Genome-Scale Screening of Saccharomyces cerevisiae Deletion Mutants to Gain Molecular Insight into Tolerance to Mercury Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Media
2.2. Genome-Scale Genetic Screen for Mercury-Sensitive Mutations
2.3. Measurement of Cellular Mercury Ion Content
2.4. Bioinformatic Analysis of the Deletion Mutant Data
2.5. Data Analysis
3. Result
3.1. Genes Involved in the Hg2+ Sensitivity of Yeast Cells
3.2. The Functional Classification and Subcellular Localization of Hg-Sensitive Genes
3.3. Measurement of Intracellular Mercury Content in Mercury Ion-Sensitive Mutants
3.4. The Overlapping Rate of Genome-Wide Genetic Screening for Sensitivity to Different
Heavy Metals
3.5. Bioinformatics Enrichment Analysis of Mercury-Sensitive Genes
3.6. The Result of Protein–Protein Interaction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, T.; Chen, Q.; Zhang, L.; Liu, X.; Liu, C. The toxicity of selenium and mercury in Suaeda salsa after 7-days exposure. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 244, 109022. [Google Scholar] [CrossRef] [PubMed]
- Guzzi, G.; Ronchi, A.; Pigatto, P. Toxic effects of mercury in humans and mammals. Chemosphere 2021, 263, 127990. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Aamir, M.; Liu, K.; Yang, F.; Liu, W. Status of mercury accumulation in agricultural soil across China: Spatial distribution, temporal trend, influencing factor and risk assessment. Environ. Pollut. 2018, 240, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Beckers, F.; Rinklebe, J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 693–794. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Iavicoli, I.; Calabrese, V.; Cory-Slechta, D.A.; Giordano, J. Elemental mercury neurotoxicity and clinical recovery of function: A review of findings, and implications for occupational health. Environ. Res. 2018, 163, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef] [PubMed]
- Lohren, H.; Bornhorst, J.; Fitkau, R.; Pohl, G.; Galla, H.J.; Schwerdtle, T. Effects on and transfer across the blood-brain barrier in vitro-Comparison of organic and inorganic mercury species. BMC Pharmacol. Toxicol. 2016, 17, 63. [Google Scholar] [CrossRef] [PubMed]
- Raihan, S.M.; Moniruzzaman, M.; Park, Y.; Lee, S.; Bai, S.C. Evaluation of Dietary Organic and Inorganic Mercury Threshold Levels on Induced Mercury Toxicity in a Marine Fish Model. Animals 2020, 10, 405. [Google Scholar] [CrossRef] [PubMed]
- Stepanova, V.; Suslov, A.; Suslova, I.; Sukhanova, E.; Yarovoy, B.; Verbenko, V. Adaptation of natural yeast strains to heavy metal and radionuclides salts. Mar. Biol. J. 2020, 5, 64–73. [Google Scholar]
- Du, J.; Cao, C.; Jiang, L. Genome-scale genetic screen of lead ion-sensitive gene deletion mutations in Saccharomyces cerevisiae. Gene 2015, 563, 155–159. [Google Scholar] [CrossRef]
