Fungal Diversity in an Undisturbed Andean Páramo Soil in Quimsacocha (Ecuador)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Collection
2.2. Physicochemical Analysis of Soils
2.3. Extraction of Environmental DNA in Soil Samples
2.4. PCR Amplification and Next-Generation Sequencing (NGS, Illumina MiSeq)
2.5. Taxonomic Assignment of Sequence Reads and Diversity Indices
2.6. Access Numbers
3. Results
3.1. Soil Physico-Chemical Analyses
3.2. Soil Fungal Assemblage Composition
3.2.1. Subkingdom Dikarya
Ascomycota
Basidiomycota
3.2.2. Subkingdom Mucoromyceta
Mortierellomycota
Glomeromycota
Mucoromycota
3.3. Soil Microbial Diversity in the Sampling Sites
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnes, C.J.; Maldonado, C.; Frøslev, T.G.; Antonelli, A.; Rønsted, N. Unexpectedly high beta-diversity of root-associated fungal communities in the Bolivian Andes. Front. Microbiol. 2016, 7, 1377. [Google Scholar] [CrossRef] [PubMed]
- Parada, R.; Mendoza, L.; Cotoras, M.; Ortiz, C. Endophytic fungi isolated from plants present in a mine tailing facility show a differential growth response to lead. Lett. Appl. Microbiol. 2022, 75, 345–354. [Google Scholar] [CrossRef]
- Delgado, E.F.; Valdez, A.T.; Covarrubias, S.A.; Tosi, S.; Nicola, L. Soil fungal diversity of the aguarongo andean forest (Ecuador). Biology 2021, 10, 1289. [Google Scholar] [CrossRef]
- Schmidt, S.K.; Sobieniak-Wiseman, L.C.; Kageyama, S.A.; Halloy, S.R.P.; Schadt, C.W. Mycorrhizal and dark-septate fungi in plant roots above 4270 meters elevation in the Andes and Rocky Mountains. Arct. Antarct. Alp. Res. 2008, 40, 576–583. [Google Scholar] [CrossRef]
- Marín, C.; Aguilera, P.; Oehl, F.; Godoy, R. Factors affecting arbuscular mycorrhizal fungi of Chilean temperate rainforests. J. Soil Sci. Plant Nutr. 2017, 17, 966–984. [Google Scholar] [CrossRef]
- Marcano, V. Siphula paramensis V. Marcano & L. Castillo (Icmadophilaceae, Lichenized Fungi), a new species from the high paramo in Venezuela. Phytotaxa 2021, 512, 169–178. [Google Scholar]
- Dueñas, J.F.; Camenzind, T.; Roy, J.; Hempel, S.; Homeier, J.; Suárez, J.P.; Rillig, M.C. Moderate phosphorus additions consistently affect community composition of arbuscular mycorrhizal fungi in tropical montane forests in southern Ecuador. New Phytol. 2020, 227, 1505–1518. [Google Scholar] [CrossRef]
- Aguirre, W.E.; Alvarez-Mieles, G.; Anaguano-Yancha, F.; Burgos Morán, R.; Cucalón, R.V.; Escobar-Camacho, D.; Jácome-Negrete, I.; Jiménez Prado, P.; Laaz, E.; Miranda-Troya, K.; et al. Conservation threats and future prospects for the freshwater fishes of Ecuador: A hotspot of Neotropical fish diversity. J. Fish Biol. 2021, 99, 1158–1189. [Google Scholar] [CrossRef]
- Lazo, P.X.; Mosquera, G.M.; McDonnell, J.J.; Crespo, P. The role of vegetation, soils, and precipitation on water storage and hydrological services in Andean Páramo catchments. J. Hydrol. 2019, 572, 805–819. [Google Scholar] [CrossRef]
- Cabrera, M.; Duivenvoorden, J.F. Drivers of aboveground biomass of high mountain vegetation in the Andes. Acta Oecologica 2020, 102, 103504. [Google Scholar] [CrossRef]
- Jantz, N.; Behling, H. A Holocene environmental record reflecting vegetation, climate, and fire variability at the Páramo of Quimsacocha, southwestern Ecuadorian Andes. Veg. Hist. Archaeobotany 2012, 21, 169–185. [Google Scholar] [CrossRef]
- INV METALAS. Technical Report on the LOMA Larga Project, Azuay Province, Ecuador. 2016. Available online: https://www.miningdataonline.com/reports/LomaLarga_PFS_08292016.pdf (accessed on 8 March 2024).
