Characterization of Fungal Species Isolated from Cankered Apple Barks Demonstrates the Alternaria alternata Causing Apple Canker Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shoot Sampling and Plant Materials
2.2. Isolation and Morphological Identification of Pathogens
2.3. Molecular Identification of Isolated Fungi
2.4. Phylogenetic Analysis
2.5. Pathogenicity Identification
2.6. Alternaria alternata Inoculation on Apple Fruits and Leaves
2.7. Statistical Analysis
3. Results
3.1. Morphological Analysis of Fungal Colonies
3.2. Mycelia and Conidia Observation Results
3.3. Molecular Identification Results
3.4. Apple Canker Disease Pathogenicity Assay Results
3.5. Pathogenicity Assay Results of A. alternata in Causing Apple Fruit and Leaf Diseases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumari, N.; Kumar, M.; Rais, N.; Puri, S.; Sharma, K.; Natta, S.; Dhumal, S.; Damale, R.; Kumar, S.; Senapathy, M. Exploring apple pectic polysaccharides: Extraction, characterization, and biological activities—A comprehensive review. Int. J. Biol. Macromol. 2023, 255, 128011. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Guo, J.; He, J.; Xu, C.; Li, J.; Mi, C.; Tao, S. Possible impact of climate change on apple yield in Northwest China. Theor. Appl. Climatol. 2020, 139, 191–203. [Google Scholar] [CrossRef]
- Hussain, S.Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T.A. Apples (Pyrus malus)—Morphology, taxonomy, composition and health benefits. In Fruits Grown in Highland Regions of the Himalayas: Nutritional and Health Benefits; Springer: Berlin/Heidelberg, Germany, 2021; pp. 17–34. [Google Scholar]
- Liang, X.; Zhang, R.; Gleason, M.L.; Sun, G. Sustainable apple disease management in China: Challenges and future directions for a transforming industry. Plant Dis. 2022, 106, 786–799. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Li, W.; Cao, Y.; Jones, G.; Chen, J.; Li, Z.; Chang, Q.; Yang, G.; Frewer, L.J. Identifying barriers to sustainable apple production: A stakeholder perspective. J. Environ. Manag. 2022, 302, 114082. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, J.; Shan, X.; Wang, H.; Duan, Y. Bioactivities evaluation of an endophytic bacterial strain Bacillus tequilensis QNF2 inhibiting apple ring rot caused by Botryosphaeria dothidea on postharvest apple fruits. Food Microbiol. 2024, 123, 104590. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, S.; Nabi, S.U.; Baranwal, V.K.; Verma, M.K.; Parveen, S.; Rather, T.R.; Raja, W.H.; Shafi, M. Overview on century progress in research on mosaic disease of apple (Malus domestica Borkh) incited by apple mosaic virus/apple necrotic mosaic virus. Virology 2023, 587, 109846. [Google Scholar] [CrossRef] [PubMed]
- Omaye, J.D.; Ogbuju, E.; Ataguba, G.; Jaiyeoba, O.; Aneke, J.; Oladipo, F. Cross-comparative review of machine learning for plant disease detection: Apple, cassava, cotton and potato plants. Artif. Intell. Agric. 2024, 12, 127–151. [Google Scholar] [CrossRef]
- Nwe, L.L.; Casonato, S.; Jones, E.E. Endophytic fungal isolates from apple tissue: Latent pathogens lurking within? Fungal Biol. 2024, 128, 1836–1846. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Wang, C.; He, Y.; Tang, L.; Han, P.; Liang, J.; Huang, L. Apple Valsa canker: Insights into pathogenesis and disease control. Phytopathol. Res. 2023, 5, 45. [Google Scholar] [CrossRef]
