Two-Sex Life Table Analysis for Optimizing Beauveria bassiana Application against Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect and Pathogenic Fungi
2.2. Bioassays
2.3. Effects of B. bassiana on Parental Generation (F0)
2.4. Transgenerational Effects of B. bassiana on the First Filial Generation (F1)
2.5. Enzymatic Assays
2.5.1. AChE
2.5.2. EST
2.5.3. GST
2.6. Statistical Analysis
3. Results
3.1. Larvicidal Assay and Fungus Selection
3.2. Effects of Lethal (LC50) and Sublethal (LC20) Concentrations of B. bassiana on F0
3.3. Effects of Lethal (LC50) and Sublethal (LC20) Concentrations of B. bassiana on F1
3.3.1. Biological Parameters
3.3.2. Population Parameters
3.4. Detoxification Enzyme Activity in S. exigua following B. bassiana Infection (F0 and F1)
3.4.1. AChE
3.4.2. EST
3.4.3. GST
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carey, J.R. Applied Demography for Biologists: With Special Emphasis on Insects; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Hutchison, W.D.; Hogg, D.B. Demographic Statistics for the Pea Aphid (Homoptera: Aphididae) in Wisconsin and a Comparison with Other Populations. Environ. Entomol. 1984, 13, 1173–1181. [Google Scholar] [CrossRef]
- Huang, Y.B.; Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett)(Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 2012, 19, 263–273. [Google Scholar] [CrossRef]
- Chi, H. Life-Table Analysis Incorporating Both Sexes and Variable Development Rates Among Individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. 2015. Available online: http://140.120.197.173/Ecology/prod02.htm (accessed on 1 September 2023).
- Chi, H.; Fu, J.; You, M. Age-stage, two-sex life table and its application in population ecology and integrated pest management. Acta Entomol. Sin. 2019, 62, 255–262. [Google Scholar]
- Wang, H.-h.; Xue, Y.; Lei, Z.-r. Life tables for experimental populations of Frankliniella occidentalis (Thysanoptera: Thripidae) under constant and fluctuating temperature. Sci. Agric. Sin. 2014, 47, 61–68. [Google Scholar]
- Shoukat, R.F.; Hassan, B.; Shakeel, M.; Zafar, J.; Li, S.; Freed, S.; Xu, X.; Jin, F. Pathogenicity and transgenerational effects of Metarhizium anisopliae on the demographic parameters of Aedes albopictus (Culicidae: Diptera). J. Med. Entomol. 2020, 57, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, S.; Lu, F.; Zhang, K.; Han, Q.; Ying, Q.; Zhang, X.; Zhang, C.; Zhou, S.; Chen, A. Cross-resistance, fitness costs, and biochemical mechanism of laboratory-selected resistance to tenvermectin A in Plutella xylostella. Pest Manag. Sci. 2021, 77, 2826–2835. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.E.; Riley, D.G. Artificial infestations of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), used to estimate an economic injury level in tomato. Crop Prot. 2008, 27, 268–274. [Google Scholar] [CrossRef]
- Hafeez, M.; Ullah, F.; Khan, M.M.; Li, X.; Zhang, Z.; Shah, S.; Imran, M.; Assiri, M.A.; Fernández-Grandon, G.M.; Desneux, N.; et al. Metabolic-based insecticide resistance mechanism and ecofriendly approaches for controlling of beet armyworm Spodoptera exigua: A review. Environ. Sci. Pollut. Res. 2022, 29, 1746–1762. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Ahmad, M.; Arif, M.I. Resistance of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) to endosulfan, organophosphorus and pyrethroid insecticides in Pakistan. Crop Prot. 2010, 29, 1428–1433. [Google Scholar] [CrossRef]
