Artificial Intelligence in the Diagnosis of Onychomycosis—Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Information Sources, Search, and Study Selection
2.4. Data Collection and Quality Assessment
3. Results
3.1. Clinical and Dermoscopic Images
3.2. Histopathology Slides of Nail Clippings
3.3. Microscopic Images of Nails with KOH Examination
4. Discussion
4.1. Dermoscopic Images
4.2. Histopathology Slides of Nail Clippings
4.3. Images of Onychomycosis with KOH Examination
4.4. AI-Augmented Diagnosis of Onychomycosis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, C.M.; Tripathi, K.; Tiwari, S.; Rathore, Y.; Nema, S.; Dhanvijay, A.G. Current trends of clinicomycological profile of dermatophytosis in Central India. IOSR-JDMS 2014, 13, 23–26. [Google Scholar]
- Haghani, I.; Shokohi, T.; Hajheidari, Z.; Khalilian, A.; Aghili, S.R. Comparison of diagnostic methods in the evaluation of onychomycosis. Mycopathologia 2013, 175, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Sipra, M.W.K.; Jillian, K.S.; Batool, T. Performance evaluation of rapid test potassium hydroxide for the diagnosis of onychomycosis. Prof. Med. J. 2021, 28, 1793–1796. [Google Scholar] [CrossRef]
- Bunyaratavej, S.; Pattanaprichakul, P.; Srisuma, S.; Leeyaphan, C. Experiences and factors that influence potassium hydroxide examination by microscopists. Med. Mycol. J. 2016, 57, E29–E34. [Google Scholar] [CrossRef] [PubMed]
- Falotico, J.M.; Lipner, S.R. Updated Perspectives on the Diagnosis and Management of Onychomycosis. Clin. Cosmet. Investig. Dermatol. 2022, 15, 1933–1957. [Google Scholar] [CrossRef]
- Decroos, F.; Springenberg, S.; Lang, T.; Papper, M.; Zapf, A.; Metze, D.; Steinkraus, V.; Boer-Auer, A. A Deep Learning Approach for Histopathological Diagnosis of Onychomycosis: Not Inferior to Analogue Diagnosis by Histopathologists. Acta Derm. Venereol. 2021, 101, adv00532. [Google Scholar] [CrossRef]
- Pospischil, I.; Reinhardt, C.; Bontems, O.; Salamin, K.; Fratti, M.; Blanchard, G.; Chang, Y.-T.; Wagner, H.; Hermann, P.; Monod, M.; et al. Identification of Dermatophyte and Non-Dermatophyte Agents in Onychomycosis by PCR and DNA Sequencing—A Retrospective Comparison of Diagnostic Tools. J. Fungi 2022, 8, 1019. [Google Scholar] [CrossRef] [PubMed]
- Litaiem, N.; Mnif, E.; Zeglaoui, F. Dermoscopy of Onychomycosis: A Systematic Review. Dermatol. Pract. Concept. 2023, 13, e2023072. [Google Scholar] [CrossRef] [PubMed]
- Abu El-Hamd, M.; Yassin, F.; El-Hamid, N.H.A.; El-Sharkawy, R. Clinical, dermoscopic, and histopathological evaluations of patients with nail disorders. J. Cosmet. Dermatol. 2022, 21, 347–357. [Google Scholar] [CrossRef]
- Yorulmaz, A.; Yalcin, B. Dermoscopy as a first step in the diagnosis of onychomycosis. Adv. Dermatol. Allergol./PostęPy Dermatol. I Alergol. 2018, 35, 251–258. [Google Scholar] [CrossRef]
- Slawinska, M.; Zolkiewicz, J.; Ribereau-Gayon, E.; Mainska, U.; Sobjanek, M.; Thomas, L. Intra-operative dermoscopy (onychoscopy) of the nail unit-A systematic review. J. Eur. Acad. Dermatol. Venereol. 2024. epub ahead of print. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef] [PubMed]