- Togashi, K. Some studies on a Japanese apple canker and its causal fungus, Valsa mali. J. Coll. Agric. Hokkaido Imp. Univ. Sapporo Jpn. 1925, 12, 265–324. [Google Scholar]
- Liu, F.; Chen, C.; Shi, X.; Guo, J.; Xing, Z.; Zhang, X.; Chen, Y. Studies on the latent infection of the causal organism of Valsa canker of apple. Acta Phytophylacica Sin. 1979, 6, 1–8. [Google Scholar]
- Suzaki, K. Population structure of Valsa ceratosperma, causal fungus of Valsa canker, in apple and pear orchards. J. Gen. Plant Pathol. 2008, 74, 128–132. [Google Scholar] [CrossRef]
- Wang, X.; Shi, C.-M.; Gleason, M.L.; Huang, L. Fungal species associated with apple Valsa canker in East Asia. Phytopathol. Res. 2020, 2, 35. [Google Scholar] [CrossRef]
- Abe, K.; Kotoda, N.; Kato, H.; Soejima, J. Resistance sources to Valsa canker (Valsa ceratosperma) in a germplasm collection of diverse Malus species. Plant Breed. 2007, 126, 449–453. [Google Scholar] [CrossRef]
- Wang, X.; Wei, J.; Huang, L.; Kang, Z. Re-evaluation of pathogens causing Valsa canker on apple in China. Mycologia 2011, 103, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Sha, S.S.; Wang, Z.; Yan, C.C.; Hao, H.T.; Wang, L.; Feng, H.Z. Identification of fungal species associated with apple canker in Tarim Basin, China. Plant Dis. 2023, 107, 1284–1298. [Google Scholar] [CrossRef] [PubMed]
- Bozorov, T.A.; Toshmatov, Z.O.; Kahar, G.; Muhammad, S.M.; Liu, X.; Zhang, D.; Aytenov, I.S.; Turakulov, K.S. Uncovering the antifungal activities of wild apple-associated bacteria against two canker-causing fungi, Cytospora mali and C. parasitica. Sci. Rep. 2024, 14, 6307. [Google Scholar] [CrossRef] [PubMed]
- Nourian, A.; Salehi, M.; Safaie, N.; Khelghatibana, F.; Abdollahzadeh, J. Fungal canker agents in apple production hubs of Iran. Sci. Rep. 2021, 11, 22646. [Google Scholar] [CrossRef] [PubMed]
- Ilyukhin, E.; Schneider, K.; Ellouze, W. First report of Botryosphaeria dothidea causing stem canker and dieback of apple trees in Ontario, Canada. Plant Dis. 2022, 106, 2994. [Google Scholar] [CrossRef]
- Mang, S.M.; Marcone, C.; Maxim, A.; Camele, I. Investigations on fungi isolated from apple trees with die-back symptoms from Basilicata region (Southern Italy). Plants 2022, 11, 1374. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Wei, X.; Xiao, Y.; Sun, Y.; Biggs, A.; Gleason, M.; Shang, S.; Zhu, M.; Guo, Y.; Sun, G. Management of Valsa canker on apple with adjustments to potassium nutrition. Plant Dis. 2016, 100, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lu, Y.; Wang, Z.; Li, M. Production efficiency and change characteristics of China’s apple industry in terms of planting scale. PLoS ONE 2021, 16, e0254820. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, Y.; Liu, J.; Sheng, O.; Liu, F.; Qiu, D.; Lü, P.; Deng, G.; Cheng, C. A new leaf blight disease caused by Alternaria jacinthicola on banana in China. Horticulturae 2021, 8, 12. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetices. PCR Protoc. 1990, 18, 315–322. [Google Scholar]
