Novel Insights into Sporotrichosis and Diabetes
Abstract
:1. Introduction
2. Sporotrichosis: Etiological Agents
3. Epidemiology of Sporotrichosis in Brazil
4. Transmission and Clinical Manifestations of Sporotrichosis: Humans and Animals
5. Sporotrichosis: Immune Response
6. Diabetes Mellitus: Types and Epidemiology in Brazil
7. Immune Response of Patients with DM
8. Impact of Immunosuppression on the Incidence of Sporotrichosis
- (a)
- Individuals with diabetes have lower levels of NADPH due to high intracellular glucose levels, which impairs the regeneration of molecules that play a fundamental role in antioxidative mechanisms within the cell and consequently increases cell susceptibility to oxidative stress;
- (b)
- A hyperglycemic environment reduces the mobilization of polymorphonuclear leukocytes (PMNs), which alters their adherence, impairs their chemotaxis and phagocytic activity (especially in the presence of acidosis), inhibits the enzymatic activity of glucose-6-phosphate dehydrogenase and the transendothelial transmigration of PMNs, and increases their apoptosis rate [106];
- (c)
- Some microorganisms become more virulent in environments with high glucose contents, in addition to exhibiting greater adhesion to the cells of individuals with diabetes than to the cells of nondiabetic individuals (e.g., Candida albicans) due to the inefficient and delayed response of the cellular immune system;
- (d)
- Individuals with diabetes have higher serum levels of IL-1β, IL-6, IL-10, and TNF-α, but they have lower levels of IL-10, IL-22, and IL-6 when exposed to glucose stimulation than control individuals. Therefore, the presence of glucose leads to a greater cytokine production at rest; however, this cytokine production is impaired compared to the absence of glucose [1,107]. Additionally, the production of IL-2, which is important in the inflammatory process and necessary for an effective immune response, decreases after glucose stimulation [108].
9. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geerlings, S.E.; Hoepelman, A.I.M. Immune dysfunction in patients with diabetes mellitus (DM). J. Artic. FEMS Immunol. Med. Microbiol. 1999, 26, 259–265. [Google Scholar] [CrossRef]
- Ayala, T.S.; Tessaro, F.H.G.; Jannuzzi, G.P.; Bella, L.M.; Ferreira, K.S.; Martins, J.O. High Glucose Environments Interfere with Bone Marrow-Derived Macrophage Inflammatory Mediator Release, the TLR4 Pathway and Glucose Metabolism. Sci. Rep. 2019, 9, 11447. [Google Scholar] [CrossRef]
- Almeida-Paes, R.; Frases, S.; Fialho Monteiro, P.C.; Gutierrez-Galhardo, M.C.; Zancopé-Oliveira, R.M.; Nosanchuk, J.D. Growth conditions influence melanization of Brazilian clinical Sporothrix schenckii isolates. Microbes Infect. 2009, 11, 554–562. [Google Scholar] [CrossRef]
- Oliveira, M.M.; Almeida-Paes, R.; Gutierrez-Galhardo, M.C.; Zancope-Oliveira, R.M. Molecular identification of the Sporothrix schenckii complex. Rev. Iberoam. Micol. 2014, 31, 2–6. [Google Scholar] [CrossRef]
- Marimon, R.; Cano, J.; Gene, J.; Sutton, D.A.; Kawasaki, M.; Guarro, J. Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J. Clin. Microbiol. 2007, 45, 3198–3206. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Choappa, R.C.; Fernandes, G.F.; De Hoog, G.S.; De Camargo, Z.P. Sporothrix chilensis sp. nov. (Ascomycota: Ophiostomatales), a soil-borne agent of human sporotrichosis with mild-pathogenic potential to mammals. Fungal Biol. 2016, 120, 246–264. [Google Scholar] [CrossRef]
- Orofino-Costa, R.; Rodrigues, A.M.; De Macedo, P.M.; Bernardes-Engemann, A.R. Sporotrichosis: An update on epidemiology, etiopathogenesis, laboratory and clinical therapeutics. An. Bras. Dermatol. 2017, 92, 606–620. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Della Terra, P.P.; Gremião, I.D.; Pereira, S.A.; Orofino-Costa, R.; De Carmargo, Z.P. The threat of emerging and re-emerging pathogenic Sporothrix species. Mycopathologia 2020, 185, 813–842. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, J. Sporotrichosis. N. Engl. J. Med. 2019, 380, 771. [Google Scholar] [CrossRef]
