Homologous Delta-12 Fatty Acid Desaturase (FAD2) Genes Affect Gene Expression and Linoleic Acid Levels in Lentinula edodes under Heat Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains
2.2. Acquisition of Gene Sequences
2.3. Bioinformatic Analysis
2.4. Heat Stress Treatment
2.5. RNA Extraction and cDNA Reverse Transcription
2.6. RT-qPCR Analysis of Gene Expression
2.7. Detection of Fatty Acid Desaturase (FAD2) by an ELISA Kit
2.8. Analysis of the Fatty Acid Content by Gas Chromatography-Mass Spectrometry
2.9. Statistical Analysis
3. Results
3.1. Sequence Alignment and Phylogenetic Profile of the FAD2 Protein
3.2. Bioinformatic Analysis of Homologous FAD2 Proteins in L. edodes
3.3. Differential Expression of FAD2 Genes under Heat Stress
3.4. Activity of FAD2 under Heat Stress
3.5. Analysis of the Linoleic Acid Contents of 18 and 18N44 under Heat Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watanabe, T.; Tsuda, S.; Nishimura, H.; Honda, Y.; Watanabe, T. Characterization of a Δ12-fatty acid desaturase gene from Ceriporiopsis subvermispora, a selective lignin-degrading fungus. Appl. Microbiol. Biotechnol. 2010, 87, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Minto, R.E.; Gibbons, W.J., Jr.; Cardon, T.B.; Lorigan, G.A. Synthesis and conformational studies of a transmembrane domain from a diverged microsomal Δ12-desaturase. Anal. Biochem. 2002, 308, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Horváth, I.; Glatz, A.; Varvasovszki, V.; Török, Z.; Páli, T.; Balogh, G.; Kovács, E.; Nádasd, L.; Benkö, S.; Joó, F.; et al. Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: Identification of hsp17 as a “fluidity gene”. Proc. Natl. Acad. Sci. USA 1998, 95, 3513–3518. [Google Scholar] [CrossRef] [PubMed]
- Vigh, L.; Maresca, B.; Harwood, J.L. Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem. Sci. 1998, 23, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Thewke, D.; Kramer, M.; Sinensky, M.S. Transcriptional homeostatic control of membrane lipid composition. Biochem. Biophys. Res. Commun. 2000, 273, 1–4. [Google Scholar] [CrossRef]
- Bossie, M.A.; Martin, C.E. Nutritional regulation of yeast delta-9 fatty acid desaturase activity. J. Bacteriol. 1989, 171, 6409–6413. [Google Scholar] [CrossRef]
- Maresca, B.; Kobayashi, G. Changes in membrane fluidity modulate heat shock gene expression and produced attenuated strains in the dimorphic fungus Histoplasma capsulatum. Arch. Med. Res. 1993, 24, 247–249. [Google Scholar]
- Lyons, J.M.; Raison, J.K. Oxidative Activity of Mitochondria Isolated from Plant Tissues Sensitive and Resistant to Chilling Injury. Plant Physiol. 1970, 45, 386–389. [Google Scholar] [CrossRef]
- Nishida, I.; Murata, N. Chilling sensitivity in plants and cyanobacteria: The Crucial Contribution of Membrane Lipids. Annu. Rev. Plant Biol. 1996, 47, 541–568. [Google Scholar] [CrossRef]
- Sinensky, M. Homeoviscous adaptation—A homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 1974, 71, 522–525. [Google Scholar] [CrossRef]
- Cybulski, L.E.; Albanesi, D.; Mansilla, M.C.; Altabe, S.; Aguilar, P.S.; De Mendoza, D. Mechanism of membrane fluidity optimization: Isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol. Microbiol. 2002, 45, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Wallis, J.G.; Watts, J.L.; Browse, J. Polyunsaturated fatty acid synthesis: What will they think of next? Trends Biochem. Sci. 2002, 27, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.T.; Nara, T.Y. Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. Annu. Rev. Nutr. 2004, 24, 345–376. [Google Scholar] [CrossRef] [PubMed]