- Wang, M.; Xiang, L.; Tang, W.; Chen, X.; Li, C.; Yin, C.; Mao, Z. Apple-Arbuscular mycorrhizal symbiosis confers resistance to Fusarium solani by inducing defense response and elevating nitrogen absorption. Physiol. Plant. 2024, 176, e14355. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Jiang, W.; Zhang, R.; Chen, R.; Chen, X.; Yin, C.; Mao, Z. Discovery of Fusarium proliferatum f. sp. Malus domestica causing apple replant disease in China. Plant Dis. 2022, 106, 2958–2966. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, Y.; Zhai, H. First report of twig blight caused by Fusarium proliferatum on ‘Yanfu 3′ apple. Plant Dis. 2020, 104, 3075. [Google Scholar] [CrossRef]
- Zhou, T.; He, Y.; Zeng, X.; Cai, B.; Qu, S.; Wang, S. Comparative analysis of alternative splicing in two contrasting apple cultivars defense against Alternaria alternata apple pathotype infection. Int. J. Mol. Sci. 2022, 23, 14202. [Google Scholar] [CrossRef] [PubMed]
- Gur, L.; Reuveni, M.; Cohen, Y. β-Aminobutyric acid induced resistance against Alternaria fruit rot in apple fruits. J. Fungi 2021, 7, 564. [Google Scholar] [CrossRef]
- Shtienberg, D. Effects of host physiology on the development of core rot, caused by Alternaria alternata, in red delicious apples. Phytopathol. Res. 2012, 102, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Lódolo, X.V.; Lutz, M.C.; Mondino, P.; Ousset, J.; Sosa, M.C. First report of Diplodia seriata, Diplodia mutila, and Dothiorella omnivora associated with apple cankers and dieback in Rio Negro, Argentina. Plant Dis. 2022, 106, 325. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.H.; Shah, M.; Padder, B.; Shah, Z.A.; Dar, E.A.; Fayaz, U.; Nain, M.S.; Ali, M.A.; Al-Hemaid, F.M.; Stępień, P.; et al. Morphological, pathogenic and genetic diversity in Diplodia seriata associated with black rot canker of apple in India. Sci. Rep. 2023, 13, 15682. [Google Scholar] [CrossRef] [PubMed]
- Vučković, N.; Vico, I.; Duduk, B.; Duduk, N. Diversity of Botryosphaeriaceae and Diaporthe species associated with postharvest apple fruit decay in Serbia. Phytopathology 2022, 112, 929–943. [Google Scholar] [CrossRef] [PubMed]
- Úrbez-Torres, J.; Boulé, J.; O’Gorman, D. First report of Diplodia seriata and D. mutila causing apple dieback in British Columbia. Plant Dis. 2016, 100, 1243. [Google Scholar]
- Zhu, Z.-C.; Zhang, W.-B.; Yue, J.; Yi, Z.-B. Identification of Diplodia seriata causing black spot on branches and trunks of apple trees in Xinjiang. Acta Phytopathol. Sin. 2020, 50, 373–376. [Google Scholar]
- Kianfé, B.Y.; Tchamgoue, J.; Narmani, A.; Teponno, R.B.; Njouonkou, A.-L.; Stadler, M.; Fogue Kouam, S. Bioactive secondary metabolites from fungi of the genus Cytospora Ehrenb. (Ascomycota). Molecules 2023, 28, 3120. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Huang, W.; Yu, H. Synergetic antimicrobial effect of silver nanoparticles conjugated with iprodione against Valsa mali. Materials 2022, 15, 5147. [Google Scholar] [CrossRef] [PubMed]
- Azizi, R.; Ghosta, Y.; Ahmadpour, A. Apple crown and collar canker and necrosis caused by Cytospora balanejica sp. nov. in Iran. Sci. Rep. 2024, 14, 6629. [Google Scholar] [CrossRef] [PubMed]
- Hanifeh, S.; Zafari, D.; Soleimani, M.-J.; Arzanlou, M. Multigene phylogeny, morphology, and pathogenicity trials reveal novel Cytospora species involved in perennial canker disease of apple trees in Iran. Fungal Biol. 2022, 126, 707–726. [Google Scholar] [CrossRef] [PubMed]