- Islam, W.; Adnan, M.; Shabbir, A.; Naveed, H.; Abubakar, Y.S.; Qasim, M.; Tayyab, M.; Noman, A.; Nisar, M.S.; Khan, K.A. Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Microb. Pathog. 2021, 159, 105122. [Google Scholar] [CrossRef] [PubMed]
- Perinotto, W.M.S.; Terra, A.L.M.; Angelo, I.C.; Fernandes, É.K.K.; Golo, P.S.; Camargo, M.G.; Bittencourt, V.R.E.P. Nomuraea rileyi as biological control agents of Rhipicephalus microplus tick. Parasitol. Res. 2012, 111, 1743–1748. [Google Scholar] [CrossRef] [PubMed]
- Amiri, B.; Ibrahim, L.; Butt, T.M. Antifeedant Properties of Destruxins and their Potential Use with the Entomogenous Fungus Metarhizium anisopliae for Improved Control of Crucifer Pests. Biocontrol Sci. Technol. 1999, 9, 487–498. [Google Scholar] [CrossRef]
- Isaka, M.; Kittakoop, P.; Kirtikara, K.; Hywel-Jones, N.L.; Thebtaranonth, Y. Bioactive substances from insect pathogenic fungi. Acc. Chem. Res. 2005, 38, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Gandarilla-Pacheco, F.L.; de Luna-Santillana, E.d.J.; Alemán-Huerta, M.E.; Pérez-Rodríguez, R.; Quintero-Zapata, I. Isolation of Native Strains of Entomopathogenic Fungi from Agricultural Soils of Northeastern Mexico and their Virulence on Spodoptera exigua (Lepidoptera: Noctuidae). Fla. Entomol. 2021, 104, 245–252+248. [Google Scholar] [CrossRef]
- El Husseini, M.M.M. Effect of the fungus, Beauveria bassiana (Balsamo) Vuillemin, on the beet armyworm, Spodoptera exigua (Hübner) larvae (Lepidoptera: Noctuidae), under laboratory and open field conditions. Egypt. J. Biol. Pest Control 2019, 29, 52. [Google Scholar] [CrossRef]
- Vivekanandhan, P.; Swathy, K.; Lucy, A.; Sarayut, P.; Patcharin, K. Entomopathogenic fungi based microbial insecticides and their physiological and biochemical effects on Spodoptera frugiperda (J.E. Smith). Front. Cell. Infect. Microbiol. 2023, 13, 1254475. [Google Scholar] [CrossRef]
- Zafar, J.; Shoukat, R.F.; Zhang, Y.; Freed, S.; Xu, X.; Jin, F. Metarhizium anisopliae challenges immunity and demography of Plutella xylostella. Insects 2020, 11, 694. [Google Scholar] [CrossRef]
- Zhong, K.; Liu, Z.-C.; Wang, J.-L.; Liu, X.-S. The entomopathogenic fungus Nomuraea rileyi impairs cellular immunity of its host Helicoverpa armigera. Arch. Insect Biochem. Physiol. 2017, 96, e21402. [Google Scholar] [CrossRef]
- Serebrov, V.; Gerber, O.; Malyarchuk, A.; Martemyanov, V.; Alekseev, A.; Glupov, V. Effect of entomopathogenic fungi on detoxification enzyme activity in greater wax moth Galleria mellonella L.(Lepidoptera, Pyralidae) and role of detoxification enzymes in development of insect resistance to entomopathogenic fungi. Biol. Bull. 2006, 33, 581–586. [Google Scholar] [CrossRef]
- Thapa, S.; Lv, M.; Xu, H. Acetylcholinesterase: A primary target for drugs and insecticides. Mini Rev. Med. Chem. 2017, 17, 1665–1676. [Google Scholar] [CrossRef]