- Ministry of the Environment, Water and Ecological Transition MAATE. Preparation of the Management Plan for the Quimsacocha National Recreation Area. 2018. Available online: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2018/03/ACUERDO-002-ANEXO-AREA-NACIONAL-DE-RECREACION-QUIMSACOHA.pdf (accessed on 8 March 2024).
- Bloem, J.; Hopkins, D.W.; Benedetti, A. Microbiological Methods for Assessing Soil Quality; CABI Publishing: London, UK, 2006; p. 307. [Google Scholar]
- Uroz, S.; Ioannidis, P.; Lengelle, J.; Cébron, A.; Morin, E.; Buée, M.; Martin, F. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation. PLoS ONE 2013, 8, e55929. [Google Scholar] [CrossRef]
- Eyherabide, M.; Saínz Rozas, H.; Barbieri, P.; Echeverría, H.E. Comparación de métodos para determinar carbono orgánico en suelo. Cienc. Del Suelo 2014, 32, 13–19. [Google Scholar]
- Mahmoudi, N.; Slater, G.F.; Fulthorpe, R.R. Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils. Can. J. Microbiol. 2011, 57, 623–628. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomial RNA genes for phylogenetics. In PCR Protocols a Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Illumina Documents. 2019. Available online: https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/metagenomic/fungal-metagenomic-demonstrated-protocol-1000000064940-01.pdf (accessed on 8 March 2024).
- Caporaso, J.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Kõljalg, U.; Nillson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; Callaghan, T.M.; et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013, 22, 5271–5277. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org (accessed on 6 October 2023).
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2.0–10. 2013. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 4 November 2023).
- Tedersoo, L.; Sánchez-Ramírez, S.; Kõljalg, U.; Bahram, M.; Doring, M.; Schigel, D.; May, T.; Ryberg, M.; Abarenkov, K. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 2018, 90, 135–159. [Google Scholar] [CrossRef]
- Smith, A.P.; Young, T.P. Tropical alpine plant ecology. Annu. Rev. Ecol. Syst. 1987, 18, 137–158. [Google Scholar] [CrossRef]
- Avellaneda-Torres, L.M.; Pulido, C.P.; Rojas, E.T. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia. Braz. J. Microbiol. 2014, 45, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Landínez-Torres, A.Y.; Becerra Abril, J.L.; Tosi, S.; Nicola, L. Soil microfungi of the colombian natural regions. Int. J. Environ. Res. Public Health 2020, 17, 8311. [Google Scholar] [CrossRef]
- Gualdrón-Arenas, C.; Suárez-Navarro, A.L.; Valencia-Zapata, H. Hongos del suelo aislados de zonas de vegetación natural del páramo de Chisacá, Colombia. Caldasia 1997, 19, 235–245. [Google Scholar]
- Pinos León, A.J. Exploring the Microbiome Composition of the Rhizosphere Associated with the Wild Andean Blueberry (Vaccinium Floribundum, Kunth) in the Highlands of Ecuador. Master’s Thesis, Universidad San Francisco de Quito, Quito, Ecuador, 2020. Available online: https://repositorio.usfq.edu.ec/bitstream/23000/9113/1/141011.pdf (accessed on 5 December 2022).