- Ellouze, W.; Ilyukhin, E.; Sulman, M.; Ali, S. First report of Diplodia intermedia causing canker and dieback diseases on apple trees in Canada. Plant Dis. 2024, 108, 217. [Google Scholar] [CrossRef] [PubMed]
- Karlström, A.; Papp-Rupar, M.; Passey, T.A.; Deakin, G.; Xu, X. Quantitative trait loci associated with apple endophytes during pathogen infection. Front. Plant Sci. 2023, 14, 1054914. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Meng, Y.; Liu, R.; Xiao, Y.; Wang, Y.; Huang, L. Inhibitory effects of Bacillus vallismortis T27 against apple Valsa canker caused by Valsa mali. Pestic. Biochem. Physiol. 2023, 195, 105564. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Lin, Y.; Yu, W.; Yang, M.; Meng, X.; Yang, W.; Guo, Y.; Zhang, R.; Sun, G. Chaetoglobosin A contributes to the antagonistic action of Chaetomium globosum strain 61239 toward the apple Valsa canker pathogen Cytospora mali. Phytopathol. Res. 2023, 113, 1494–1505. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Guo, Y.; Li, Z.; Shi, Y.; Sun, P. Integrated transcriptome and metabolome profiling reveals mechanisms underlying the infection of Cytospora mali in “Jin Hong” branches. Front. Microbiol. 2024, 15, 1394447. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wang, S.; Zhao, X.; Yang, J.; Hu, H.; Zhang, G. Identification and antagonistic studies on a pathogenic fungus causing Apple Valsa canker. Chin. Agric. Sci. Bull. 2017, 33, 33–37. [Google Scholar]
- DeMers, M. Alternaria alternata as endophyte and pathogen. Microbiology 2022, 168, 001153. [Google Scholar] [CrossRef] [PubMed]
- Uwaremwe, C.; Yue, L.; Liu, Y.; Tian, Y.; Zhao, X.; Wang, Y.; Xie, Z.; Zhang, Y.; Cui, Z.; Wang, R. Molecular identification and pathogenicity of Fusarium and Alternaria species associated with root rot disease of wolfberry in Gansu and Ningxia provinces, China. Plant Pathol. 2021, 70, 397–406. [Google Scholar] [CrossRef]
- Li, W.; Long, Y.; Yin, X.; Wang, W.; Zhang, R.; Mo, F.; Zhang, Z.; Chen, T.; Chen, J.; Wang, B.; et al. Antifungal activity and mechanism of tetramycin against Alternaria alternata, the soft rot causing fungi in kiwifruit. Pestic. Biochem. Physiol. 2023, 192, 105409. [Google Scholar] [CrossRef] [PubMed]
- Luu, T.A.; Phi, Q.T.; Nguyen, T.T.H.; Dinh, M.V.; Pham, B.N.; Do, Q.T. Antagonistic activity of endophytic bacteria isolated from weed plant against stem end rot pathogen of pitaya in Vietnam. Egypt. J. Biol. Pest Control 2021, 31, 14. [Google Scholar] [CrossRef]
- Laidou, I.; Koulakiotu, E.; Thanassoulopoulos, C. First report of stem canker caused by Alternaria alternata on cotton. Plant Dis. 2000, 84, 103. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, P.; Liu, D.; Si, X. First report of Alternaria alternata causing postharvest black spot rot of jujube (Ziziphus jujuba Mill.) in Lu’an, Anhui Province. J. Plant Pathol. 2021, 103, 675. [Google Scholar] [CrossRef]
- Qi, C.; Zhang, H.; Chen, W.; Liu, W. Curcumin: An innovative approach for postharvest control of Alternaria alternata induced black rot in cherry tomatoes. Fungal Biol. 2024, 128, 1691–1697. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, X.; Guo, W.; Shi, J.; Chen, W.; Lei, Y.; Ma, Y.; Dai, H. MdWRKY120 enhance apple susceptibility to Alternaria alternata. Plants 2022, 11, 3389. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fu, L.; Li, C.; Zhang, X.; Narcisse, K.E.; Qi, H.; Han, C.; Wang, X.; Ma, H.; Zhu, C. Tannic acid exerts antifungal activity in vitro and in vivo against Alternaria alternata causing postharvest rot on apple fruit. Physiol. Mol. Plant Pathol. 2023, 125, 102012. [Google Scholar] [CrossRef]