- Buist, P.H. Fatty acid desaturases: Selecting the dehydrogenation channel. Nat. Prod. Rep. 2004, 21, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.L.; Padilla, M.N.; Mancha, M.; Martinez-Rivas, J.M. Expression analysis identifies FAD2-2 as the olive oleate desaturase gene mainly responsible for the linoleic acid content in virgin olive oil. J. Agric. Food Chem. 2009, 57, 6199–6206. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.L.; Padilla, M.N.; Sicardo, M.D.; Mancha, M.; Martinez-Rivas, J.M. Effect of different environmental stresses on the expression of oleate desaturase genes and fatty acid composition in olive fruit. Phytochemistry 2011, 72, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Li, J.; Qin, P.; He, M.; Yu, X.; Zhao, K.; Zhang, X.; Ma, M.; Chen, Q.; Chen, X.; et al. Identification and evaluation of reference genes for qRT-PCR studies in Lentinula edodes. PLoS ONE 2018, 13, e0190226. [Google Scholar] [CrossRef] [PubMed]
- Holthuis, J.C.; Menon, A.K. Lipid landscapes and pipelines in membrane homeostasis. Nature 2014, 510, 48–57. [Google Scholar] [CrossRef] [PubMed]
- De Mendoza, D. Temperature sensing by membranes. Annu. Rev. Microbiol. 2014, 68, 101–116. [Google Scholar] [CrossRef]
- Ma, D.K.; Li, Z.; Lu, A.Y.; Sun, F.; Chen, S.; Rothe, M.; Menzel, R.; Sun, F.; Horvitz, H.R. Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids. Cell 2015, 161, 1152–1163. [Google Scholar] [CrossRef]
- Schoug, A.; Fischer, J.; Heipieper, H.J.; Schnürer, J.; Hakansson, S. Impact of fermentation pH and temperature on freeze-drying survival and membrane lipid composition of Lactobacillus coryniformis Si3. J. Ind. Microbiol. Biot. 2008, 35, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Sakai, H.; Kajiwara, S. Cloning and functional characterization of a Δ12 fatty acid desaturase gene from the basidiomycete Lentinula edodes. Mol. Genet. Genom. 2005, 273, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.X.; Zhang, Y.R.; Ren, Y.F.; Zhao, Y.; Song, X.X.; Yang, H.L.; Chen, M.J. Composition and contents of fatty acids and amino acids in the mycelia of Lentinula edodes. Food Sci. Nutr. 2023, 11, 4038–4046. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Z.P.; Ren, Y.F.; Zhang, M.Y.; Song, X.X.; Zha, L.; Yang, H.L.; Chen, M.J. Effect of high temperature stress on fatty acids in mycelia of Lentinula edodes. Mol. Plant Breed. 2023, 21, 2373–2377. (In Chinese) [Google Scholar]
- Zhang, B.F. Breeding Lentinus edodes Thermotolerant Strains by UV Mutagenesis. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2013. (In Chinese). [Google Scholar]
- Wang, L.N.; Zhao, Y.; Zhang, B.F.; Chen, M.J. Breeding thermo-tolerant strains of Lentinula edodes by UV induced protoplast mutagenesis. Microbiol. China 2014, 41, 1350–1357. (In Chinese) [Google Scholar]
- Qin, L.H.; Song, C.Y.; Tan, Q.; Chen, M.J.; Pan, Y.J. Use of ITS and ISSR markers to identify cultivated strains for Lentinula edodes. Mycosystema 2006, 25, 94–100. (In Chinese) [Google Scholar]
- Liu, J.Y.; Ying, Z.H.; Liu, F.; Liu, X.R.; Xie, B.G. Evaluation of the use of scar markers for screening genetic diversity of Lentinula edodes strains. Curr. Microbiol. 2012, 64, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Xin, M.M. The Gene Expression and Function Study of Hydrophobin and Heat Shock Proteins from Lentinula edodes. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2016. (In Chinese). [Google Scholar]
