Evolution and Genetic Differentiation of Pleurotus tuoliensis in Xinjiang, China, Based on Population Genomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Whole Genome Resequencing and Data Analysis
2.3. Analysis of Population Effective Historical Size
2.4. Analysis of LD and Selection Elimination
2.5. Ancestral State Reconstruction
3. Results
3.1. Genomic Variation in the Population of P. tuoliensis
3.2. Population Structure and Differentiation of P. tuoliensis
3.3. Population Genetic Diversity and Differentiation
3.4. Effective Population Size of P. tuoliensis
3.5. The Origin and Historical Reconstruction of P. tuoliensis in Xinjiang
3.6. Selection and Elimination Analysis of Wild and Cultivated Populations
3.7. Selection and Elimination Analysis of Different Host Types
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, F.; Zou, Y.J.; Hu, Q.X.; Jing, Y.; Yang, X.H. Metabolic Profiling of Pleurotus tuoliensis During Mycelium Physiological Maturation and Exploration on a Potential Indicator of Mycelial Maturation. Front. Mcrobiol. 2019, 9, 3274. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wen, S.F.; Liu, S.C.; Li, R.C. Research progress of Pleurotus tuoliensis. Edible Med. Mushrooms 2019, 27, 169–173. [Google Scholar]
- Mou, C.J.; Cao, Y.Q.; Ma, J.L. Pleurotus eryngii (Dc. Ex Fr.) Quel. var. Tuoliensis. Mycosystema 1987, 6, 153–156. [Google Scholar]
- Zou, Y.J.; Du, F.; Hu, Q.X.; Yuan, X.F.; Dai, D.; Zhu, M.J. Integration of Pleurotus tuoliensis cultivation and biogas production for utilization of lignocellulosic biomass as well as its benefit evaluation. Bioresour. Technol. 2020, 317, 124042. [Google Scholar] [CrossRef]
- Fu, Y.-P.; Liang, Y.; Dai, Y.-T.; Yang, C.-T.; Duan, M.-Z.; Zhang, Z.; Hu, S.-N.; Zhang, Z.-W.; Li, Y. De Novo Sequencing and Transcriptome Analysis of Pleurotus eryngii subsp. tuoliensis (Bailinggu) Mycelia in Response to Cold Stimulation. Molecules 2016, 21, 560. [Google Scholar] [CrossRef]
- Gao, W.; Qu, J.; Zhang, J.; Sonnenberg, A.; Chen, Q.; Zhang, Y.; Huang, C. A genetic linkage map of Pleurotus tuoliensis integrated with physical mapping of the de novo sequenced genome and the mating type loci. BMC Genom. 2018, 19, 18. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-L.; Wang, S.; Xu, P.; Tian, H.-Y.; Bai, M.; Zhang, Y.-P.; Shao, Y.; Xiong, Z.-J.; Qi, X.-G.; Cooper, D.N.; et al. Functional genomics analysis reveals the evolutionary adaptation and demographic history of pygmy lorises. Proc. Natl. Acad. Sci. USA 2022, 119, e2123030119. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Luo, J.; Jin, M.; Yang, N.; Liu, X.; Peng, Y.; Li, W.; Phillips, A.; Cameron, B.; Bernal, J.S.; et al. Genome sequencing reveals evidence of adaptive variation in the genus Zea. Nat. Genet. 2022, 54, 1736–1745. [Google Scholar] [CrossRef]
- Fu, Y.; Dai, Y.; Chethana, K.; Li, Z.; Sun, L.; Li, C.; Yu, H.; Yang, R.; Tan, Q.; Bao, D.; et al. Large-scale genome investigations reveal insights into domestication of cultivated mushrooms. Mycosphere 2022, 13, 86–133. [Google Scholar] [CrossRef]
- Kawai, G.; Babasaki, K.; Neda, H. Taxonomic position of a Chinese Pleurotus “Bai-Ling-Gu”: It belongs to Pleurotus eryngii (DC.: Fr.) Quél. and evolved independently in China. Mycoscience 2008, 49, 75–87. [Google Scholar] [CrossRef]