- Akhter, Y.; Singh, R.; Vatsa, M. AI-based radiodiagnosis using chest X-rays: A review. Front. Big Data 2023, 6, 1120989. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cao, G.; Wang, Y.; Liao, S.; Wang, Q.; Shi, J.; Li, C.; Shen, D. Review and Prospect: Artificial Intelligence in Advanced Medical Imaging. Front. Radiol. 2021, 1, 781868. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Shi, H.; Wang, H. Machine Learning and AI in Cancer Prognosis, Prediction, and Treatment Selection: A Critical Approach. J. Multidiscip. Healthc. 2023, 16, 1779–1791. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yin, Y.; Yang, Q.; Huo, T. Artificial intelligence in cardiovascular diseases: Diagnostic and therapeutic perspectives. Eur. J. Med. Res. 2023, 28, 242. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Kang, K.; Song, Y.; Kim, T.J. Application of Artificial Intelligence in Pathology: Trends and Challenges. Diagnostics 2022, 12, 2794. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Greenhalgh, J.; Marsden, H.; Palamaras, I. Detection of Malignant Melanoma Using Artificial Intelligence: An Observational Study of Diagnostic Accuracy. Dermatol. Pract. Concept. 2020, 10, e2020011. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Syed, M.N.; Bernardis, E.; Gelfand, J.M. Machine Learning Applications in the Evaluation and Management of Psoriasis: A Systematic Review. J. Psoriasis Psoriatic Arthritis 2020, 5, 147–159. [Google Scholar] [CrossRef]
- Zhang, D.; Li, H.; Shi, J.; Shen, Y.; Zhu, L.; Chen, N.; Wei, Z.; Lv, J.; Chen, Y.; Hao, F. Advancements in acne detection: Application of the CenterNet network in smart dermatology. Front. Med. 2024, 11, 1344314. [Google Scholar] [CrossRef]
- Eapen, B.R. Artificial Intelligence in Dermatology: A Practical Introduction to a Paradigm Shift. Indian Dermatol. Online J. 2020, 11, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Jansen, P.; Creosteanu, A.; Matyas, V.; Dilling, A.; Pina, A.; Saggini, A.; Schimming, T.; Landsberg, J.; Burgdorf, B.; Giaquinta, S.; et al. Deep Learning Assisted Diagnosis of Onychomycosis on Whole-Slide Images. J. Fungi 2022, 8, 912. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zheng, B.; Cai, W.; Zhang, J.; Lu, S.; Li, X.; Xi, L.; Kong, Y. Deep learning-based diagnosis models for onychomycosis in dermoscopy. Mycoses 2022, 65, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, A.; Goktay, F.; Varol, R.; Gencoglan, G.; Uvet, H. Deep convolutional neural networks for onychomycosis detection using microscopic images with KOH examination. Mycoses 2022, 65, 1119–1126. [Google Scholar] [CrossRef]
- Nigat, T.D.; Sitote, T.M.; Gedefaw, B.M. Fungal Skin Disease Classification Using the Convolutional Neural Network. J. Healthc. Eng. 2023, 6370416. [Google Scholar] [CrossRef] [PubMed]
- Han, S.S.; Park, G.H.; Lim, W.; Kim, M.S.; Na, J.I.; Park, I.; Chang, S.E. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network. PLoS ONE 2018, 13, e0191493. [Google Scholar] [CrossRef] [PubMed]
- Schielein, M.C.; Christl, J.; Sitaru, S.; Pilz, A.C.; Kaczmarczyk, R.; Biedermann, T.; Lasser, T.; Zink, A. Outlier detection in dermatology: Performance of different convolutional neural networks for binary classification of inflammatory skin diseases. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 1071–1079. [Google Scholar] [CrossRef]
- Kim, Y.J.; Han, S.S.; Yang, H.J.; Chang, S.E. Prospective, comparative evaluation of a deep neural network and dermoscopy in the diagnosis of onychomycosis. PLoS ONE 2020, 15, e0234334. [Google Scholar] [CrossRef]