- Enayati, A.A.; Ranson, H.; Hemingway, J. Insect glutathione transferases and insecticide resistance. Insect Mol. Biol. 2005, 14, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Terriere, L.C. Induction of detoxication enzymes in insects. Annu. Rev. Entomol. 1984, 29, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Dubovskiy, I.; Slyamova, N.; Kryukov, V.Y.; Yaroslavtseva, O.; Levchenko, M.; Belgibaeva, A.; Adilkhankyzy, A.; Glupov, V. The activity of nonspecific esterases and glutathione-S-transferase in Locusta migratoria larvae infected with the fungus Metarhizium anisopliae (Ascomycota, Hypocreales). Entomol. Rev. 2012, 92, 27–31. [Google Scholar] [CrossRef]
- Ding, H.-Y.; Lin, Y.-Y.; Tuan, S.-J.; Tang, L.-C.; Chi, H.; Atlıhan, R.; Özgökçe, M.S.; Güncan, A. Integrating demography, predation rate, and computer simulation for evaluation of Orius strigicollis as biological control agent against Frankliniella intonsa. Entomol. Gen. 2021, 41, 179. [Google Scholar] [CrossRef]
- Shoukat, R.F.; Zafar, J.; Shakeel, M.; Zhang, Y.; Freed, S.; Xu, X.; Jin, F. Assessment of lethal, sublethal, and transgenerational effects of Beauveria bassiana on the demography of Aedes albopictus (Culicidae: Diptera). Insects 2020, 11, 178. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, M.; Mehrkhou, F.; Güz, N.; Goosta, Y.; Atlihan, R. Sublethal effects of two entomopathogenic fungi species, Metarhizium anisopliae and Beauveria bassiana, on the cabbage aphid (Brevicoryne brassicae). Turk. J. Agric. For. 2022, 46, 441–452. [Google Scholar] [CrossRef]
- Roberts, P.; Douce, G. Foliage Feeding Insects. Available online: https://wiki.bugwood.org/Archive:GATop50/Spodoptera_exigua (accessed on 28 June 2024).
- Ren, X.-L.; Chen, R.-R.; Zhang, Y.; Ma, Y.; Cui, J.-J.; Han, Z.-J.; Mu, L.-L.; Li, G.-Q. A Spodoptera exigua Cadherin Serves as a Putative Receptor for Bacillus thuringiensis Cry1Ca Toxin and Shows Differential Enhancement of Cry1Ca and Cry1Ac Toxicity. Appl. Environ. Microbiol. 2013, 79, 5576–5583. [Google Scholar] [CrossRef]
- Butt, T.; Ibrahim, L.; Ball, B.; Clark, S. Pathogenicity of the entomogenous fungi Metarhizium anisopliae and Beauveria bassiana against crucifer pests and the honey bee. Biocontrol Sci. Technol. 1994, 4, 207–214. [Google Scholar] [CrossRef]
- Akutse, K.S.; Maniania, N.K.; Fiaboe, K.K.M.; Van den Berg, J.; Ekesi, S. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecol. 2013, 6, 293–301. [Google Scholar] [CrossRef]
- Inglis, G.D.; Enkerli, J.; Goettel, M.S. Laboratory techniques used for entomopathogenic fungi: Hypocreales. Man. Tech. Invertebr. Pathol. 2012, 2, 18–53. [Google Scholar]
- Caballero, C.; López-Olguin, J.F.; Ruíz, M.A.; Ortego, F.; Castañera, P. Antifeedant activity and effects of terpenoids on detoxication enzymes of the beet armyworm, Spodoptera exigua (Hubner). Span. J. Agric. Res. 2008, 6, 177–184. [Google Scholar] [CrossRef]
- Naeem, A.; Freed, S.; Akmal, M. Biochemical analysis and pathogenicity of entomopathogenic fungi to Diaphorina citri Kuwayama (Hemiptera: Liviidae). Entomol. Res. 2020, 50, 245–254. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Pengsook, A.; Bullangpoti, V.; Koul, O.; Nobsathian, S.; Saiyaitong, C.; Yooboon, T.; Phankaen, P.; Pluempanupat, W.; Kumrungsee, N. Antifeedant Activity and Biochemical Responses in Spodoptera exigua Hübner (Lepidoptera: Noctuidae) Infesting Broccoli, Brassica oleracea var. alboglabra exposed to Piper ribesioides Wall Extracts and Allelochemicals. Chem. Biol. Technol. Agric. 2022, 9, 17. [Google Scholar] [CrossRef]