- Brück, S.A.; Contato, A.G.; Gamboa-Trujillo, P.; de Oliveira, T.B.; Cereia, M.; de Moraes Polizeli, M.D. Prospection of psychrotrophic filamentous fungi isolated from the High Andean Páramo Region of Northern Ecuador: Enzymatic activity and molecular identification. Microorganisms 2022, 10, 282. [Google Scholar] [CrossRef] [PubMed]
- Vélez-Martínez, G.A.; Reyes-Ardila, W.L.; Duque-Zapata, J.D.; Rugeles-Silva, P.A.; Muñoz Flórez, J.E.; López-Álvarez, D. Soil bacteria and fungi communities are shaped by elevation influences in Colombian forest and páramo natural ecosystems. Int. Microbiol. 2023, 27, 377–391. [Google Scholar] [CrossRef]
- Ozimek, E.; Hanaka, A. Mortierella Species as the Plant Growth-Promoting Fungi Present in the Agricultural Soils. Agriculture 2021, 11, 7. [Google Scholar] [CrossRef]
- Landínez-Torres, A.Y.; Panelli, S.; Picco, A.M.; Comandatore, F.; Tosi, S.; Capelli, E. A meta-barcoding analysis of soil myco-biota of the upper Andean Colombian agro-environment. Sci. Rep. 2019, 9, 10085. [Google Scholar] [CrossRef]
- Egidi, E.; Delgado-Baquerizo, M.; Plett, J.M.; Wang, J.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 2019, 10, 2369. [Google Scholar] [CrossRef]
- Baba, T.; Hirose, D. Morphological characteristics of rhizodermal colonization by Leohumicola species in an ericaceous host. Plant Root 2020, 14, 1–10. [Google Scholar] [CrossRef]
- Kučera, V.; Lizoň, P.M.; Tomšovský, M. Taxonomic divergence of the green naked-stipe members of the genus Microglossum (Helotiales). Mycologia 2017, 109, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Rosling, A.; Cox, F.; Cruz-Martinez, K.; Ihrmark, K.; Grelet, G.A.; Lindahl, B.D.; Merkis, A.; James, T.Y. Archaeorhizomycetes: Unearthing an ancient class of ubiquitous soil fungi. Science 2011, 333, 876–879. [Google Scholar] [CrossRef]
- Menkis, A.; Urbina, H.; James, T.Y.; Rosling, A. Archaeorhizomyces borealis sp. nov. and a sequence-based classification of related soil fungal species. Fungal Biol. 2014, 118, 943–955. [Google Scholar] [CrossRef] [PubMed]
- Kalsoom Khan, F.; Kluting, K.; Tångrot, J.; Urbina, H.; Ammunet, T.; Eshghi Sahraei, S.; Rydén, M.; Ryberg, M.; Rosling, A. Naming the untouchable–environmental sequences and niche partitioning as taxonomical evidence in fungi. Ima Fungus 2020, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Figueroa, E.A.; Seddon, E.; Yashiro, E.; Buri, A.; Niculita-Hirzel, H.; Van der Meer, J.R.; Guisan, A. Archaeorhizomycetes spatial distribution in soils along wide elevational and environmental gradients reveal co-abundance patterns with other fungal saprobes and potential weathering capacities. Front. Microbiol. 2019, 10, 656. [Google Scholar] [CrossRef]
- Mujic, A.B.; Huang, B.; Chen, M.J.; Wang, P.H.; Gernandt, D.S.; Hosaka, K.; Spatafora, J.W. Out of western North America: Evolution of the Rhizopogon-Pseudotsuga symbiosis inferred by genome-scale sequence typing. Fungal Ecol. 2019, 39, 12–25. [Google Scholar] [CrossRef]