- Chen, L.; Gong, Y.; Cai, Y.; Liu, W.; Zhou, Y.; Xiao, Y.; Xu, Z.; Liu, Y.; Lei, X.; Wang, G.; et al. Genome Sequence of the Edible Cultivated Mushroom Lentinula edodes (Shiitake) Reveals Insights into Lignocellulose Degradation. PLoS ONE 2016, 11, e0160336. [Google Scholar] [CrossRef] [PubMed]
- Notredame, C.; Higgins, D.G.; Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000, 302, 205–217. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar]
- Bendtsen, J.D.; Nielsen, H.; von Heijne, G.; Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004, 340, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.X.; Ikeda, M.; Shimizu, T. ConPred_elite: A highly reliable approach to transmembrane topology predication. Comput. Biol. Chem. 2004, 28, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.; Engelbrecht, J.; Brunak, S.; von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. Des. Sel. 1997, 10, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Emanuelsson, O.; Nielsen, H.; Brunak, S.; von Heijne, G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000, 300, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Emanuelsson, O.; Brunak, S.; von Heijne, G.; Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2007, 2, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Freeman, W.M.; Walker, S.J.; Vrana, K.E. Quantitative RT-PCR: Pitfalls and Potential. Biotechniques 1999, 26, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Chen, W.; Yang, J. Another formula for calculating the gene change rate in real-time RT-PCR. Mol. Biol. Rep. 2009, 36, 2165–2168. [Google Scholar] [CrossRef] [PubMed]
- Romanowski, T.; Markiewicz, A.; Bednarz, N.; Bielawski, K.P. Housekeeping genes as a reference in quantitative real-time RT-PCR. Postepy Hig. Med. Dosw. 2007, 61, 500–510. [Google Scholar]
- Zhao, X.; Yang, H.L.; Chen, M.J.; Song, X.X.; Yu, C.X.; Zhao, Y.; Wu, Y.J. Reference Gene Selection for Quantitative Real-Time PCR of Mycelia from Lentinula edodes under High-Temperature Stress. Biomed Res. Int. 2018, 2018, 1670328. [Google Scholar] [CrossRef]
- Shanklin, J.; Whittle, E.; Fox, B.G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 1994, 33, 12787–12794. [Google Scholar] [CrossRef]
- Nayeri, F.D.; Yarizade, K. Bioinformatics study of delta-12 fatty acid desaturase 2 (FAD2) gene in oilseeds. Mol. Biol. Rep. 2014, 41, 5077–5087. [Google Scholar] [CrossRef]
- Chi, X.; Zhang, Z.; Chen, N.; Zhang, X.; Wang, M.; Chen, M.; Wang, T.; Pan, L.; Chen, J.; Yang, Z.; et al. Isolation and functional analysis of fatty acid desaturase genes from peanut (Arachis hypogaea L.). PLoS ONE 2017, 12, e0189759. [Google Scholar] [CrossRef]
- Dar, A.A.; Choudhury, A.R.; Kancharla, P.K.; Arumugam, N. The FAD2 Gene in Plants: Occurrence, Regulation, and Role. Front. Plant Sci. 2017, 8, 1789. [Google Scholar] [CrossRef]
- Craig, W.; Lenzi, P.; Scotti, N.; De Palma, M.; Saggese, P.; Carbone, V.; Curran, N.M.; Magee, A.M.; Medgyesy, P.; Kavanagh, T.A.; et al. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Res. 2008, 17, 769–782. [Google Scholar] [CrossRef]
- Okuley, J.; Lightner, J.; Feldmann, K.; Yadav, N.; Lark, E.; Browse, J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell. 1994, 6, 147–158. [Google Scholar]
- Zhang, M.; Barg, R.; Yin, M.; Gueta-Dahan, Y.; Leikin-Frenkel, A.; Salts, Y.; Shabtai, S.; Ben-Hayyim, G. Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J. 2005, 44, 361–371. [Google Scholar] [CrossRef]
- Murakami, Y.; Tsuyama, M.; Kobayashi, Y.; Kodama, H.; Iba, K. Trienoic fatty acids and plant tolerance of high temperature. Science 2000, 287, 476–479. [Google Scholar] [CrossRef]