- Kristensen, M. Glutathione S-transferase and insecticide resistance in laboratory strains and field populations of Musca domestica. J. Econ. Entomol. 2005, 98, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Nazar, M.Z.; Freed, S.; Hussain, S.; Sumra, M.W.; Shah, M.S.; Naeem, A. Characteristics of biochemical resistance mechanism of novel insecticides in Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Crop Prot. 2020, 138, 105320. [Google Scholar] [CrossRef]
- POLO-Plus, P. for Windows, Version 2.0; LeOra Software: Petaluma, CA, USA, 2005. [Google Scholar]
- Chi, H. Timing of control based on the stage structure of pest populations: A simulation approach. J. Econ. Entomol. 1990, 83, 1143–1150. [Google Scholar] [CrossRef]
- Meyer, J.S.; Ingersoll, C.G.; McDonald, L.L.; Boyce, M.S. Estimating uncertainty in population growth rates: Jackknife vs. bootstrap techniques. Ecology 1986, 67, 1156–1166. [Google Scholar] [CrossRef]
- Goodman, D. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 1982, 119, 803–823. [Google Scholar] [CrossRef]
- Chi, H.; Su, H.-Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead)(Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer)(Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 2006, 35, 10–21. [Google Scholar] [CrossRef]
- Tuan, S.J.; Lee, C.C.; Chi, H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 2014, 70, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Tuan, S.-J.; Li, N.-J.; Yeh, C.-C.; Tang, L.-C.; Chi, H. Effects of green manure cover crops on Spodoptera litura (Lepidoptera: Noctuidae) populations. J. Econ. Entomol. 2014, 107, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Peng, H.; Li, W.; Cheng, P.; Gong, M. The toxins of Beauveria bassiana and the strategies to improve their virulence to insects. Front. Microbiol. 2021, 12, 705343. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Jin, B.R.; Kim, J.J.; Lee, S.Y. Virulence of entomopathogenic fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the microbial control of Spodoptera exigua. Mycobiology 2014, 42, 385–390. [Google Scholar] [CrossRef]
- Wraight, S.P.; Ramos, M.E.; Avery, P.B.; Jaronski, S.T.; Vandenberg, J.D. Comparative virulence of Beauveria bassiana isolates against lepidopteran pests of vegetable crops. J. Invertebr. Pathol. 2010, 103, 186–199. [Google Scholar] [CrossRef]
- Kirubakaran, S.A.; Sathish-Narayanan, S.; Revathi, K.; Chandrasekaran, R.; Senthil-Nathan, S. Effect of oil-formulated Metarhizium anisopliae and Beauveria bassiana against the rice leaffolder Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). Arch. Phytopathol. Plant Prot. 2014, 47, 977–992. [Google Scholar] [CrossRef]
- Fite, T.; Tefera, T.; Negeri, M.; Damte, T.; Sori, W. Evaluation of Beauveria bassiana, Metarhizium anisopliae, and Bacillus thuringiensis for the management of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) under laboratory and field conditions. Biocontrol Sci. Technol. 2020, 30, 278–295. [Google Scholar] [CrossRef]