- Aram, H. Sporotrichosis. A historical approach. Int. J. Dermatol. 1986, 25, 203–205. [Google Scholar] [CrossRef]
- Oliveira, M.M.; Almeida-Paes, R.; Muniz, M.M.; Gutierrez-Galhardo, M.C.; Zancope-Oliveira, R.M. Phenotypic and molecular identification of Sporothrix isolates from an epidemic area of sporotrichosis in Brazil. Mycopathologia 2011, 172, 257–267. [Google Scholar] [CrossRef]
- Arrillaga-Moncrieff, I.; Capilla, J.; Mayayo, E.; Marimon, R.; Mariné, R.; Gené, J.; Cano, J.; Guarro, J. Different virulence levels of the species of Sporothrix in a murine model. Clin. Microbiol. Infect. 2009, 15, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Mario, D.A.; Santos, R.C.; Denardi, L.B.; De Vaucher, R.A.; Santurio, J.M.; Alves, S.H. Interference of melanin in the susceptibility profile of Sporothrix species to amphotericin B. Rev. Iberoam. Micol. 2016, 33, 21–25. [Google Scholar] [CrossRef]
- Almeida, J.R.F.; Jannuzzi, G.P.; Kaihami, G.H.; Breda, L.C.D.; Ferreira, K.S.; Almeida, S.R. An immunoproteomic approach revealing peptides from Sporothrix brasiliensis that induce a cellular imune response in subcutaneous sporotrichosis. Sci. Rep. 2018, 8, 4192. [Google Scholar] [CrossRef]
- Brito, M.M.; Conceicao-Silva, F.; Morgado, F.N.; Raibolt, P.S.; Schubach, A.; Schubach, T.P.; Schaffer, G.M.; Borba, C.M. Comparison of virulence of different Sporothrix schenckii clinical isolates using experimental murine model. Med. Mycol. 2007, 45, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Castro, R.A.; Kubitschek-Barreira, P.H.; Teixeira, P.A.; Sanches, G.F.; Teixeira, M.M.; Quintella, L.P.; Almeida, S.R.; Camargo, Z.P.; Felipe, M.S.S.; Saouza, W.; et al. Differences in cell morphometry, cell wall topography and Gp70 expression correlate with the virulence of Sporothrix brasiliensis clinical isolates. PLoS ONE 2013, 8, e75656. [Google Scholar] [CrossRef]
- Queiroz-Telles, F.; Buccheri, R.; Benard, G. Sporotrichosis in Immunocompromised Hosts. J. Fungi 2019, 5, 8. [Google Scholar] [CrossRef]
- Mialski, R.; Oliveira, J.N., Jr.; Silva, L.H.; Kono, A.; Pinheiro, R.L.; Teixeira, M.J.; Gomes, R.R.; Queiroz-Telles, F.; Pinto, F.G.; Benard, G. Chronic Meningitis and Hydrocephalus due to Sporothrix brasiliensis in Immunocompetent Adults: A Challenging Entity. Open Forum Infect. Dis. 2018, 5, ofy081. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.A.; Freitas, D.F.S.; Oliveira, R.V.C.; Fichman, V.; Varon, A.G.; Freitas, A.D.; Lamas, C.C.; Andrade, H.B.; Veloso, V.G.; Almeida-Paes, R.; et al. Meningeal Sporotrichosis Due to Sporothrix brasiliensis: A 21-Year Cohort Study from a Brazilian Reference Center. J. Fungi 2022, 9, 17. [Google Scholar] [CrossRef]
- Cruz, L.C.H. Sporothrix schenckii complex. Review of part of the literature and considerations on diagnosis and epidemiology. (Commemorative Edition). Vet. E Zootec. 2013, 20, 8–28. [Google Scholar]
- Montenegro, H.; Rodrigues, A.M.; Galvão Dias, M.A.; Da Silva, E.A.; Bernardi, F.; Camargo, Z.P. Feline sporotrichosis due to Sporothrix brasiliensis: An emerging animal infection in São Paulo, Brazil. BMC Vet. Res. 2014, 10, 269. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; Teixeira, M.M.; De Hoog, G.S.; Schubach, T.M.P.; Pereira, S.A.; Fernandes, G.F.; Bezerra, L.M.L.; Felipe, M.S.; De Camargo, Z.P. Phylogenetic analysis reveals a high prevalence of Sporothrix brasiliensis in feline sporotrichosis outbreaks. PLoS Negl. Trop. Dis. 2013, 7, e2281. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, J.A.; Beale, M.A.; Hagen, F.; Fisher, M.C.; Kano, R.; Bonifaz, A.; Toriello, C.; Negroni, R.; Rego, R.S.d.M.; Gremião, I.D.F.; et al. Trends in the molecular epidemiology and population genetics of emerging Sporothrix species. Stud. Mycol. 2021, 100, 100129. [Google Scholar] [CrossRef] [PubMed]