- Li, D.; Li, K.; Zhou, G.; He, S. Effects of Temperature and Salt Stress on the Expression of delta-12 Fatty Acid Desaturase Genes and Fatty Acid Compositions in Safflower. Int. J. Mol. Sci. 2023, 24, 2765. [Google Scholar] [CrossRef]
- Sánchez-García, A.; Mancha, M.; Heinz, E.; Martínez-Rivas, J.M. Differential temperature regulation of three sunflower microsomal oleate desaturase (FAD2) isoforms overexpressed in Saccharomyces cerevisiae. Eur. J. Lipid. Sci. Technol. 2004, 106, 583–590. [Google Scholar] [CrossRef]
- Peyou-Ndi, M.M.; Watts, J.L.; Browse, J. Identification and characterization of an animal Δ12 fatty acid desaturase gene by heterologous expression in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 2000, 376, 399–408. [Google Scholar] [CrossRef]
- Gargano, S.; Lallo, G.D.; Kobayashi, G.S.; Maresca, B. A temperature-sensitive strain of Histoplasma capsulatum has an altered Δ9-fatty acid desaturase geneacid desaturase gene. Lipids 1995, 30, 899–906. [Google Scholar] [CrossRef]
- Wu, C.-C.; Ohashi, T.; Kajiura, H.; Sato, Y.; Misaki, R.; Honda, K.; Limtong, S.; Fujiyama, K. Functional characterization and overexpression of Δ12-desaturase in the oleaginous yeast Rhodotorula toruloides for production of linoleic acid-rich lipids. J. Biosci. Bioeng. 2021, 131, 631–639. [Google Scholar] [CrossRef]
- Sakai, H.; Kajiwara, S. A stearoyl-CoA-specific Δ9 fatty acid desaturase from the basidiomycete Lentinula edodes. Biosci. Biotechnol. Biochem. 2003, 67, 2431–2437. [Google Scholar] [CrossRef]
- Xiao, R.; Zou, Y.; Guo, X.; Li, H.; Lu, H. Fatty acid desaturases (FADs) modulate multiple lipid metabolism pathways to improve plant resistance. Mol. Biol. Rep. 2022, 49, 9997–10011. [Google Scholar] [CrossRef]
- Sharma, A.; Chauhan, R.S. In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants. Comp. Funct. Genom. 2012, 2012, 914843. [Google Scholar] [CrossRef]
- Cao, S.; Zhou, X.R.; Wood, C.C.; Green, A.G.; Singh, S.P.; Liu, L.; Liu, Q. A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.). BMC Plant Biol. 2013, 13, 5. [Google Scholar] [CrossRef]
- Kajiwara, S.; Oura, T.; Shishido, K. Cloning of a fatty acid synthase component FAS1 gene from Saccharomyces kluyveri and its functional complementation of S. cerevisiae fas1 mutant. Yeast 2001, 18, 1339–1345. [Google Scholar] [CrossRef]
- Oura, T.; Kajiwara, S. Saccharomyces kluyveri FAD3 encodes an ω3 fatty acid desaturase. Microbiology 2004, 150, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Los, D.A.; Murata, N. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta (BBA)-Biomembr. 2004, 1666, 142–157. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Cossins, A.R. Temperature adaptation of biological membranes: Differential homoeoviscous responses in brush-border and basolateral membranes of carp intestinal mucosa. Biochim. Biophys. Acta (BBA)-Biomembr. 1990, 1026, 195–203. [Google Scholar] [CrossRef]
- Pearcy, R.W. Effect of Growth Temperature on the Fatty Acid Composition of the Leaf Lipids in Atriplex lentiformis (Torr.) Wats. Plant Physiol. 1978, 61, 484–486. [Google Scholar] [CrossRef]
- Dias, A.S.; Barreiro, M.G.; Campos, P.S.; Ramalho, J.C.; Lidon, F.C. Wheat cellular membrane thermotolerance under heat stress. J. Agron. Crop Sci. 2010, 196, 100–108. [Google Scholar] [CrossRef]
- Croxon, L.; Maginnis, C. Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast. Proc. Natl. Acad. Sci. USA 1996, 93, 3870–3875. [Google Scholar]
- Falcone, D.L.; Ogas, J.P.; Somerville, C.R. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol. 2004, 4, 17. [Google Scholar] [CrossRef]