- Begley, T.J.; Rosenbach, A.S.; Ideker, T.; Samson, L.D. Hot spots for modulating toxicity identified by genomic phenotyping and localization mapping. Mol. Cell 2004, 16, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Begley, T.J.; Rosenbach, A.S.; Ideker, T.; Samson, L.D. Damage recovery pathways in Saccharomyces cerevisiae revealed by genomic phenotyping and interactome mapping. Mol. Cancer Res. 2002, 1, 103–112. [Google Scholar]
- Jiang, L.; Cao, C.; Zhang, L.; Lin, W.; Xia, J.; Xu, H.; Zhang, Y. Cadmium-induced activation of high osmolarity glycerol pathway through its Sln1 branch is dependent on the MAP kinase kinase kinase Ssk2, but not its paralog Ssk22, in budding yeast. FEMS Yeast Res. 2014, 14, 1263–1272. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Du, J.; Zhao, G.; Jiang, L. Activation of calcineurin is mainly responsible for the calcium sensitivity of gene deletion mutations in the genome of budding yeast. Genomics 2013, 101, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lin, W.; Ma, X.; Lu, Q.; Ma, X.; Bian, G.; Jiang, L. The protein kinase Hal5p is the high-copy suppressor of lithium-sensitive mutations of genes involved in the sporulation and meiosis as well as the ergosterol biosynthesis in Saccharomyces cerevisiae. Genomics 2010, 95, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Grosjean, N.; Gross, E.M.; Le Jean, M.; Blaudez, D. Global Deletome Profile of Saccharomyces cerevisiae Exposed to the Technology-Critical Element Yttrium. Front. Microbiol. 2018, 9, 2005. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.J.; Veljanoski, F.; O’Doherty, P.J.; Zaman, M.S.; Petersingham, G.; Bailey, T.D.; Münch, G.; Kersaitis, C.; Wu, M.J. Molecular insight into arsenic toxicity via the genome-wide deletion mutant screening of Saccharomyces cerevisiae. Metallomics 2016, 8, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Majeed, A.; Mukhtar, S. Protein-Protein Interaction Network Exploration Using Cytoscape. Methods Mol. Biol. 2023, 2690, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Vasanthakumar, T.; Rubinstein, J.L. Structure and Roles of V-type ATPases. Trends Biochem. Sci. 2020, 45, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Keenan Curtis, K.; Kane, P.M. Novel vacuolar H+-ATPase complexes resulting from overproduction of Vma5p and Vma13p. J. Biol. Chem. 2002, 277, 2716–2724. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.; Graham, L.A.; Stevens, T.H. Voa1p functions in V-ATPase assembly in the yeast endoplasmic reticulum. Mol. Biol. Cell 2008, 19, 5131–5142. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.W.; Jeffrey, P.D.; Zick, M.; Phillips, B.P.; Wickner, W.T.; Hughson, F.M. A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 2015, 349, 1111–1114. [Google Scholar] [CrossRef]
- Li, B.; Dong, X.; Zhao, R.; Kou, R.; Zheng, X.; Zhang, H. The t-SNARE protein FgPep12, associated with FgVam7, is essential for ascospore discharge and plant infection by trafficking Ca2+ ATPase FgNeo1 between Golgi and endosome/vacuole in Fusarium graminearum. PLoS Pathog. 2019, 15, e1007754. [Google Scholar] [CrossRef] [PubMed]