- Morgado, D.S.; Castro, R.; Ribeiro-Alves, M.; Corrêa-Moreira, D.; Castro-Alves, J.; Pereira, S.A.; Menezes, R.C.; Oliveira, M.M.E. Global distribution of animal sporotrichosis: A systematic review of Sporothrix sp. identified using molecular tools. Curr. Res. Microb. Sci. 2022, 3, 100140. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Paes, R.; Bailão, A.M.; Pizzini, C.V.; Reis, R.S.; Soares, C.M.; Peralta, J.M.; Gutierrez-Galhardo, M.C.; Zancopé-Oliveira, R.M. Cell-free antigens of Sporothrix brasiliensis: Antigenic diversity and application in an immunoblot assay. Mycoses 2012, 55, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.; De Hoog, G.S.; De Cassia Pires, D.; Brihante, R.S.N.; Sidrim, J.J.d.C.; Gadelha, M.F.; Colombo, A.L.; De Camargo, Z.P. Genetic diversity and antifungal susceptibility profiles in causative agents of sporotrichosis. BMC Infect. Dis. 2014, 23, 219. [Google Scholar] [CrossRef] [PubMed]
- Marimon, R.; Serena, C.; Gené, J.; Cano, J.; Guarro, J. In vitro antifungal susceptibilities of five species of Sporothrix. Antimicrob. Agents Chemother. 2008, 52, 732–734. [Google Scholar] [CrossRef]
- Almeida-Paes, R.; Figueiredo-Carvalho, M.H.; Brito-Santos, F.; Almeida-Silva, F.; Oliveira, M.M.; Zancopé-Oliveira, R.M. Melanins protect Sporothrix brasiliensis and Sporothrix schenckii from the antifungal effects of terbinafine. PLoS ONE 2016, 11, e0152796. [Google Scholar] [CrossRef]
- Veronesi, R.; Focaccia, R. Tratado de Infectologia, 9th ed.; Editora Atheneu: São Paulo, Brazil, 1997; Volume 2, pp. 1044–1045. [Google Scholar]
- SECRETARY OF STATE FOR HEALTH (SSH). Technical Note Sporotrichosis, Government of the State of Mato Grosso do Sul. Health Surveillance, Technical Management of Zoonoses/CEVE/DGVS/SES. Nº 01/2021, 2021. Available online: https://www.vs.saude.ms.gov.br/wp-content/uploads/2021/08/Nota-tecnica-esporotricose.pdf (accessed on 20 July 2024).
- Conti-Diaz, I.A. Epidemiology of sporotrichosis in Latin America. Mycopathologia 1989, 108, 113–116. [Google Scholar] [CrossRef]
- Schubach, A.; De Lima Barros, M.B.; Wanke, B. Epidemic sporotrichosis. Curr. Opin. Infect. Dis. 2008, 21, 129–133. [Google Scholar] [CrossRef]
- Barros, M.B.; De Almeida Paes, R.; Schubach, A.O. Sporothrix schenckii and Sporotrichosis. Clin. Microbiol. Rev. 2011, 24, 633–654. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.A.; Gremião, I.D.; Kitada, A.A.; Boechat, J.S.; Viana, P.G.; Schubach, T.M. The epidemiological scenario of feline sporotrichosis in Rio de Janeiro, State of Rio de Janeiro, Brazil. Rev. Soc. Bras. Med. Trop. 2014, 47, 392–393. [Google Scholar] [CrossRef] [PubMed]
- Gremião, I.D.; Miranda, L.H.; Reis, E.G.; Rodrigues, A.M.; Pereira, S.A. Zoonotic epidemic of sporotrichosis: Cat to human transmission. PLoS Pathog. 2017, 13, e1006077. [Google Scholar] [CrossRef] [PubMed]
- Falcão, E.M.M.; De Lima Filho, J.B.; Campos, D.P.; Valle, A.C.F.D.; Bastos, F.I.; Gutierrez-Galhardo, M.C. Hospitalizations and deaths related to sporotrichosis in Brazil (1992–2015). Cad. Saude Publica 2019, 35, e00109218. [Google Scholar] [CrossRef] [PubMed]
- Falcao, E.M.M.; Pires, M.C.S.; Andrade, H.B.; Goncalves, M.L.C.; Almeida-Paes, R.; Do Valle, A.C.F.; Gutierrez-Galhardo, F.M.C.; Freitas, D.F.S. Zoonotic sporotrichosis with greater severity in Rio de Janeiro, Brazil: 118 hospitalizations and 11 deaths in the last 2 decades in a reference institution. Med. Mycol. 2020, 58, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Macêdo-Sales, P.A.; Souza, L.O.P.; Della-Terra, P.P.; Lozoya-Pérez, N.E.; Machado, R.L.D.; Rocha, E.M.D.S.D.; Lopes-Bezerra, L.M.; Guimarães, A.J.; Rodrigues, A.M.; Mora-Montes, H.M.; et al. Coinfection of domestic felines by distinct Sporothrix brasiliensis in the Brazilian sporotrichosis hyperendemic area. Fungal Genet. Biol. 2020, 140, 103397. [Google Scholar] [CrossRef] [PubMed]
- Gremião, I.D.F.; Oliveira, M.M.E.; Monteiro De Miranda, L.H.; Saraiva Freitas, D.F.; Pereira, S.A. Geographic expansion of sporotrichosis, Brazil. Emerg. Infect. Dis. 2020, 26, 621–624. [Google Scholar] [CrossRef]