- Zervakis, G.I.; Ntougias, S.; Gargano, M.L.; Besi, M.I.; Polemis, E.; Typas, M.A.; Venturella, G. A reappraisal of the Pleurotus eryngii complex-new species and taxonomic combinations based on the application of a polyphasic approach, and an identification key to Pleurotus taxa associated with Apiaceae plants. Fungal Biol. 2014, 118, 814–834. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.R.; Huang, C.Y.; Chen, Q.; Wu, X.L.; Qu, J.B.; Zhang, J.X. Genetic Variability and Population Structure of the Mushroom Pleurotus eryngii var. tuoliensis. PLoS ONE 2013, 8, e83253. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Sun, L.; Yin, X.; Gao, M.; Zhao, Y.; Jia, P.; Yuan, X.; Fu, Y.; Li, Y. Pleurotus eryngii Genomes Reveal Evolution and Adaptation to the Gobi Desert Environment. Front. Microbiol. 2019, 10, 2024. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, T.; Li, Y.; Zheng, L.; Lu, Z.; Zhou, Y.; Chen, J.; Chen, M.; Zhang, J.; Sun, G.; et al. Mitogen-activated protein kinase TaMPK3 suppresses ABA response by destabilising TaPYL4 receptor in wheat. New Phytol. 2022, 236, 114–131. [Google Scholar] [CrossRef]
- Li, R.; Li, R.; Kristiansen, K.; Wang, J. SOAP: Short oligonucleotide alignment program. Bioinformatics 2008, 24, 713–714. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; Del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using nextgeneration DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Patterson, N.; Price, A.L.; Reich, D. Population structure and eigenanalysis. PLoS Genet. 2006, 2, e190. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Guo, H.; Wang, X.Y.; Kim, C.S.; Paterson, A.H. SNPhylo: A pipeline to construct a phylogenetic tree from huge SNP data. BMC Genom. 2014, 15, 162. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7, molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Kozma, R.; Meleted, P.; Magnusson, K.P.; Hoglund, J. Looking into the past—The reaction of three grouse species to climate change over the last million years using whole genome sequences. Mol. Ecol. 2016, 25, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Li, Z.; Dai, Y.; Liu, Z.; Han, X.; Li, Y.; Li, Y.; Xiong, H.; Xu, J.; Zhang, G.; et al. Massive genome investigations reveal insights of prevalent introgression for environmental adaptation and triterpene biosynthesis in Ganoderma. Mol. Ecol. Resour. 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2004, 21, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Robert, K.; Vinay, R.; Schlötterer, C. PoPoolation2, identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics 2011, 27, 3435–3436. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Blair, C.; He, X.J. RASP 4, ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 2022, 37, 604–606. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Zuo, Z.; Guo, C.; Du, X.; Liu, S.; Yu, X.; Xiang, X.; Rong, J.; Liu, B.; Liu, Z.; et al. Phylogenomic insights into the origin and evolutionary history of evergreen broadleaved forests in East Asia under Cenozoic climate change. Mol. Ecol. 2023, 32, 2850–2868. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, S.; Huang, Z.; Yin, L.; Hu, J.; Li, J.; Liu, Y.; Rong, C. Development of a highly productive strain of Pleurotus tuoliensis for commercial cultivation by crossbreeding. Sci. Hortic. 2018, 234, 110–115. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Z. Palynological evidence for the Mid-Miocene Climatic Optimum recorded in Cenozoic sediments of the Tian Shan Range, northwestern China. Glob. Planet. Chang. 2008, 64, 53–68. [Google Scholar] [CrossRef]