- Ibuchi, K.; Fukaya, M.; Shinohara, T.; Hara, Y.; Shiroshima, T.; Sugawara, T.; Sakagami, H. The Vps52 subunit of the GARP and EARP complexes is a novel Arf6-interacting protein that negatively regulates neurite outgrowth of hippocampal neurons. Brain Res. 2020, 1745, 146905. [Google Scholar] [CrossRef]
- Balderhaar, H.J.; Lachmann, J.; Yavavli, E.; Bröcker, C.; Lürick, A.; Ungermann, C. The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes. Proc. Natl. Acad. Sci. USA 2013, 110, 3823–3828. [Google Scholar] [CrossRef]
- Zhang, A.; Meng, Y.; Li, Q.; Liang, Y. The endosomal sorting complex required for transport complex negatively regulates Erg6 degradation under specific glucose restriction conditions. Traffic 2020, 21, 488–502. [Google Scholar] [CrossRef]
- Karamanou, D.A.; Aliferis, K.A. The yeast (Saccharomyces cerevisiae) YCF1 vacuole transporter: Evidence on its implication into the yeast resistance to flusilazole as revealed by GC/EI/MS metabolomics. Pestic. Biochem. Physiol. 2020, 165, 104475. [Google Scholar] [CrossRef] [PubMed]
- Encinar Del Dedo, J.; Idrissi, F.Z.; Fernandez-Golbano, I.M.; Garcia, P.; Rebollo, E.; Krzyzanowski, M.K.; Grötsch, H.; Geli, M.I. ORP-Mediated ER Contact with Endocytic Sites Facilitates Actin Polymerization. Dev. Cell 2017, 43, 588–602.e586. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Wang, F.; Luo, Z.; Guo, S.; Strähle, U. Toxicity of mercury: Molecular evidence. Chemosphere 2020, 245, 125586. [Google Scholar] [CrossRef]
- Ramos, A.; Dos Santos, M.M.; de Macedo, G.T.; Wildner, G.; Prestes, A.S.; Masuda, C.A.; Dalla Corte, C.L.; Teixeira da Rocha, J.B.; Barbosa, N.V. Methyl and Ethylmercury elicit oxidative stress and unbalance the antioxidant system in Saccharomyces cerevisiae. Chem. Biol. Interact. 2020, 315, 108867. [Google Scholar] [CrossRef] [PubMed]
- Lixue, Z.; Bin, Q.; Jiang, S.; Limei, W. Effects of exogenous oxidation stress on glutathione synthesis in Saccharomyces cerevisiae mutant Y518. Food Mach. 2017, 33, 15–19. [Google Scholar]
- Thuillier, A.; Ngadin, A.A.; Thion, C.; Billard, P.; Jacquot, J.P.; Gelhaye, E.; Morel, M. Functional diversification of fungal glutathione transferases from the ure2p class. Int. J. Evol. Biol. 2011, 2011, 938308. [Google Scholar] [CrossRef]
- Chandrasekharan, B.; Montllor-Albalate, C.; Colin, A.E.; Andersen, J.L.; Jang, Y.C.; Reddi, A.R. Cu/Zn Superoxide Dismutase (Sod1) regulates the canonical Wnt signaling pathway. Biochem. Biophys. Res. Commun. 2021, 534, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.D.; Liu, L.; Bulla, L.; Winkler, D.D. Quantifying the Interaction between Copper-Zinc Superoxide Dismutase (Sod1) and its Copper Chaperone (Ccs1). J. Proteom. Bioinform. 2018, 11, 99–103. [Google Scholar] [CrossRef]