- Eudes Filho, J.; Santos, I.B.D.; Reis, C.M.S.; Patané, J.S.L.; Paredes, V.; Bernardes, J.; Poggiani, S.; Castro, T.C.B.; Gomez, O.M.; Pereira, S.A.; et al. A novel Sporothrix brasiliensis genomic variant in Midwestern Brazil: Evidence for an older and wider sporotrichosis epidemic. Emerg. Microbes Infect. 2020, 9, 2515–2525. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.E.; Valeriano, C.A.T.; Ferraz, C.E.; Neves, R.P.; Oliveira, M.M.E.; Silva, J.C.A.L.; Magalhães, V.; Lima-Neto, R.G. Epidemiological features and geographical expansion of sporotrichosis in the state of Pernambuco, northeastern Brazil. Future Microbiol. 2021, 16, 1371–1379. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Gonçalves, S.S.; De Carvalho, J.A.; Borba-Santos, L.P.; Rozental, S.; Camargo, Z.P. Current Progress on Epidemiology, Diagnosis, and Treatment of Sporotrichosis and Their Future Trends. J. Fungi 2022, 26, 776. [Google Scholar] [CrossRef]
- Rediguieri, B.C.; Da Cruz Bahiense, I.; De Carvalho, J.A.; Leite, G.R.; Falqueto, A.; Rodrigues, A.M.; Gonçalves, S.S. Clinical, epidemiological, and epizootic features of Sporothrix brasiliensis in Espírito Santo, Brazil. Ecohealth 2022, 19, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Maschio-Lima, T.; Marques, M.D.R.; Lemes, T.H.; Brizzotti-Mazuchi, N.S.; Caetano, M.H.; De Almeida, B.G.; Bianco, L.M.; Monteiro, R.C.; Rodrigues, A.M.; De Camargo, Z.P.; et al. Clinical and epidemiological aspects of feline sporotrichosis caused by Sporothrix brasiliensis and in vitro antifungal susceptibility. Vet. Res. Commun. 2021, 45, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Bernardes-Engemann, A.R.; Almeida, M.A.; Bison, I.; Rabello, V.B.S.; Ramos, M.L.M.; Pereira, S.A.; Almeida-Paes, R.; De Lima Brasil, A.W.; Zancopé-Oliveira, R.M. Anti-Sporothrix Antibody Detection in Domestic Cats as an Indicator of a Possible New Occurrence Area for Sporotrichosis in North Brazil. Mycopathologia 2022, 187, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, T.C.M.; Tommaso, V.G.; Cortez, T.L.; Sinhorini, J.A.; Bastos, P.A.S. Clinical epidemiological profile of cats with sporotrichosis in the city of Sao Paulo in 2020. São Paulo Epidemiol. Bull. 2023, 20, 1–14. [Google Scholar]
- Marques, S.A.; Franco, S.R.; De Camargo, R.M.; Dias, L.D.; Haddad Junior, V.; Fabris, V.E. Sporotrichosis of the domestic cat (Felis catus): Human transmission. Rev. Inst. Med. Trop. Sao Paulo 1993, 35, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Schubach, T.M.; Valle, A.C.; Gutierrez-Galhardo, M.C.; Monteiro, P.C.; Reis, R.S.; Zancope-Oliveira, R.M.; Marzochi, K.N.; Schubach, A. Isolation of Sporothrix schenckii from the nails of domestic cats (Felis catus). Med. Mycol. 2001, 39, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Zhi, H.; Liu, Z. Cutaneous disseminated sporotrichosis associated with diabetes: A case report and literature review. PLoS Neglected Trop. Dis. 2023, 17, e0011647. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.W.; Moraes, S.L. Laboratory diagnosis of the main infectious and autoimmune diseases: Clinical-laboratory correlations. In Fungal Infections, Dematiaceous Fungi—Sporotrichosis, 3rd ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2013; Volume 6, pp. 434–435. [Google Scholar]
- Von Fellmann, H. A case of sporotrichosis of the brain. Helv. Med. Acta 1953, 20, 370–374. [Google Scholar] [PubMed]
- Galhardo, M.C.G.; Silva, M.T.T.; Lima, M.A.; Nunes, E.P.; Schettini, L.E.C.; De Freitas, R.F.; Almeida Paes, R.; Neves, E.S.; Do Valle, A.C.F. Sporothrix schenckii meningitis in AIDS during imune reconstitution syndrome. J. Neurol. Neurosurg. Psychiatry 2010, 81, 696–699. [Google Scholar] [CrossRef]
- Van De Veerdonk, F.L.; Netea, M.G. T-cell Subsets and Antifungal Host Defenses. Curr. Fungal Infect. Rep. 2010, 4, 238–243. [Google Scholar] [CrossRef]