- Valero-Jiménez, C.A.; Debets, A.J.; van Kan, J.A.; Schoustra, S.E.; Takken, W.; Zwaan, B.J.; Koenraadt, C.J. Natural variation in virulence of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes. Malar. J. 2014, 13, 479. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Borgemeister, C.; Poehling, H.-M.; Zimmermann, G. Laboratory investigations on the potential of entomopathogenic fungi for biocontrol of Helicoverpa armigera (Lepidoptera: Noctuidae) larvae and pupae. Biocontrol Sci. Technol. 2007, 17, 853–864. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, N.; Chu, F.; Korai, S.K.; Liu, Z. Sublethal effects of Beauveria bassiana sensu lato isolate NJBb2101 on biological fitness and insecticide sensitivity of parental and offspring generations of brown planthopper, Nilaparvata lugens. Biol. Control 2018, 121, 44–49. [Google Scholar] [CrossRef]
- Trissi, A.N.; El-Bouhssini, M.; Skinner, M.; Parker, B.L. Sublethal effect of Beauveria bassiana on feeding and fecundity of the sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae). EPPO Bull. 2019, 49, 570–577. [Google Scholar] [CrossRef]
- Xia, Y.; Yu, S.; Yang, Q.; Shang, J.; He, Y.; Song, F.; Li, Q.; Jiang, C. Sublethal Effects of Beauveria bassiana Strain BEdy1 on the Development and Reproduction of the White-Backed Planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). J. Fungi 2023, 9, 123. [Google Scholar] [CrossRef]
- Kalvnadi, E.; Mirmoayedi, A.; Alizadeh, M.; Pourian, H.-R. Sub-lethal concentrations of the entomopathogenic fungus, Beauveria bassiana increase fitness costs of Helicoverpa armigera (Lepidoptera: Noctuidae) offspring. J. Invertebr. Pathol. 2018, 158, 32–42. [Google Scholar] [CrossRef]
- Torrado-León, E.; Montoya-Lerma, J.; Valencia-Pizo, E. Sublethal effects of Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina: Hyphomycetes) on the whitefly Bemisia tabaci (Gennadius)(Hemiptera: Aleyrodidae) under laboratory conditions. Mycopathologia 2006, 162, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Jin, K.; Liu, Y.; Xia, Y. Enhancing the utilization of host trehalose by fungal trehalase improves the virulence of fungal insecticide. Appl. Microbiol. Biotechnol. 2015, 99, 8611–8618. [Google Scholar] [CrossRef]
- Jin, K.; Peng, G.; Liu, Y.; Xia, Y. The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum. Fungal Genet. Biol. 2015, 77, 61–67. [Google Scholar] [CrossRef]
- Wu, S.; Youngman, R.R.; Kok, L.T.; Laub, C.A.; Pfeiffer, D.G. Interaction between entomopathogenic nematodes and entomopathogenic fungi applied to third instar southern masked chafer white grubs, Cyclocephala lurida (Coleoptera: Scarabaeidae), under laboratory and greenhouse conditions. Biol. Control 2014, 76, 65–73. [Google Scholar] [CrossRef]
- Jarrahi, A.; Safavi, S.A. Fitness costs to Helicoverpa armigera after exposure to sub-lethal concentrations of Metarhizium anisopliae sensu lato: Study on F1 generation. J. Invertebr. Pathol. 2016, 138, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Elbanna, S.M.; Elhadidy, N.M.; Semida, F.M.; Abdel Rasool, T. Physiological and biochemical effect of entomopathogenic fungus Metarhizium anisopliae on the 5th instar of Schistocerca gregaria (Orthoptera: Acrididae). J. Res. Environ. Sci. Toxicol. 2012, 1, 7–18. [Google Scholar]