- Nijhawan, R.; Verma, R.; Ayushi; Bhushan, S.; Dua, R.; Mittal, A. An Integrated Deep Learning Framework Approach for Nail Disease Identification. In Proceedings of the 13th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), Jaipur, India, 4–7 December 2017; pp. 197–202. [Google Scholar] [CrossRef]
- Düzayak, S.; Uçar, M.K. A Novel Machine Learning-based Diagnostic Algorithm for Detection of Onychomycosis through Nail Appearance. SAUJS 2023, 27, 872–886. [Google Scholar] [CrossRef]
- Marulkar, S.; Narain. Nail Disease Prediction using a Deep Learning Integrated Framework. In Proceedings of the 3rd International Conference on Intelligent Technologies (CONIT), Hubli, India, 23–25 June 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Gupta, A.K.; Hall, D.C. Diagnosing onychomycosis: A step forward? J. Cosmet. Dermatol. 2022, 21, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Hall, D.C.; Cooper, E.A.; Ghannoum, M.A. Diagnosing Onychomycosis: What’s New? J. Fungi 2022, 8, 464. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Ohn, J.; Mun, J.H. Diagnosis of Onychomycosis: From Conventional Techniques and Dermoscopy to Artificial Intelligence. Front. Med. 2021, 8, 637216. [Google Scholar] [CrossRef]
- Polesie, S.; McKee, P.H.; Gardner, J.M.; Gillstedt, M.; Siarov, J.; Neittaanmaki, N.; Paoli, J. Attitudes Toward Artificial Intelligence Within Dermatopathology: An International Online Survey. Front. Med. 2020, 7, 591952. [Google Scholar] [CrossRef] [PubMed]
Study | Risk of Bias | Applicability Concerns | |||||
---|---|---|---|---|---|---|---|
Patient Selection | Index Test | Reference Standard | Flow and Timing | Patient Selection | Index Test | Reference Standard | |
Jansen, J Fungi (Basel), 2022 [23] | Moderate | Moderate | Low | Moderate | Moderate | Low | Low |
Zhu, Mycoses, 2022 [24] | Low | Low | Low | Low | Low | Low | Low |
Yilmaz, Mycoses, 2022 [25] | Low | Low | Low | Low | Low | Low | Low |
Decroos, Acta Derm Venereol, 2021 [6] | Low | Low | Low | Low | Low | Low | Low |
Nigat, J Healthc Eng, 2023 [26] | Moderate | Moderate | Moderate | Moderate | Moderate | Low | Moderate |
Han, PLOS ONE, 2018 [27] | Low | Low | Low | Low | Low | Low | Low |
Schielein, J Eur Acad Dermatol Venereol, 2023 [28] | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate | Low |
Kim, PLOS ONE, 2020 [29] | Low | Low | Low | Low | Low | Low | Low |
Nijhawan, Conference SITIS, 2017 [30] | Moderate | Moderate | Moderate | Moderate | Moderate | Low | Moderate |
Düzayak, SAUJS, 2023 [31] | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate |
Marulkar, Conference CONIT, 2023 [32] | Moderate | Moderate | Moderate | Moderate | Moderate | Low | Moderate |
First Author, Journal, Year | Study Type | Number of Samples | Diagnosis | Model of Picture Assessment | Model of AI Described | Performance of the Test | Comparison of Diagnostic Ability to Dermatologists/Medical Professionals |
---|---|---|---|---|---|---|---|
Gupta, J Cosmet Dermatol, 2022 [33] | Review | N/A | Onycho- mycosis | Clinical pictures of nails | CNN | N/A | Comparable/Superior |
Gupta, J Fungi (Basel), 2022 [34] | Review | N/A | Onycho- mycosis | Clinical pictures of nails, Histopathology slides of PAS-stained nail clippings, Greyscale microscopic images of nail with KOH examination | CNN | N/A | Comparable/Superior |