- Gur, L.; Reuveni, M.; Cohen, Y. Phenology-based management of Alternaria fruit rot in pink lady apples. Plant Dis. 2018, 102, 1072–1080. [Google Scholar] [CrossRef]
Strain | Scientific Name | Query Cover Ratio | E-Value | Identity | Genbank Accession No. |
---|---|---|---|---|---|
Strain 1 | Cytospora ceratosperma | 97.00% | 0 | 100.00% | KF541093.1 |
Cytospora mali | 99.00% | 0 | 99.49% | OQ832663.1 | |
Valsa mali | 99.00% | 0 | 99.49% | KY942187.1 | |
Valsa mali | 99.00% | 0 | 99.49% | KT934353.1 | |
Strain 2 | Fusarium solani | 98.00% | 0 | 100.00% | MT638068.1 |
Fusarium solani | 98.00% | 0 | 100.00% | MF445382.1 | |
Fusarium cf. solani | 98.00% | 0 | 100.00% | ON037470.1 | |
Fusarium sp. | 98.00% | 0 | 100.00% | MT672436.1 | |
Strain 3 | Alternaria alternata | 97.00% | 0 | 100.00% | OP364409.1 |
Alternaria alternata | 97.00% | 0 | 100.00% | OM237169.1 | |
Alternaria arborescens | 98.00% | 0 | 99.81% | MF462298.1 | |
Alternaria alternata | 100.00% | 0 | 99.45% | OM319513.1 | |
Strain 4 | Valsa mali | 99.00% | 0 | 100.00% | KT934361.1 |
Cytospora ceratosperma | 97.00% | 0 | 100.00% | KF541093.1 | |
Cytospora mali | 99.00% | 0 | 100.00% | OQ832663.1 | |
Cytospora mali | 99.00% | 0 | 99.66% | OQ832664.1 | |
Cytospora mali | 99.00% | 0 | 99.66% | OQ832660.1 | |
Cytospora mali | 99.00% | 0 | 99.49% | OQ832661.1 | |
Strain 5 | Diplodia seriata | 99.00% | 0 | 99.44% | MT587370.1 |
Diplodia seriata | 99.00% | 0 | 99.44% | MN634031.1 | |
Diplodia seriata | 99.00% | 0 | 99.44% | MT023570.1 | |
Diplodia seriata | 99.00% | 0 | 99.44% | MK993419.1 | |
Strain 6 | Fusarium proliferatum | 97.00% | 0 | 100.00% | MG543772.1 |
Fusarium proliferatum | 97.00% | 0 | 100.00% | MG543734.1 | |
Fusarium proliferatum | 97.00% | 0 | 100.00% | MW563764.1 | |
Fusarium proliferatum | 97.00% | 0 | 100.00% | OM866009.1 | |
Fusarium fujikuroi | 97.00% | 0 | 100.00% | MW405871.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, H.; Zhang, J.; Zhang, S.; Zhao, Q.; Cheng, C.; Zhang, Y. Characterization of Fungal Species Isolated from Cankered Apple Barks Demonstrates the Alternaria alternata Causing Apple Canker Disease. J. Fungi 2024, 10, 536. https://doi.org/10.3390/jof10080536
Li Z, Li H, Zhang J, Zhang S, Zhao Q, Cheng C, Zhang Y. Characterization of Fungal Species Isolated from Cankered Apple Barks Demonstrates the Alternaria alternata Causing Apple Canker Disease. Journal of Fungi. 2024; 10(8):536. https://doi.org/10.3390/jof10080536
Chicago/Turabian StyleLi, Zhiqiang, Hao Li, Jiating Zhang, Shikai Zhang, Qi Zhao, Chunzhen Cheng, and Yongyan Zhang. 2024. "Characterization of Fungal Species Isolated from Cankered Apple Barks Demonstrates the Alternaria alternata Causing Apple Canker Disease" Journal of Fungi 10, no. 8: 536. https://doi.org/10.3390/jof10080536
APA StyleLi, Z., Li, H., Zhang, J., Zhang, S., Zhao, Q., Cheng, C., & Zhang, Y. (2024). Characterization of Fungal Species Isolated from Cankered Apple Barks Demonstrates the Alternaria alternata Causing Apple Canker Disease. Journal of Fungi, 10(8), 536. https://doi.org/10.3390/jof10080536