- Alikhani, M.; Safavi, S.A.; Iranipour, S. Effect of the entomopathogenic fungus, Metarhizium anisopliae (Metschnikoff) Sorokin, on demographic fitness of the tomato leaf miner, Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae). Egypt. J. Biol. Pest Control 2019, 29, 23. [Google Scholar] [CrossRef]
- Liu, J.-F.; Zhang, Z.-Q.; Beggs, J.R.; Paderes, E.; Zou, X.; Wei, X.-Y. Lethal and sublethal effects of entomopathogenic fungi on tomato/potato psyllid, Bactericera cockerelli (Šulc)(Hemiptera: Triozidae) in capsicum. Crop Prot. 2020, 129, 105023. [Google Scholar] [CrossRef]
- Forbes, V.E.; Calow, P. Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ. Toxicol. Chem. 1999, 18, 1544–1556. [Google Scholar] [CrossRef]
- Pullum, T.W. Population Dynamics: Classical Applications of Stable Population Theory. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Wright, J.D., Ed.; Elsevier: Oxford, UK, 2015; pp. 562–565. [Google Scholar]
- Shaukat, R.F.; Freed, S.; Ahmed, R.; Raza, M.; Naeem, A. Virulence and transgenerational effects of Metarhizium anisopliae on Oxycarenus hyalinipennis. Pest Manag. Sci. 2023, 79, 3843–3851. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Fan, Z.; Sun, Z.; Chen, Y.; Gui, F. Insecticide Susceptibility and Detoxification Enzyme Activity of Frankliniella occidentalis under Three Habitat Conditions. Insects 2023, 14, 643. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Xie, Y.; Xue, J.; Liu, R. The effect of Beauveria brongniartii and its secondary metabolites on the detoxification enzymes of the pine caterpillar, Dendrolimus tabulaeformis. J. Insect Sci. 2013, 13, 44. [Google Scholar] [CrossRef] [PubMed]
- Zibaee, A.; Bandani, A.R.; Tork, M. Effect of the entomopathogenic fungus, Beauveria bassiana, and its secondary metabolite on detoxifying enzyme activities and acetylcholinesterase (AChE) of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae). Biocontrol Sci. Technol. 2009, 19, 485–498. [Google Scholar] [CrossRef]
- Bilal, M.; Freed, S.; Ashraf, M.Z.; Muhammad, S. Enhanced activities of acetylcholinesterase, acid and alkaline phosphatases in Helicoverpa armigera after exposure to entomopathogenic fungi. Invertebr. Surviv. J. 2017, 14, 464–476. [Google Scholar]
- Kwon, H.; Bang, E.; Choi, S.; Lee, W.; Cho, S.; I-Yeon, J.; Kim, S.; Lee, K. Cytotoxic Cyclodepsipetides of Bombycis corpus 101A. J.-Pharm. Soc. Korea 2000, 44, 115–118. [Google Scholar]
- Xu, Y.; Orozco, R.; Kithsiri Wijeratne, E.M.; Espinosa-Artiles, P.; Leslie Gunatilaka, A.A.; Patricia Stock, S.; Molnár, I. Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genet. Biol. 2009, 46, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Butt, T.; Coates, C.; Dubovskiy, I.; Ratcliffe, N. Entomopathogenic fungi: New insights into host–pathogen interactions. Adv. Genet. 2016, 94, 307–364. [Google Scholar] [PubMed]
Fungi | LC50 | LC20 | Slop ± SE | χ2 | p-Value | df |
---|---|---|---|---|---|---|
Metarhizium anisopliae | 3.2 × 104 | 1.0 × 102 | 0.154 + 0.023 | 1.87 | 0.003 | 5 |
Beauveria bassiana | 2.5 × 103 | 3.1 × 102 | 0.278 + 0.011 | 1.25 | 0.001 | 5 |
Isaria fumosorosea | 2.2 × 106 | 4.1 × 104 | 0.357 + 0.054 | 1.54 | 0.004 | 5 |