- Deng, T.; Wang, X.M.; Wang, S.Q.; Li, Q.; Hou, S.K. Evolution of the Chinese Neogene mammalian faunas and its relationship to uplift of the Tibetan Plateau. Adv. Earth Sci. 2015, 30, 407–415. [Google Scholar] [CrossRef]
- Salzmann, U.; Williams, M.; Haywood, A.M.; Johnson, A.L.; Kender, S.; Zalasiewicz, J. Climate and environment of a Pliocene warm world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 309, 1–8. [Google Scholar] [CrossRef]
- Li, J.; Han, L.H.; Liu, X.B.; Zhao, Z.W.; Yang, Z.L. The saprotrophic Pleurotus ostreatus species complex: Late Eocene origin in East Asia, multiple dispersal, and complex speciation. IMA Fungus 2020, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.B.; Li, J.; Horak, E.; Yang, Z.L. Pleurotus placentodes, originally described from Sikkim, rediscovered after 164 years. Phytotaxa 2017, 267, 4. [Google Scholar] [CrossRef]
- Bomblies, K.; Higgins, J.D.; Yant, L. Meiosis evolves: Adaptation to external and internal environments. New Phytol. 2015, 208, 306–323. [Google Scholar] [CrossRef] [PubMed]
- Protacio, R.U.; Davidson, M.K.; Wahls, W.P. Adaptive Control of the Meiotic Recombination Landscape by DNA Site-dependent Hotspots With Implications for Evolution. Front. Genet. 2022, 13, 947572. [Google Scholar] [CrossRef]
- Ascencio-Ibáñez, J.T.; Sozzani, R.; Lee, T.-J.; Chu, T.-M.; Wolfinger, R.D.; Cella, R.; Hanley-Bowdoin, L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 2008, 148, 436–454. [Google Scholar] [CrossRef] [PubMed]
- Chandran, D.; Rickert, J.; Huang, Y.; Steinwand, M.A.; Marr, S.K.; Wildermuth, M.C. Atypical E2F transcriptional repressor DEL1 acts at the intersection of plant growth and immunity by controlling the hormone salicylic acid. Cell Host Microbe 2014, 15, 506–513. [Google Scholar] [CrossRef]
- Rangel, D.E.N.; Alder-Rangel, A.; Dadachova, E.; Finlay, R.D.; Kupiec, M.; Dijksterhuis, J.; Braga, G.U.L.; Corrochano, L.M.; Hallsworth, J.E. Fungal stress biology: A preface to the Fungal Stress Responses special edition. Curr. Genet. 2015, 61, 231–238. [Google Scholar] [CrossRef]
- Yang, X.; Liu, C.; Niu, X.; Wang, L.; Li, L.; Yuan, Q.; Pei, X. Research on lncRNA related to drought resistance of Shanlan upland rice. BMC Genom. 2022, 23, 336. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.L.; Liu, F.F.; Wang, M.P.; Chen, J.F.; Zhou, Z.J.; Wu, J.Y. Genetic variation in ZmSO contributes to ABA response and drought tolerance in maize seedlings. Crop J. 2023, 11, 1106–1114. [Google Scholar] [CrossRef]
- Tang, G.Y.; Shao, F.X.; Xu, P.L.; Shan, L.; Liu, Z.J. Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco. Russ. J. Plant Physiol. 2017, 64, 525–535. [Google Scholar] [CrossRef]
- Qi, F.; Zhang, F. Cell Cycle Regulation in the Plant Response to Stress. Front. Plant Sci. 2020, 10, 1765. [Google Scholar] [CrossRef] [PubMed]
- Sims, J.; Copenhaver, G.P.; Schlögelhofer, P. Meiotic DNA Repair in the Nucleolus Employs a Nonhomologous End-Joining Mechanism. Plant Cell 2019, 31, 2259–2275. [Google Scholar] [CrossRef] [PubMed]