- Jellmayer, J.A.; Ferreira, L.S.; Manente, F.A.; Gonçalves, A.C.; Polesi, M.C.; Batista-Duharte, A.; Carlos, I.Z. Dectin-1 expression by macrophages and related antifungal mechanisms in a murine model of Sporothrix schenckii sensu stricto systemic infection. Microb. Pathog. 2017, 110, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Beltran, S.; Perez-Torres, A.; Coronel-Cruz, C.; Torres-Guerrero, H. Phagocytic receptors on macrophages distinguish between different Sporothrix schenckii morphotypes. Microbes Infect. 2012, 14, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.S.; Tebbets, B. Dimorphism and virulence in fungi. Curr. Opin. Microbiol. 2007, 10, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Da Graça Sgarbi, D.B.; Da Silva, A.J.R.; Carlos, I.Z.; Silva, C.L.; Angluster, J.; Alviano, C.S. Isolation of ergosterol peroxide and its reversion to ergosterol in the pathogenic fungus Sporothrix schenckii. Mycopathologia 1997, 139, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Romero-Martinez, R.; Wheeler, M.; Guerrero-Plata, A.; Rico, G.; Torresguerrero, H. Biosynthesis and Functions of Melanin in Sporothrix schenckii. Infect. Immun. 2000, 68, 3696–3703. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A. Determinants of virulence in the pathogenic fungi. Fungal Biol. Rev. 2007, 21, 130–132. [Google Scholar] [CrossRef] [PubMed]
- Carlos, I.Z.; Sgarbi, D.; Santos, G.; Placeres, M. Sporothrix schenckii Lipid Inhibits Macrophage Phagocytosis: Involvement of Nitric Oxide and Tumour Necrosis Factor-α. Scand. J. Immunol. 2003, 57, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Batista-Duharte, A.; Téllez-Martínez, D.; Jellmayer, J.A.; Portuondo Fuentes, D.L.; Polesi, M.C.; Bavieira, A.M.; Carlos, I.Z. Repeated Exposition to Mercury (II) Chloride Enhances Susceptibility to S. schenckii sensu stricto Infection in Mice. J. Fungi 2018, 4, 64. [Google Scholar] [CrossRef] [PubMed]
- Batista-Duharte, A.; Téllez-Martínez, D.; De Andrade, C.R.; Portuondo, D.L.; Jellmayer, J.A.; Polesi, M.C.; Carlos, I.Z. Sporothrix brasiliensis induces a more severe disease associated with sustained Th17 and regulatory T cells responses than Sporothrix schenckii sensu stricto in mice. Fungal Biol. 2018, 122, 1163–1170. [Google Scholar] [CrossRef]
- Rossato, L.; Dos Santos, S.S.; Ferreira, L.G.; De Almeida, S.R. The impact of the absence of Toll-like receptor-2 during Sporothrix brasiliensis infection. J. Med. Microbiol. 2018, 68, 87–94. [Google Scholar] [CrossRef]
- Rossato, L.; Dos Santos, S.S.; Ferreira, L.G.; De Almeida, S.R. The importance of Toll-like receptor 4 during experimental Sporothrix brasiliensis infection. Med. Mycol. 2019, 57, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Jannuzzi, G.P.; De Almeida, J.R.F.; Paulo, L.N.M.; De Almeida, S.R.; Ferreira, K.S. Intracellular PRRs Activation in Targeting the Immune Response against Fungal Infections. Front. Cell. Infect. Microbiol. 2020, 10, 591970. [Google Scholar] [CrossRef] [PubMed]
- Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 2011, 11, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Kienzle, N.; Olver, S.; Buttigieg, K.; Groves, P.; Janas, M.L.; Baz, A.; Kelso, A. Progressive differentiation and commitment of CD8+ T cells to a poorly cytolytic CD8low phenotype in the presence of IL-4. J. Immunol. 2005, 174, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Celik, S.; Erdogan, S.; Tuzcu, M. Caffeic acid phenethyl ester (CAPE) exhibits significant potential as an antidiabetic and liver-protective agent in streptozotocin-induced diabetic Rats. Pharmacol. Res. 2009, 60, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.Z.; Magliano, D.J.; Herman, W.H.; Shae, J.E. Diabetes: A 21st century challenge. Lancet Diabetes Endrocrinol. 2014, 2, 56–64. [Google Scholar] [CrossRef]
- Guimarães, J.P.T.; Filgueiras, L.R.; Martins, J.O.; Jancar, S. Leukotriene involvement in the insulin receptor pathway and macrophage profiles in muscles from type 1 diabetic mice. Mediat. Inflamm. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Brazilian Diabetes Society (BDS), Brazilian Diabetes Society Guidelines, São Paulo, 2022. Available online: https://diretriz.diabetes.org.br/ (accessed on 20 July 2024).
- Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Braz, M.; Martins, J.O. Diabetes Mellitus and Liver Surgery: The Effect of Diabetes on Oxidative Stress and Inflammation. Hindawi Mediat. Inflamm. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Shah, B.R.; Hux, J.E. Quantifying the risk of infectious diseases for people with diabetes. Diabetes Care 2003, 26, 510–513. [Google Scholar] [CrossRef]
- Schmidt, M.I.; Matos, M.C.; Reichelt, A.J.; Forti, A.C.; Lima, L.; Duncan, B.B. Prevalence of gestational diabetes mellitus—Do the new who criteria make a difference. Diabet Med. 2000, 17, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Gaw, A.; Cowan, R.A.; O’Really, D.S.J.; Stewart, M.J.; Shepherd, J. Clinical Biochemistry, 2nd ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2001. [Google Scholar]
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation (IDF)—Atlas Reports, Type 1 Diabetes Estimates in Children and Adults—2022. Available online: www.diabetesatlas.org (accessed on 20 July 2024).
- Grupta, S.; Maratha, A.; Siednienkko, J.; Natarajan, A.; Gajanayake, T.; Hoashi, S.; Miggin, S. Analysis of inflammatory cytokine and TLR expression. Levels in Type 2 Diabetes with complications. Sci. Rep. 2017, 7, 7633. [Google Scholar] [CrossRef] [PubMed]
- Coelho, F.R.; Martins, J.O. Diagnostic methods in sepsis: The need of speed. Mag. Braz. Med. Assoc. 2012, 58, 498–504. [Google Scholar] [CrossRef]
- Pasquel, F.J.; Lansang, M.C.; Dhatariya, K.; Umpierrez, G.E. Management of diabetes and hyperglycaemia in the hospital. Lancet Diabetes Endocrinol. 2021, 9, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Neely, A.N.; Clendening, C.E.; Gardner, J.; Greenhalgh, D.G. Gelatinase activities in wounds of healing-impaired mice versus wounds of non-healing-impaired mice. J. Burn Care Rehabil. 2000, 21, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.A.; Sannomiya, P.; Leme, J.G. Inhibition of leukocyte chemotaxis by factor in alloxan-induced diabetic rat plasma. Diabetes 1987, 36, 1307–1314. [Google Scholar] [CrossRef]
- Anjos-Valotta, E.A.; Martins, J.O.; Oliveira, M.A.; Casolari, D.A.; Britto, L.R.; Tostes, R.C.; Fortes, Z.B.; Sannomiya, P. Inhibition of tumor necrosis factor-alpha-induced intercellular adhesion molecule-1 expression in diabetic rats: Role of insulin. Inflamm. Res. 2006, 55, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Alba-Loureiro, T.C.; Martins, E.F.; Landgraf, R.G.; Jancar, S.; Curi, R.; Sannomiya, P. Role of insulin on PGE2 generation during LPS-induced lung inflammation in rats. Life Sci. 2006, 78, 578–585. [Google Scholar] [CrossRef]
- Alba-Loureiro, T.C.; Hirabara, S.M.; Mendonca, J.R.; Curi, R.; Pithon-Curi, T.C. Diabetes causes marked changes in function and metabolism of rat neutrophils. J. Endocrinol. 2006, 188, 295–303. [Google Scholar] [CrossRef]
- Martins, J.O.; Ferracini, M.; Anger, D.B.C.; Martins, D.O.; Ribeiro, L.F., Jr.; Sannomiya, P.; Jancar, S. Signaling pathways and mediators in LPS-induced lung inflammation in diabetic rats: Role of insulin. Shock 2010, 33, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, P.; Sannomiya, P.; Lara, P.F.; Oliveira-Filho, R.M.; Greco, K.V.; Sudo-Hayashi, L.S. Lymphatic system changes in diabetes mellitus: Role of insulin and hyperglycemia. Diabetes Metab. Res. Rev. 2005, 21, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Fortes, Z.B.; Garcia, L.J.; Scivoletto, R. Vascular reactivity in diabetes mellitus: Role of the endothelial cell. Br. J. Pharmacol. 1983, 79, 771–781. [Google Scholar] [CrossRef]