Jansen, J Fungi (Basel), 2022 [23] | Prospe- ctive study | 664 histo- pathology slides | Onycho- mycosis | PAS-stained nail clipping slides manually annotated and used to train a U-NET model for binary segmentation | U-NET-based segmentation approach | Sensitivity/specificity/ accuracy 94.0%/77.0%/86.5%, respectively | Comparable. |
Zhu, Mycoses, 2022 [24] | Prospe- ctive study | 603 pictures of nails | Onycho- mycosis | Training datasets consisted of dermoscopic pictures of onychomycosis, nail psoriasis, traumatic onychodystrophy, and normal nails | Faster region-based convolutional neural networks | Sensitivity/specificity/ accuracy: 78.5%/93.0%/87.5%, respectively | Superior |
Yilmaz, Mycoses, 2022 [25] | Prospe- ctive study | 160 microscopic images of nails | Onycho- mycosis | Training datasets consisted of microscopic photographs of nails containing fungal structures and of dissolved keratin from normal nails | VGG16 and InceptionV3 models | For the VGG16 model, the InceptionV3 model and dermatologists, mean sensitivity: 75.0 ± 2.7%, 74.9 ± 4.5% and 74.8 ± 19.5%, mean specificity rates were 92.7 ± 1.2%, 93.8 ± 1.7% and 74.3 ± 18.0%, respectively, and mean accuracy rates were 88.1 ± 0.8%, 88.8 ± 0.4% and 74.5 ± 8.6%, respectively | Comparable/Superior |
Lim, Dermatol Pract Concept, 2023 [35] | Mini Review | N/A | Onycho- mycosis | Clinical nail pictures | Two-layered feedforward neural networks computing the combined output of ResNet-152 and VGG-19 | Sensitivity/specificity/area under the curve: (96.0/94.7/0.98), (82.7/96.7/0.95), (92.3/79.3/0.93), and (87.7/69.3/0.82) for the B1, B2, C, and D datasets, respectively | Superior |
Decroos, Acta Derm Venereol, 2021 [6] | Retro- spective study | 199 histo- patho- logy slides | Onycho- mycosis | PAS-stained onychomycosis slides manually annotated and utilized to train the AI model | CNN architecture similar to VGG-13 (26), but introduces dilation to the convolution operations | Sensitivity/specificity/area under the curve: 94.1%/98.0%/0.9601 | Comparable |
Nigat, J Healthc Eng, 2023 [26] | Prospective study | Clinical pictures of: Tinea unguium/ Onychomycosis 120, Tinea capitis 120, Tinea pedis 96, Tinea corporis 71 | Tinea unguium/ Onychomycosis, Tinea capitis, Tinea pedis, Tinea corporis | Clinical pictures of lesions | HSFDC CNN model | Sensitivity/specificity/ accuracy/precision/F1 score: 86.4%/95.4%/93.3% /87.3%/86.8%, respectively | N/A |
Han, PLOS ONE, 2018 [27] | Retro- spe- ctive study | Clinical pictures of 6673 nails | Onycho- mycosis | Training datasets consisted of linical images of onychomycosis, nail dystrophy, onycholysis, melanonychia, normal, nails, and others (subungual hemorrhage, paronychia, subungual fibroma, ingrown nail, pincer nail, periungual wart, etc.) | ResNet-152 + VGG-19 + feedforward neural networks models | Sensitivity/specificity/area under the curve: B1 dataset 96.0%/94.7%/0.98, B2 dataset 82.7%/96.7%/0.95, C dataset 92.3%/79.3%/0.93, D dataset 87.7%/69.3%/0.82, respectively | Superior |
Schielein, J Eur Acad Dermatol Venereol, 2023 [28] | Retro- spe- ctive study | Clinical images: 276 onychomycosis, 1200 psoriasis, 1038 atopic dermatitis, 726 lupus erythematosus, 881 bullous pemphigoid | Onycho- mycosis, Psoriasis, Atopic dermatitis, Lupus erythematosus, Bullous pemphigoid | During AI training, the ‘normality’ category included images of the pathology, while the ‘outlier’ category had images from the other four pathologies | CNNs models: VGG-16, VGG-19, Inceptionv3, Xception, ResNet50 | Among all networks the highest performances for onychomycosis pictures reached: Sensitivity/ specificity/accuracy 100%/100%/100%, respectively | N/A |