- Dibrov, E.; Fu, S.; Lemire, B.D. The Saccharomyces cerevisiae TCM62 gene encodes a chaperone necessary for the assembly of the mitochondrial succinate dehydrogenase (complex II). J. Biol. Chem. 1998, 273, 32042–32048. [Google Scholar] [CrossRef]
- Singer, J.M.; Shaw, J.M. Mdm20 protein functions with Nat3 protein to acetylate Tpm1 protein and regulate tropomyosin-actin interactions in budding yeast. Proc. Natl. Acad. Sci. USA 2003, 100, 7644–7649. [Google Scholar] [CrossRef]
- Vögtle, F.N.; Prinz, C.; Kellermann, J.; Lottspeich, F.; Pfanner, N.; Meisinger, C. Mitochondrial protein turnover: Role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 2011, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.S.; Toth, R.K.; Jensen, C.C.; Casillas, A.L.; Kashatus, D.F.; Warfel, N.A. PIM kinases alter mitochondrial dynamics and chemosensitivity in lung cancer. Oncogene 2020, 39, 2597–2611. [Google Scholar] [CrossRef] [PubMed]
- Hancock, L.C.; Behta, R.P.; Lopes, J.M. Genomic analysis of the Opi- phenotype. Genetics 2006, 173, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Zahir, F.; Rizvi, S.J.; Haq, S.K.; Khan, R.H. Effect of methyl mercury induced free radical stress on nucleic acids and protein: Implications on cognitive and motor functions. Indian. J. Clin. Biochem. 2006, 21, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Chao, E.S.; Gierthy, J.F.; Frenkel, G.D. A comparative study of the effects of mercury compounds on cell viability and nucleic acid synthesis in HeLa cells. Biochem. Pharmacol. 1984, 33, 1941–1945. [Google Scholar] [CrossRef] [PubMed]
- Espinola-Lopez, J.M.; Tan, S. The Ada2/Ada3/Gcn5/Sgf29 histone acetyltransferase module. Biochim. Biophys. Acta Gene Regul. Mech. 2021, 1864, 194629. [Google Scholar] [CrossRef] [PubMed]
- Obinelo, A. Investigation of the mechanistic details of the rsc1 and rsc2 subunits of the yeast rsc chromatin remodeler. FASEB J. 2019, 33, 777.718. [Google Scholar] [CrossRef]
- Sing, T.L.; Hung, M.P.; Ohnuki, S.; Suzuki, G.; San Luis, B.J.; McClain, M.; Unruh, J.R.; Yu, Z.; Ou, J.; Marshall-Sheppard, J.; et al. The budding yeast RSC complex maintains ploidy by promoting spindle pole body insertion. J. Cell Biol. 2018, 217, 2445–2462. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Axhemi, A.; Jankowsky, E. Alternative RNA degradation pathways by the exonuclease Pop2p from Saccharomyces cerevisiae. Rna 2021, 27, 465–476. [Google Scholar] [CrossRef]
- Zhao, F.; Li, J.; Lin, K.; Chen, H.; Lin, Y.; Zheng, S.; Liang, S.; Han, S. Genome-wide screening of Saccharomyces cerevisiae deletion mutants reveals cellular processes required for tolerance to the cell wall antagonist calcofluor white. Biochem. Biophys. Res. Commun. 2019, 518, 1–6. [Google Scholar] [CrossRef]
Systemic
Name | Standard
Name | Systemic
Name | Standard
Name | Systemic
Name | Standard
Name | Systemic
Name | Standard Name |
---|---|---|---|---|---|---|---|
Cellular transport, transport facilitators, and transport routes (16) | |||||||
YDR135C | YCF1 | YGL241W | KAP114 | YLR148W | PEP3 | YOR036W | PEP12 |