- Fortes, Z.B.; Garcia, L.J.; Scivoletto, R. Vascular reactivity in diabetes mellitus: Possible role of insulin on the endothelial cell. Br. J. Pharmacol. 1984, 83, 635–643. [Google Scholar] [CrossRef]
- Costa Rosa, L.F.; Safi, D.A.; Cury, Y.; Curi, R. The effect of insulin on macrophage metabolism and function. Cell Biochem. Funct. 1996, 14, 33–42. [Google Scholar] [CrossRef]
- Panneerselvam, S.; Govindasamy, S. Sodium molybdate improves the phagocytic function in alloxan-induced diabetic rats. Chem. Biol. Interact. 2003, 145, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Sunahara, K.K.S.; Sannomiya, P.; Martins, J.O. Briefs on Insulin and Innate Immune Response. Cell. Physiol. Biochem. 2012, 29, 01–08. [Google Scholar] [CrossRef]
- Rosen, S.D. Ligands for L-selectin: Homing, inflammation, and beyond. Annu. Rev. Immunol. 2004, 22, 129–156. [Google Scholar] [CrossRef] [PubMed]
- Mayadas, T.N.; Cullere, X. Neutrophil beta2 integrins: Moderators of life or death decisions. Trends Immunol. 2005, 26, 388–395. [Google Scholar] [CrossRef]
- Alba-Loureiro, T.C.; Munhoz, C.D.; Martins, J.O.; Cerchiaro, G.A.; Scavone, C.; Curi, R.; Sannomiya, P. Neutrophil function and metabolismo in individuals with diabetes mellitus. Braz. J. Med. Biol. Res. 2007, 40, 1037–1044. [Google Scholar] [CrossRef]
- Mowat, A.; Baum, J. Chemotaxis of polymorphonuclear leukocytes from patients with diabetes mellitus. N. Engl. J. Med. 1971, 284, 621–627. [Google Scholar] [CrossRef]
- Fortes, Z.B.; Farsky, S.P.; Oliveira, M.A.; Garcia-Leme, J. Direct vital microscopic study of defective leukocyte-endothelial interaction in diabetes mellitus. Diabetes 1991, 40, 1267–1273. [Google Scholar] [CrossRef]
- Jakelic, J.; Kokic, S.; Hozo, I.; Maras, J.; Fabijanic, D. Nonspecific immunity in diabetes: Hyperglycemia decreases phagocytic activity of leukocytes in diabetic patients. Med. Arh. 1995, 49, 9–12. [Google Scholar]
- Wu, X.; He, W.; Mu, X.; Liu, Y.; Deng, J.; Liu, Y.; Nie, X. Macrophage polarization in diabetic wound healing. Burn. Trauma 2022, 29, 10. [Google Scholar] [CrossRef]
- Holland, S.M.; Gallin, J.I.; Mandell, D. Evaluation of the patient with suspected immunodeficiency. Bennett’s Princ. Pract. Infect. Dis. 2010, 12, 167–178. [Google Scholar] [CrossRef]
- Jalkanen, S.; Salmi, M. Lymphocyte adhesion and trafficking. In Clinical Immunology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 11, pp. 171–182. [Google Scholar]
- Carlos, I.Z.; Sassá, M.F.; Da Graça Sgarbi, D.B.; Placeres, M.C.P.; Maia, D.C.G. Current research on the immune response to experimental sporotrichosis. Mycopathologia 2009, 168, 1–10. [Google Scholar] [CrossRef]
- Peleg, A.Y.; Weerarathna, T.; Mccarthy, J.S.; Davis, T.M. Common infections in diabetes: Pathogenesis, management and relationship to glycaemic control. Diabetes Metab. Res. Rev. 2007, 23, 3–13. [Google Scholar] [CrossRef]
- Tripathi, P. Perspective Chapter: Immunosuppression in patients with Diabetes Mellitus. In Immunosuppression and Immunomodulation; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Berbudi, A.; Rahmadika, N.; Tjahjadi, A.I.; Ruslami, R. Type 2 Diabetes and its Impact on the Immune System. Curr. Diabetes Rev. 2020, 16, 442–449. [Google Scholar] [CrossRef]
- He, S.S.; Xie, P.S.; Luo, D.S.; Sun, C.J.; Zhang, Y.G.; Liu, F.X. Role of imune dysfunction in pathogenesis of type 1 diabetes mellitus in children. Asian Pac. J. Trop. Med. 2014, 7, 823–826. [Google Scholar] [CrossRef]
- Rocha, J.L.L.; Baggio, H.C.C.; Da Cunha, C.A.; Niclewicz, E.A.; Leite, S.A.O.; Baptista, M.I.D.K. Relevant issues in the interaction between diabetes mellitus and infection. Arq. Bras. Endocrinol. Metab. 2002, 46, 221–229. [Google Scholar] [CrossRef]