Kim, PLOS ONE, 2020 [29] | Prospe- ctive study | 57 pictures of nails | Onycho- mycosis | Training datasets consisted of clinical and dermoscopic pictures of onychomycosis and nail dystrophy | ResNet-152 and VGG-19, RCNN (backbone network = VGG-16) models | Sensitivity/specificity/area under the curve 70.2%/72.7%/0.751, respectively | Comparable |
Nijha- wan, Conference SITIS, 2017 [30] | Confe- rence report | 4190 pictures (including 482 of onychomycosis) | Onycho- mycosis, Beau’s Lines, hyperpigmentation, koilonychia, leukonychia, psoriasis, onychorrexis, paronychia, pincer nails, subungulal hematoma, yellow nail syndrome | Training datasets consisted of clinical nails pictures of onychomycosis, subungual hematoma, Beau’s lines, yellow nail syndrome, psoriasis, hyperpigmentation, koilonychias, paroncychia, pincer nails, leukonychia, onychorrhexis | A CNN with RELU (“non-saturating nonlinearity”) | In Scenario 3 *, sensitivity/specificity /accuracy were the highest (a total of four scenarios considered for accuracy assessment), at 0.91/0.88/84.6%, respectively; * the image was split into two parts again, and supplied the upper and lower halves to different CNNs, which also supplyied the full image to another CNN, combining the three feature vectors to form one, on which the final classification was applied using RF | Comparable |
Düzayak, SAUJS, 2023 [31] | Prospe-ctive study | 242 pictures of nails | Onycho-mycosis | Training datasets consisted of clinical nails pictures of onychomycosis and other nail conditions (not specified) | ANN (artificial neural networks), SVM (Support Vector Machine), EDT (Ensemble Decision Trees) | Proposed model Sensitivity/specificity /accuracy: 0.90/0.89/89.7%, respectively | N/A |
Marulkar, Confe- rence CONIT, 2023 [32] | Confe- rence report | 18,025 pictures of nails | Nail diseases categorized by features (including onychomycosis) | Training datasets consisted of 9 nail picture classes based on the clinical disease features | RF, KNN and CNN with SVM | The greatest achieved accuracy of 87.3% suggested approach’s sensitivity/specificity was 0.91/0.88, respectively | Comparable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulińska, B.; Mazur-Milecka, M.; Sławińska, M.; Rumiński, J.; Nowicki, R.J. Artificial Intelligence in the Diagnosis of Onychomycosis—Literature Review. J. Fungi 2024, 10, 534. https://doi.org/10.3390/jof10080534
Bulińska B, Mazur-Milecka M, Sławińska M, Rumiński J, Nowicki RJ. Artificial Intelligence in the Diagnosis of Onychomycosis—Literature Review. Journal of Fungi. 2024; 10(8):534. https://doi.org/10.3390/jof10080534
Chicago/Turabian StyleBulińska, Barbara, Magdalena Mazur-Milecka, Martyna Sławińska, Jacek Rumiński, and Roman J. Nowicki. 2024. "Artificial Intelligence in the Diagnosis of Onychomycosis—Literature Review" Journal of Fungi 10, no. 8: 534. https://doi.org/10.3390/jof10080534
APA StyleBulińska, B., Mazur-Milecka, M., Sławińska, M., Rumiński, J., & Nowicki, R. J. (2024). Artificial Intelligence in the Diagnosis of Onychomycosis—Literature Review. Journal of Fungi, 10(8), 534. https://doi.org/10.3390/jof10080534