YDR484W | VPS52 | YGR106C | VOA1 | YLR396C | VPS33 | YOR322C | LDB19 |
YEL051W | VMA8 | YGR163W | GTR2 | YNL323W | LEM3 | YPR036W | VMA13 |
YGL054C | ERV14 | YHR073W | OSH3 | YNR006W | VPS27 | YPR124W | CTR1 |
Metabolism (11) | |||||||
YBR126C | TPS1 | YER090W | TRP2 | YLR342W | FKS1 | YNL229C | URE2 |
YDL066W | IDP1 | YHL011C | PRS3 | YLR372W | ELO3 | YPL091W | GLR1 |
YEL046C | GLY1 | YJL101C | GSH1 | YML008C | ERG6 | ||
Transcription (11) | |||||||
YBR279W | PAF1 | YEL044W | IES6 | YGR252W | GCN5 | YNL199C | GCR2 |
YDR448W | ADA2 | YGL071W | AFT1 | YIR023W | DAL81 | YNR052C | POP2 |
YDR457W | TOM1 | YGR056W | RSC1 | YML007W | YAP1 | ||
Cell cycle (8) | |||||||
YBL031W | SHE1 | YGL250W | RMR1 | YHR030C | SLT2 | YPL161C | BEM4 |
YAL024C | LTE1 | PHO85 | PHO85 | YGL019W | CKB1 | YNL271C | BNI1 |
Protein synthesis, folding, modification, and destination (7) | |||||||
YBL022C | PIM1 | YEL036C | ANP1 | YKL134C | OCT1 | YPL090C | RPS6A |
YBR044C | TCM62 | YGR214W | RPS0A | YOL076W | MDM20 | ||
Antioxidant activity (2) | |||||||
YJR104C | SOD1 | YMR038C | CCS1 | ||||
Unknown (9) | |||||||
YDL151C | BUD30 | YGL007W | BRP1 | YKL169C | YLR338W | OPI9 | |
YDR114C | YJL175W | YLR111W | YNL296W | ||||
YEL045C |
Cellular Localization | Gene |
---|---|
cytosol (20) | GCN5, POP2, AFT1, YAP1, LTE1, RMR1, SLT2, LDB19, LEM3, KAP114, RPS0A, SOD1, CCS1, GLY1, PRS3, TRP2, GSH1, GLR1, URE2, TPS1, |
nucleus (12) | ADA2, RSC1, IES6, PAF1, TOM1, GCR2, DAL81, SHE1, PHO85, BEM4, CTR1, RPS6A, |
vacuole (6) | PEP3, VPS33, YCF1, VMA8, VMA13, GTR2, |
endoplasmic reticulum (ER) (6) | ERV14, VOA1, OSH3, ANP1, ELO3, ERG6, |
mitochondrion (5) | TCM62, MDM20, OCT1, PIM1, IDP1, |
Golgi (2) | PEP12, VPS52 |
plasmalemma (2) | BNI1, FKS1, |
endosome (1) | VPS27 |
unknown (10) | CKB1, OPI9, BUD30, BRP1, YJL175W, YNL296W, YEL045C, YDR114C, YLR111W, YKL169C |
Function | Number | Log10 (p) | Genes |
---|---|---|---|
Biological quality control | 20 | −6.86 | FKS1, YCF1, TOM1, VPS52, AFT1, SOD1, OCT1, DAL81, LEM3, BNI1, URE2, VPS27, GLR1, PHO85, VMA13, CTR1, PRS3, SLT2, VMA8, GLY1 |
Response to inorganic substances | 7 | −5.59 | YCF1, TPS1, GSH1, SOD1, YAP1, CCS1, URE2 |
Transportation regulation | 7 | −4.27 | PEP3, FKS1, VPS33, AFT1, LDB19, PHO85, SLT2 |
Regulation of DNA-binding transcription factor activity | 3 | −3.9 | SOD1, URE2, PHO85 |
Autophagy | 9 | −3.8 | VPS33, VPS52, PAF1, GTR2, PEP12, VPS27, PHO85, SLT2, OSH3 |
Cell size regulation | 4 | −3.79 | FKS1, TOM1, PRS3, SLT2 |
Response to metal ions | 4 | −3.79 | YCF1, GSH1, YAP1, URE2 |
Function | Number | Log10 (p) | Genes |
---|---|---|---|
Fungal-type vacuolar membrane | 8 | −2.93 | PEP3, VPS33, YCF1, VOA1, GTR2, PEP12, VMA13, VMA8 |
Transferase complex | 9 | −1.9 | FKS1, ADA2, TPS1, PAF1, GCN5, MDM20, PHO85, PRS3, ANP1 |
ATPase complex | 3 | −1.57 | RSC1, LEM3, IES6 |
Function | Number | Log10 (p) | Genes |
---|---|---|---|
Antioxidant activity | 4 | −3.68 | SOD1, CCS1, URE2, GLR1 |