- Gomes, R.S.R.; Do Valle, A.C.F.; Freitas, D.F.S.; De Macedo, P.M.; Oliveira, R.V.C.; Almeida-Paes, R.; Zancopé-Oliveira, R.M.; Gutierrez-Galhardo, M.C. Sporotrichosis in older adults: A cohort study of 911 patients from a hyperendemic area of zoonotic transmission in Rio de Janeiro, Brazil. J. Fungi 2023, 9, 804. [Google Scholar] [CrossRef]
- Moreira, J.A.S.; Freitas, D.F.S.; Lamas, C.C. The impact of sporotrichosis in HIV-infected patients: A systematic review. Infection 2015, 43, 267–276. [Google Scholar] [CrossRef]
- De Beurmann, L.; Ramond, L. Abces sous-cutanes multiples d’origine mycosique. Ann. Dermatol. Syphiligr. 1903, 4, 678–685. [Google Scholar]
- Bonifaz, A.; Vázquez-González, D. Sporotrichosis: An update. G Ital. Dermatol. Venereol. 2010, 145, 659–673. [Google Scholar]
- Freitas, D.F.S.; Lima, M.A.; Almeida-Paes, R.; Lamas, C.C.; Do Valle, A.C.F.; Oliveira, M.M.E.; Zancopé-Oliveira, R.M. Sporotrichosis in the Central Nervous System Caused by Sporothrix brasiliensis. Clin. Infect. Dis. 2015, 15, 663–664. [Google Scholar] [CrossRef]
- Freitas, D.F.S.; Santos, S.S.; Almeida-Paes, R.; De Oliveira, M.E.; Do Valle, A.C.F.; Gutierrez-Galhardo, M.C.; Zancopé-Oliveira, R.M.; Nosanchuk, J.D. Increase in virulence of Sporothrix brasiliensis over five years in a patient with chronic disseminated sporotrichosis. Virulence 2015, 6, 112–120. [Google Scholar] [CrossRef]
- Silva-Vergara, M.L.; De Camargo, Z.P.; Silva, P.F.; Abdalla, M.R.; Sgarbieri, R.N.; Rodrigues, A.M.; Dos Santos, K.C.; Barata, C.H.; Ferreira-Paim, K. Case report: Disseminated Sporothrix brasiliensis infection with endocardial and ocular involvement in an HIV-infected patient. Am. J. Trop. Med. Hyg. 2012, 86, 477–480. [Google Scholar] [CrossRef]
- Ribeiro, C.R.; Silva, B.P.; Almeida Costa, A.d.A.; Neto, A.B.; Vieira, L.A.; Lima, M.A.D.; Lima, M.H.C. Ocular Sporotrichosis. Am. J. Ophthalmol. Case Rep. 2020, 19, 100865. [Google Scholar] [CrossRef]
- Paixão, A.G.; Galhardo, M.C.G.; Almeida-Paes, R.; Unes, E.P.; Gonçalves, M.L.C.; Chequer, G.L.; Lamas, C.C. The difficult management of disseminated Sporothrix brasiliensis in a patient with advanced AIDS. AIDS Res. Ther. 2015, 7, 12–16. [Google Scholar] [CrossRef]
- Almeida-Paes, R.; De Oliveira, M.M.; Freitas, D.T.; Do Valle, A.C.F.; Zancopé-Oliveira, R.M.; Gutierrez-Galhardo, M.C. Sporotrichosis in Rio de Janeiro, Brazil: Sporothrix brasiliensis is associated with atypical clinical presentations. PLoS Negl. Trop. Dis. 2014, 18, e3094. [Google Scholar] [CrossRef]
- Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015, 16, 337–341. [Google Scholar] [CrossRef]
- Oliveira, M.M.E.; Muniz, M.M.; Almeida-Paes, R.; Zancope-Oliveira, R.M.; Freitas, A.D.; Lima, M.A.; Gutierrez-Galhardo, M.C.; Freitas, D.F.S. Cerebrospinal fluid PCR: A new approach for the diagnosis of CNS sporotrichosis. PLoS Negl. Trop. Dis. 2020, 14, e0008196. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, M.d.A.; de Almeida, S.R.; Martins, J.O. Novel Insights into Sporotrichosis and Diabetes. J. Fungi 2024, 10, 527. https://doi.org/10.3390/jof10080527
Oliveira MdA, de Almeida SR, Martins JO. Novel Insights into Sporotrichosis and Diabetes. Journal of Fungi. 2024; 10(8):527. https://doi.org/10.3390/jof10080527
Chicago/Turabian StyleOliveira, Mariana de Araujo, Sandro Rogério de Almeida, and Joilson O. Martins. 2024. "Novel Insights into Sporotrichosis and Diabetes" Journal of Fungi 10, no. 8: 527. https://doi.org/10.3390/jof10080527
APA StyleOliveira, M. d. A., de Almeida, S. R., & Martins, J. O. (2024). Novel Insights into Sporotrichosis and Diabetes. Journal of Fungi, 10(8), 527. https://doi.org/10.3390/jof10080527