- Etesami, H.; Glick, B.R. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol. Res. 2024, 281, 127602. [Google Scholar] [CrossRef]
- Sun, B.; Williams, C.M.; Li, T.; Speakman, J.R.; Jin, Z.; Lu, H.; Luo, L.; Du, W. Higher metabolic plasticity in temperate compared to tropical lizards suggests increased resilience to climate change. Ecol. Monogr. 2023, 92, e1595. [Google Scholar] [CrossRef]
Population Type | Origin | Population Code | Number |
---|---|---|---|
Wild strains | Shihezi City, Xinjiang, China | A | 13 |
Tori County, Xinjiang, China | B | 29 | |
Yumin County, Xinjiang, China | C | 62 | |
Emin County, Xinjiang, China | D | 12 | |
Fuhai County, Xinjiang, China | E | 31 | |
Fuyun County, Xinjiang, China | F | 24 | |
Qinghe County, Xinjiang, China | G | 43 | |
Cultivated strains | Changchun City, Jilin, China | Z | 11 |
Total | 225 |
Type | Number (SNP/InDel) | Percentage (%) (SNP/InDel) |
---|---|---|
Total | 4,000,084/530,097 | 100/100 |
Intergenic | 535,958/69,079 | 13.4/13.03 |
Upstream | 317,767/66,576 | 7.94/12.56 |
Exonic | 2,145,854/160,814 | 53.65/30.34 |
Intronic | 520,213/132,615 | 13.01/25.02 |
Splicing | 7303/2495 | 0.18/0.47 |
Exonic, splicing | 1569/182 | 0.04/0.03 |
Upstream, downstream | 187,102/43,499 | 4.68/8.21 |
Downstream | 284,318/54,758 | 7.11/10.33 |
Fst | Pi | ||||||
---|---|---|---|---|---|---|---|
B | C | D | E | F | G | ||
A | 0.0146 ± 0.0335 | 0.0170 ± 0.0359 | 0.3253 ± 0.2573 | 0.0510 ± 0.0703 | 0.0447 ± 0.0655 | 0.0559 ± 0.0781 | 0.0003 ± 0.0008 |
B | 0.0079 ± 0.0152 | 0.3188 ± 0.2725 | 0.0289 ± 0.0464 | 0.0256 ± 0.0433 | 0.0335 ± 0.0500 | 0.0003 ± 0.0008 | |
C | 0.2581 ± 0.2366 | 0.0311 ± 0.0385 | 0.0273 ± 0.0370 | 0.0365 ± 0.0435 | 0.0004 ± 0.0010 | ||
D | 0.3662 ± 0.2964 | 0.3600 ± 0.2890 | 0.3736 ± 0.3039 | 0.0004 ± 0.0010 | |||
E | 0.0015 ± 0.0155 | 0.0039 ± 0.0150 | 0.0002 ± 0.0005 | ||||
F | 0.0019 ± 0.0148 | 0.0002 ± 0.0005 | |||||
G | 0.0002 ± 0.0005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, P.; Nurziya, Y.; Luo, Y.; Jia, W.; Zhu, Q.; Tian, M.; Sun, L.; Zhang, B.; Qi, Z.; Zhao, Z.; et al. Evolution and Genetic Differentiation of Pleurotus tuoliensis in Xinjiang, China, Based on Population Genomics. J. Fungi 2024, 10, 472. https://doi.org/10.3390/jof10070472
Jia P, Nurziya Y, Luo Y, Jia W, Zhu Q, Tian M, Sun L, Zhang B, Qi Z, Zhao Z, et al. Evolution and Genetic Differentiation of Pleurotus tuoliensis in Xinjiang, China, Based on Population Genomics. Journal of Fungi. 2024; 10(7):472. https://doi.org/10.3390/jof10070472
Chicago/Turabian StyleJia, Peisong, Yarmamat Nurziya, Ying Luo, Wenjie Jia, Qi Zhu, Meng Tian, Lei Sun, Bo Zhang, Zhengxiang Qi, Zhenhao Zhao, and et al. 2024. "Evolution and Genetic Differentiation of Pleurotus tuoliensis in Xinjiang, China, Based on Population Genomics" Journal of Fungi 10, no. 7: 472. https://doi.org/10.3390/jof10070472
APA StyleJia, P., Nurziya, Y., Luo, Y., Jia, W., Zhu, Q., Tian, M., Sun, L., Zhang, B., Qi, Z., Zhao, Z., Dai, Y., Fu, Y., & Li, Y. (2024). Evolution and Genetic Differentiation of Pleurotus tuoliensis in Xinjiang, China, Based on Population Genomics. Journal of Fungi, 10(7), 472. https://doi.org/10.3390/jof10070472