Parameter | Control | B. bassiana (LC20) | B. bassiana (LC50) |
---|---|---|---|
Means ± SE | |||
Larval mortality | 1.2 ± 0.21 c | 21.92 ± 1.87 b | 52.33 ± 2.11 a |
Percent pupation | 98.80 ± 2.54 a | 78.01 ± 3.15 b | 47.67 ± 4.15 c |
Percent emergence | 96.55 ± 4.11 a | 69.11 ± 3.14 b | 42.44 ± 2.98 c |
Male longevity | 10.22 ± 1.32 a | 9.71 ± 1.32 b | 7.11 ± 2.11 c |
Female longevity | 9.0 ± 0.22 a | 8.22 ± 1.54 b | 6.22 ± 0.23 c |
Fecundity | 450.11 ± 7.11 a | 380.18 ± 7.21 b | 273 ± 6.22 c |
Parameters | Control | B. bassiana (LC20) | B. bassiana (LC50) |
---|---|---|---|
Means ± SE | |||
Percent hatching | 95.0± 1.01 a | 90.22 ± 3.54 b | 87.33 ± 2.72 c |
Egg duration | 2.00 ± 0.00 a | 1.94 ± 0.24 a | 1.9 ± 0.3 b |
L1 | 2.00 ± 0.01 a | 1.84 ± 0.37 b | 1.56 ± 0.5 c |
L2 | 1.98 ± 0.01 a | 1.92 ± 0.28 a | 1.57 ± 0.5 b |
L3 | 2.00 ± 0.07 a | 1.9 ± 0.31 b | 1.65 ± 0.48 c |
L4 | 2.00 ± 0.05 a | 1.94 ± 0.25 b | 1.77 ± 0.43 c |
L5 | 3.00 ± 0.02 a | 2.82 ± 0.58 b | 2.82 ± 0.52 b |
Total larval duration | 10.98 ± 0.08 a | 10.42 ± 0.04 b | 9.37 ± 0.14 c |
Pupal duration | 6.58 ± 0.31 b | 5.98 ± 0.84 c | 7.27 ± 1.7 a |
Adult pre-oviposition period | 19.58 ± 1.80 a | 18.36 ± 1.13 b | 18.49 ± 1.65 b |
Female longevity | 8.22 ± 0.43 a | 8.00 ± 0.05 a | 7.32 ± 1.65 b |
Male longevity | 10.00 ± 1.35 a | 9.65 ± 0.98 a | 8.22 ± 2.41 b |
Fecundity | 359.55 ± 7.87 a | 313.45 ± 4.33 b | 223.92 ± 4.31 c |
Parameters | Control | B. bassiana (LC20) | B. bassiana (LC50) |
---|---|---|---|
Means ± SE | |||
Intrinsic rate of increase (r) | 0.2127 ± 0.006 a | 0.2129 ± 0.003 a | 0.2048 ± 0.001 b |
Net reproduction rate (R0) | 143.82 ± 12.11 a | 125.38 ± 7.11 b | 107.48 ± 6.21 c |
Mean length of a generation (T) | 24.25 ± 0.23 a | 22.7 ± 0.14 b | 20.99 ± 0.04 c |
Finite rate of increase (λ) | 1.278 ± 0.02 a | 1.237 ± 0.03 b | 1.217 ± 0.05 c |
Birth rate (at SASD) | 0.2327 ± 0.11 b | 0.243 ± 0.02 a | 0.243 ± 0.31 a |
Survival rate (at SASD) | 0.995 ± 0.02 a | 0.991 ± 0.07 a | 0.993 ± 0.05 a |
Death rate (at SASD) | 5.35 ± 1.07 c | 5.698 ± 1.21 b | 6.25 ± 1.57 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafar, J.; Shoukat, R.F.; Zhu, Z.; Fu, D.; Xu, X.; Jin, F. Two-Sex Life Table Analysis for Optimizing Beauveria bassiana Application against Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). J. Fungi 2024, 10, 469. https://doi.org/10.3390/jof10070469
Zafar J, Shoukat RF, Zhu Z, Fu D, Xu X, Jin F. Two-Sex Life Table Analysis for Optimizing Beauveria bassiana Application against Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Journal of Fungi. 2024; 10(7):469. https://doi.org/10.3390/jof10070469
Chicago/Turabian StyleZafar, Junaid, Rana Fartab Shoukat, Zhanpeng Zhu, Dongran Fu, Xiaoxia Xu, and Fengliang Jin. 2024. "Two-Sex Life Table Analysis for Optimizing Beauveria bassiana Application against Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae)" Journal of Fungi 10, no. 7: 469. https://doi.org/10.3390/jof10070469
APA StyleZafar, J., Shoukat, R. F., Zhu, Z., Fu, D., Xu, X., & Jin, F. (2024). Two-Sex Life Table Analysis for Optimizing Beauveria bassiana Application against Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Journal of Fungi, 10(7), 469. https://doi.org/10.3390/jof10070469