- Pagano, M.C.; Lugo, M.A. (Eds.) Mycorrhizal Fungi in South America 2019; Springer International Publishing: New York, NY, USA, 2019; Volume 1, pp. 177–192. [Google Scholar]
Sampling Site | Number of
Collected Samples | Altitude | Coordinate WGS 84 Datum UTM 17S | Area Ha. |
---|---|---|---|---|
L1 | 25 | 3040–3346 | 698,168.73–9,656,567.90 | 348.71 |
L2 | 25 | 3346–3656 | 696,462.02–9,657,059.22 | 1847.58 |
L3 | 27 | 3653–3960 | 696,670.66–9,658,961.80 | 5763.71 |
Sampling Sites | Organic Matter | pH | NH4+ | NO3− | P | K | Ca | Na+ |
L1 | 54.17 a | 4.81 a | 143.30 c | 4.50 c | 14.49 a | 0.18 c | 1.41 c | 0.08 a |
L2 | 28.77 b | 4.70 b | 203.08 b | 9.10 a | 10.70 c | 0.34 a | 1.49 b | 0.03 b |
L3 | 25.79 c | 4.80 a | 272.11 a | 6.00 b | 10.80 b | 0.25 b | 1.99 a | 0.02 c |
Sampling Sites | Mg | S | Zn2+ | Cu2+ | Fe2+ | Mn | B | Cl− |
L1 | 0.51 b | 6.60 c | 7.40 a | 1.30 c | 880.80 a | 4.50 c | 0.01 a | 0.70 a |
L2 | 0.70 c | 8.81 b | 2.20 c | 3.03 b | 552.80 c | 5.30 b | 0.01 a | 0.70 a |
L3 | 0.72 a | 10.20 a | 4.50 b | 5.20 a | 716.20 b | 13.80 a | 0.01 a | 0.70 a |
Altitude Level | Sample | Average % Humidity | Standard Deviation %Humidity | Humidity Group |
---|---|---|---|---|
L1 | S2 | 45.3 | 1 | Dry |
S3 | 76.1 | 0.2 | Wet | |
S4 | 81.6 | 0.2 | Wet | |
S5 | 51.1 | 0.9 | Dry | |
S6 | 49.4 | 0.3 | Dry | |
S7 | 42.8 | 2.7 | Dry | |
L2 | S8 | 39.4 | 0.3 | Dry |
S9 | 71.4 | 0.9 | Wet | |
S10 | 51.6 | 0.4 | Dry | |
S11 | 42.2 | 0.3 | Dry | |
S12 | 47.1 | 0.2 | Dry | |
S13 | 68.6 | 0.6 | Wet | |
L3 | S14 | 72.1 | 0.5 | Wet |
S15 | 37.5 | 0.1 | Dry | |
S16 | 51.3 | 0.2 | Dry | |
S17 | 67.8 | 1.5 | Wet | |
S18 | 78 | 0.8 | Wet | |
S19 | 48.5 | 0.3 | Dry | |
S20 | 75.2 | 1.1 | Wet |
Fungal Genera | Relative Abundance in Dry Soils | Relative Abundance in Wet Soils |
---|---|---|
Microglossum | 0.09% | 13.34% |
Porpolomopsis | 0.01% | 10.36% |
Clohesyomyces | 0.00% | 0.07% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Fernández, E.; Nicola, L.; Covarrubias, S.A.; Girometta, C.E.; Valdez-Tenezaca, A. Fungal Diversity in an Undisturbed Andean Páramo Soil in Quimsacocha (Ecuador). J. Fungi 2024, 10, 623. https://doi.org/10.3390/jof10090623
Delgado-Fernández E, Nicola L, Covarrubias SA, Girometta CE, Valdez-Tenezaca A. Fungal Diversity in an Undisturbed Andean Páramo Soil in Quimsacocha (Ecuador). Journal of Fungi. 2024; 10(9):623. https://doi.org/10.3390/jof10090623
Chicago/Turabian StyleDelgado-Fernández, Ernesto, Lidia Nicola, Sergio A. Covarrubias, Carolina Elena Girometta, and Adrián Valdez-Tenezaca. 2024. "Fungal Diversity in an Undisturbed Andean Páramo Soil in Quimsacocha (Ecuador)" Journal of Fungi 10, no. 9: 623. https://doi.org/10.3390/jof10090623
APA StyleDelgado-Fernández, E., Nicola, L., Covarrubias, S. A., Girometta, C. E., & Valdez-Tenezaca, A. (2024). Fungal Diversity in an Undisturbed Andean Páramo Soil in Quimsacocha (Ecuador). Journal of Fungi, 10(9), 623. https://doi.org/10.3390/jof10090623