson, B.L.; Zhang, G.; Yi, L. Characterization of Aromatic Residue-Controlled Protein Retention in the Endoplasmic Reticulum of Saccharomyces cerevisiae. J. Biol. Chem. 2017, 292, 20707–20719. [Google Scholar] [CrossRef]
- Ting, J.T.L.; Balsamo, R.A.; Ratnayake, C.; Huang, A.H.C. Oleosin of Plant Seed Oil Bodies Is Correctly Targeted to the Lipid Bodies in Transformed Yeast. J. Biol. Chem. 1997, 272, 3699–3706. [Google Scholar] [CrossRef]
- Da Silva, N.A.; Srikrishnan, S. Introduction and Expression of Genes for Metabolic Engineering Applications in Saccharomyces cerevisiae. FEMS Yeast Res. 2012, 12, 197–214. [Google Scholar] [CrossRef]
- Reider Apel, A.; d’Espaux, L.; Wehrs, M.; Sachs, D.; Li, R.A.; Tong, G.J.; Garber, M.; Nnadi, O.; Zhuang, W.; Hillson, N.J.; et al. A Cas9-Based Toolkit to Program Gene Expression in Saccharomyces cerevisiae. Nucleic Acids Res. 2017, 45, 496–508. [Google Scholar] [CrossRef]
- Zhou, P.; Li, M.; Shen, B.; Yao, Z.; Bian, Q.; Ye, L.; Yu, H. Directed Coevolution of β-Carotene Ketolase and Hydroxylase and Its Application in Temperature-Regulated Biosynthesis of Astaxanthin. J. Agric. Food Chem. 2019, 67, 1072–1080. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Yang, Z.; Wang, Y.; Yao, M.; Chen, Y.; Xiao, W.; Yuan, Y. Enhanced Astaxanthin Production in Yeast via Combined Mutagenesis and Evolution. Biochem. Eng. J. 2020, 156, 107519. [Google Scholar] [CrossRef]
- Kim, M.J.; Sung, B.H.; Park, H.J.; Sohn, J.H.; Bae, J.H. A New Platform Host for Strong Expression under GAL Promoters without Inducer in Saccharomyces cerevisiae. Biotechnol. Rep. 2022, 36, e00763. [Google Scholar] [CrossRef] [PubMed]
- Timson, D.J.; Ross, H.C.; Reece, R.J. Gal3p and Gal1p Interact with the Transcriptional Repressor Gal80p to Form a Complex of 1: 1 Stoichiometry. Biochem. J. 2002, 363, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Weinhandl, K.; Winkler, M.; Glieder, A.; Camattari, A. Carbon Source Dependent Promoters in Yeasts. Microb. Cell Fact. 2014, 13, 5. [Google Scholar] [CrossRef]
- Ostergaard, S.; Olsson, L.; Johnston, M.; Nielsen, J. Increasing Galactose Consumption by Saccharomyces cerevisiae through Metabolic Engineering of the GAL Gene Regulatory Network. Nat. Biotechnol. 2000, 18, 1283–1286. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.K.; Siew, W.L.; Zhao, J.; Tay, Y.C.; Ang, E.; Lehming, N. Galactose Induction of the GAL1 Gene Requires Conditional Degradation of the Mig2 Repressor. Biochem. J. 2011, 435, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, M.; Ye, L.; Yu, H. Construction of Canthaxanthin-Producing Yeast by Combining Spatiotemporal Regulation and Pleiotropic Drug Resistance Engineering. ACS Synth. Biol. 2022, 11, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.K.; Zhang, T.L.; Sun, M.Z.; Yu, H.W.; Ye, L.D. Transcription Factor Pdr3p Promotes Carotenoid Biosynthesis by Activating GAL Promoters in Saccharomyces cerevisiae. ACS Synth. Biol. 2024, 13, 590–597. [Google Scholar] [CrossRef]
Name | Source | Mutant/Wild-Type | GenBank Accession No. |
---|---|---|---|
PspCrtW_Smut | Paracoccus sp. N81106 | L175W | AB206672 |
BrevCrtW | Brevundimonas vesicularis | Wild-type | DQ309446.1 |
BradCrtW | Bradyrhizobium sp. ORS278 | Wild-type | AF218415.1 |
HpBkt_Tmut | Haematococcus pluvialis | H165R/V264D/F298Y | KP866870.1 |
AspCrtW | Alcaligenes sp. PC-1 | Wild-type | D58422.1 |
SspCrtW_Dmut | Sphingomonas sp. DC18 | R203W/F213L | DQ400932.1 |
HpCrtZ | Haematococcus pluvialis | Wild-type | KP866868 |
AaCrtZ | Agrobacterium aurantiacum | Wild-type | GM621472.1 |
AspCrtZ | Alcaligenes sp. PC-1 | Wild-type | D58422.1 |
PaCrtZ | Pantoea ananatis | Wild-type | D90087 |
BrevCrtZ | Brevundimonas sp. SD212 | Wild-type | AB181388.1 |
PmCrtZ | Paracoccus marcussii | Wild-type | MT175370.1 |
PspCrtZ | Paracoccus sp. N81106 | Wild-type | AB206672 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Promdonkoy, P.; Watcharawipas, A.; Bubphasawan, S.; Sansatchanon, K.; Suwanakitti, N.; Kocharin, K.; Runguphan, W. Metabolic Engineering of Saccharomyces cerevisiae for Production of Canthaxanthin, Zeaxanthin, and Astaxanthin. J. Fungi 2024, 10, 433. https://doi.org/10.3390/jof10060433
Promdonkoy P, Watcharawipas A, Bubphasawan S, Sansatchanon K, Suwanakitti N, Kocharin K, Runguphan W. Metabolic Engineering of Saccharomyces cerevisiae for Production of Canthaxanthin, Zeaxanthin, and Astaxanthin. Journal of Fungi. 2024; 10(6):433. https://doi.org/10.3390/jof10060433
Chicago/Turabian StylePromdonkoy, Peerada, Akaraphol Watcharawipas, Suriyaporn Bubphasawan, Kitisak Sansatchanon, Nattida Suwanakitti, Kanokarn Kocharin, and Weerawat Runguphan. 2024. "Metabolic Engineering of Saccharomyces cerevisiae for Production of Canthaxanthin, Zeaxanthin, and Astaxanthin" Journal of Fungi 10, no. 6: 433. https://doi.org/10.3390/jof10060433
APA StylePromdonkoy, P., Watcharawipas, A., Bubphasawan, S., Sansatchanon, K., Suwanakitti, N., Kocharin, K., & Runguphan, W. (2024). Metabolic Engineering of Saccharomyces cerevisiae for Production of Canthaxanthin, Zeaxanthin, and Astaxanthin. Journal of Fungi, 10(6), 433. https://doi.org/10.3390/jof10060433