- Tang, G.Q.; Novitzky, W.P.; Griffin, H.C.; Huber, S.C.; Dewey, R.E. Oleate desaturase enzymes of soybean: Evidence of regulation through differential stability and phosphorylation. Plant J. 2005, 44, 433–446. [Google Scholar] [CrossRef]
- Upchurch, R.G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 2008, 30, 967–977. [Google Scholar] [CrossRef]
- Los, D.A.; Murata, N. Structure and expression of fatty acid desaturases. Biochim. Biophys. Acta (BBA)-Lipids Lipid Metab. 1998, 1394, 3–15. [Google Scholar] [CrossRef]
- Routaboul, J.M.; Fischer, S.F.; Browse, J. Trienoic fatty acids are required to maintain chloroplast function at low temperatures. Plant Physiol. 2000, 124, 1697–1705. [Google Scholar] [CrossRef]
- Teixeira, M.C.; Coelho, N.; Olsson, M.E.; Brodelius, P.E.; Carvalho, I.S.; Brodelius, M. Molecular cloning and expression analysis of three omega-6 desaturase genes from purslane (Portulaca oleracea L.). Biotechnol. Lett. 2009, 31, 1089–1101. [Google Scholar] [CrossRef]
- Kargiotidou, A.; Deli, D.; Galanopoulou, D.; Tsaftaris, A.; Farmaki, T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J. Exp. Bot. 2008, 59, 2043–2056. [Google Scholar] [CrossRef]
Gene | Forward Sequence (5′-3′) | Reverse Sequence (5′-3′) |
---|---|---|
FAD2-2 | TGCATTTAGGTCGTCGCTGT | GTTGCGAAGAGACCAGTCCA |
FAD2-3 | TCCCATTTATACCGCTGCCC | GACGACGGACTGAAGTGGTT |
FAD2-4 | TGTATGCAGGTGTTGGGCTT | CCTGATCGCTCTTGAGGCTT |
FAD2-5 | TCAAGAGCCACGGATGGAAC | AATCGTCGGATCGCTGTGTT |
FAD2-6 | CAAAACTCGCTTCGCCACAA | TTGGAAGGCATAAACGGGGT |
FAD2-8 | ATGCCTTTCTACCACGGTCC | ACACAACATCACCCTCGTCC |
TUB | GACATTTGCTTCCGAACCCT | CGGACATAACAAGGGACACA |
Protein | Amino Acids | MW (Da) | PI | Atomic Formula | Instability Index | GRAVY | (Arg + Lys) Residues | (Asp + Glu) Residues |
---|---|---|---|---|---|---|---|---|
FAD2-2 | 361 | 40,169.33 | 6.61 | C1864H2805N485O490S10 | 37.92 | 0.219 | 22 | 26 |
FAD2-3 | 421 | 48,311.55 | 8.74 | C2222H3340N586O594S17 | 33.39 | −0.105 | 40 | 34 |
FAD2-4 | 413 | 47,651.61 | 8.93 | C2200H3291N575O590S13 | 41.30 | −0.015 | 39 | 32 |
FAD2-5 | 427 | 49,620.25 | 8.92 | C2314H3449N587O605S14 | 37.87 | −0.076 | 44 | 38 |
FAD2-6 | 416 | 48,173.29 | 9.22 | C2238H3314N578O588S14 | 44.70 | 0.003 | 38 | 29 |
FAD2-8 | 422 | 49,625.57 | 6.39 | C2328H3351N587O603S13 | 30.20 | −0.287 | 41 | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Jiang, J.; Chen, M.; Song, X.; Yu, C.; Chen, H.; Zhao, Y. Homologous Delta-12 Fatty Acid Desaturase (FAD2) Genes Affect Gene Expression and Linoleic Acid Levels in Lentinula edodes under Heat Stress. J. Fungi 2024, 10, 496. https://doi.org/10.3390/jof10070496
Yang H, Jiang J, Chen M, Song X, Yu C, Chen H, Zhao Y. Homologous Delta-12 Fatty Acid Desaturase (FAD2) Genes Affect Gene Expression and Linoleic Acid Levels in Lentinula edodes under Heat Stress. Journal of Fungi. 2024; 10(7):496. https://doi.org/10.3390/jof10070496
Chicago/Turabian StyleYang, Huanling, Jun Jiang, Mingjie Chen, Xiaoxia Song, Changxia Yu, Hongyu Chen, and Yan Zhao. 2024. "Homologous Delta-12 Fatty Acid Desaturase (FAD2) Genes Affect Gene Expression and Linoleic Acid Levels in Lentinula edodes under Heat Stress" Journal of Fungi 10, no. 7: 496. https://doi.org/10.3390/jof10070496
APA StyleYang, H., Jiang, J., Chen, M., Song, X., Yu, C., Chen, H., & Zhao, Y. (2024). Homologous Delta-12 Fatty Acid Desaturase (FAD2) Genes Affect Gene Expression and Linoleic Acid Levels in Lentinula edodes under Heat Stress. Journal of Fungi, 10(7), 496. https://doi.org/10.3390/jof10070496