Transcription coregulator activity | 5 | −2.91 | ADA2, GCN5, DAL81, URE2, GCR2 |
Phospholipid binding | 5 | −2.49 | PEP3, VPS33, ADA2, VPS27, OSH3 |
Ras GTPase binding | 4 | −2.3 | LTE1, VPS52, KAP114, BNI1 |
ATPase activity, coupled with the transmembrane movement of substances | 3 | −1.6 | YCF1, VMA13, VMA8 |
Transferase activity, transferring hexosyl groups | 3 | −1.38 | FKS1, TPS1, ANP1 |
Function | Number | Log10 (p) | Genes |
---|---|---|---|
Glutathione metabolism | 4 | −4.18 | IDP1, GSH1, URE2, GLR1 |
Phagosome | 3 | −2.41 | VPS27, VMA13, VMA8 |
Autophagy | 4 | −2.1 | PEP3, VPS33, PHO85, SLT2 |
Signaling pathway | 4 | −1.65 | FKS1, PAF1, BNI1, SLT2 |
Biosynthesis of amino acids | 4 | −1.55 | IDP1, PRS3, GLY1, TRP2 |
Function | Number | Log10 (p) | Genes |
---|---|---|---|
Activator | 7 | 0.007 | GCR2, GCN5, DAL81, PAF1, AFT1, POP2, YAP1 |
Transcription regulation | 11 | 0.011 | TOM1, ADA2, GCR2, GCN5, DAL81, RSC1, PAF1, AFT1, IES6, POP2, YAP1 |
Phosphoprotein | 29 | 0.012 | TOM1, LTE1, VPS52, VPS27, DAL81, LEM3, PEP12, PEP3, ERG6, VPS33, YAP1, CTR1, SHE1, PAF1, RPS6A, LDB19, GCR2, BNI1, TRP2, PHO85, FKS1, RSC1, YCF1, GLY1, POP2, SLT2, CKB1, OSH3, SOD1 |
Ubl conjugation | 10 | 0.019 | RMR1, PHO85, FKS1, VPS27, GLY1, RPS6A, PEP12, LDB19, CTR1, SOD1 |
Transcription | 11 | 0.021 | TOM1, ADA2, GCR2, GCN5, DAL81, RSC1, PAF1, AFT1, IES6, POP2, YAP1 |
Vacuole | 6 | 0.024 | VMA13, YCF1, VPS33, PEP3, GTR2, VOA1 |
Copper | 3 | 0.029 | CCS1, CTR1, SOD1 |
Disulfide bond | 4 | 0.048 | CCS1, GLR1, YAP1, SOD1 |
Cadmium resistance | 2 | 0.055 | YCF1, YAP1 |
Metal-binding | 12 | 0.075 | ADA2, OCT1, TRP2, CCS1, VPS27, DAL81, AFT1, IDP1, POP2, PRS3, PEP3, SOD1 |
Bromodomain | 2 | 0.089 | GCN5, RSC1 |
Isopeptide bond | 8 | 0.095 | PHO85, FKS1, VPS27, GLY1, RPS6A, LDB19, CTR1, SOD1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xian, J.; Ni, L.; Liu, C.; Li, J.; Cao, Y.; Qin, J.; Liu, D.; Wang, X. Genome-Scale Screening of Saccharomyces cerevisiae Deletion Mutants to Gain Molecular Insight into Tolerance to Mercury Ions. J. Fungi 2024, 10, 492. https://doi.org/10.3390/jof10070492
Xian J, Ni L, Liu C, Li J, Cao Y, Qin J, Liu D, Wang X. Genome-Scale Screening of Saccharomyces cerevisiae Deletion Mutants to Gain Molecular Insight into Tolerance to Mercury Ions. Journal of Fungi. 2024; 10(7):492. https://doi.org/10.3390/jof10070492
Chicago/Turabian StyleXian, Jianing, Leilei Ni, Chengkun Liu, Jiyang Li, Yuhang Cao, Jie Qin, Dongwu Liu, and Xue Wang. 2024. "Genome-Scale Screening of Saccharomyces cerevisiae Deletion Mutants to Gain Molecular Insight into Tolerance to Mercury Ions" Journal of Fungi 10, no. 7: 492. https://doi.org/10.3390/jof10070492
APA StyleXian, J., Ni, L., Liu, C., Li, J., Cao, Y., Qin, J., Liu, D., & Wang, X. (2024). Genome-Scale Screening of Saccharomyces cerevisiae Deletion Mutants to Gain Molecular Insight into Tolerance to Mercury Ions. Journal of Fungi, 10(7), 492. https://doi.org/10.3390/jof10070492