Molecular Mechanism During Mycelium Subculture Degeneration of Volvariella volvacea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains
2.2. Medium Preparation
2.3. Mycelium Phenotype
2.4. Cultivation of V. volvacea
2.5. Sequencing Analysis of Transcriptomics
2.5.1. RNA Extraction and Sequencing
2.5.2. Functional Annotation and Enrichment Analysis of Differentially Expressed Genes
2.5.3. Real-Time Quantitative PCR Validation
2.6. Data Processing
3. Results and Analysis
3.1. The Change in Mycelial Character of V. volvacea Subculture Strains
3.2. The Change in Fruiting Body Character of V. volvacea Subculture Strains
3.3. Sequencing Data Quality Analysis
3.4. Analysis of Differentially Expressed Genes in the V. volvacea Subcultured Strains
3.5. GO Enrichment Analysis of Differentially Expressed Genes
3.6. KEGG Enrichment Analysis of Differentially Expressed Genes
3.7. Analysis of Differentially Expressed Genes Associated with Substrate Degradation
3.8. Analysis of Differentially Expressed Genes Related to Amino Acid Synthesis and Metabolism
3.9. Analysis of Differentially Expressed Genes Related to Reactive Oxygen Metabolism
3.10. RT-qPCR Validation of Differentially Expressed Genes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lyu, X.; Jiang, S.; Wang, L.; Chou, T.; Wang, Q.; Meng, L.; Mukhtar, I.; Xie, B.; Wang, W. The Fvclp1 gene regulates mycelial growth and fruiting body development in edible mushroom Flammulina velutipes. Arch. Microbiol. 2021, 203, 5373–5380. [Google Scholar] [CrossRef] [PubMed]
- Guillamon, E.; Garcia-Lafuente, A.; Lozano, M.; D’Arrigo, M.; Rostagno, M.A.; Villares, A.; Alfredo Martinez, J. Edible mushrooms: Role in the prevention of cardiovascular diseases. Fitoterapia 2010, 81, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ma, D.; Ge, W.; Buswell, J.A. Induction of laccase activity in the edible straw mushroom, Volvariella volvacea. FEMS Microbiol. Lett. 2003, 218, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Chen, F.; Cui, F.; Sun, W.; Zhang, J.; Qian, L.; Yang, Y.; Wu, D.; Dong, Y.; Jiang, J.; et al. Improved postharvest quality and respiratory activity of straw mushroom (Volvariella volvacea) with ultrasound treatment and controlled relative humidity. Sci. Hortic. 2017, 225, 56–64. [Google Scholar] [CrossRef]
- Hou, L.; Li, Y.; Chen, M.; Li, Z. Improved fruiting of the straw mushroom (Volvariella volvacea) on cotton waste supplemented with sodium acetate. Appl. Microbiol Biot. 2017, 101, 8533–8541. [Google Scholar] [CrossRef]
- Agreda, T.; Cisneros, O.; Agueda, B.; Marina Fernandez-Toiran, L. Age class influence on the yield of edible fungi in a managed mediterranean forest. Mycorrhiza 2014, 24, 143–152. [Google Scholar] [CrossRef]
- Homolka, L. Preservation of live cultures of basidiomycetes—Recent methods. Fungal Biol. 2014, 118, 107–125. [Google Scholar] [CrossRef]
- Bao, D.P.; Gong, M.; Zheng, H.J.; Chen, M.J.; Zhang, L.; Wang, H.; Jiang, J.P.; Wu, L.; Zhu, Y.Q.; Zhu, G.; et al. Sequencing and comparative analysis of the straw mushroom (Volvariella volvacea) genome. PLoS ONE 2013, 8, e58294. [Google Scholar] [CrossRef]
- Liu, M.; Yu, T.; Singh, P.K.; Liu, Q.; Liu, H.; Zhu, Q.; Xiao, Z.; Xu, J.; Peng, Y.; Fu, S.; et al. A comparative transcriptome analysis of Volvariella volvacea identified the candidate genes involved in fast growth at the mycelial growth stage. Genes 2020, 11, 161. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Liu, X.; Cui, B.; Miao, W.; Cheng, W.; Zhao, F. Characteristics analysis reveals the progress of Volvariella volvacea mycelium subculture degeneration. Front. Microbiol. 2019, 10, 2045. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357-U121. [Google Scholar] [CrossRef]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, D480–D484. [Google Scholar] [CrossRef] [PubMed]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.P.; Tan, Q.F.; Cheng, Z.H.; Sun, W.H.; Yuan, J.M.; Zhao, F.Y. Selection of optimal RT-qPCR reference genes for examining different strains of Volvariella volvacea. Mycosystema 2022, 41, 749–758. (In Chinese) [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Little, G.N.; Gordon, M.A. Survival of fungus cultures maintained under mineral oil for twelve years. Mycologia 1967, 59, 733–736. [Google Scholar] [CrossRef]
- Shah, F.A.; Allen, N.; Wright, C.J.; Butt, T.M. Repeated in vitro subculturing alters spore surface properties and virulence of Metarhizium anisopliae. FEMS Microbiol. Lett. 2007, 276, 60–66. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, K.-H.; Im, C.H.; Ali, A.; Lee, C.Y.; Kong, W.-S.; Ryu, J.-S. Identification of degenerate nuclei and development of a SCAR marker for Flammulina velutipes. PLoS ONE 2014, 9, e107207. [Google Scholar] [CrossRef]
- Baldrian, P.; Valaskova, V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 2008, 32, 501–521. [Google Scholar] [CrossRef]
- Wang, Z.; Lehr, N.; Trail, F.; Townsend, J.P. Differential impact of nutrition on developmental and metabolic gene expression during fruiting body development in Neurospora crassa. Fungal Genet. Biol. 2012, 49, 405–413. [Google Scholar] [CrossRef]
- Lynd, L.R.; Weimer, P.J.; van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. MMBR 2002, 66, 506–577. [Google Scholar] [CrossRef]
- Neumann, J.; Matzner, E. Biomass of extramatrical ectomycorrhizal mycelium and fine roots in a young Norway spruce stand—A study using ingrowth bags with different substrates. Plant Soil. 2013, 371, 435–446. [Google Scholar] [CrossRef]
- Yang, G.; Wei, Q.; Huang, H.; Xia, J. Amino Acid Transporters in Plant Cells: A Brief Review. Plants 2020, 9, 967. [Google Scholar] [CrossRef] [PubMed]
- Szabados, L.; Savoure, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Ding, Y.; Tang, X.; Wang, G.; Wu, S.; Li, X.; Huang, X.; Qu, T.; Chen, J.; Tang, X. Effect of L-arginine on maintaining storage quality of the white button mushroom (Agaricus bisporus). Food Bioprocess Technol. 2019, 12, 563–574. [Google Scholar] [CrossRef]
- Ros, R.; Munoz-Bertomeu, J.; Krueger, S. Serine in plants: Biosynthesis, metabolism, and functions. Trends Plant Sci. 2014, 19, 564–569. [Google Scholar] [CrossRef]
- Waheed, A.; Zhuo, L.; Wang, M.; Hailiang, X.; Tong, Z.; Wang, C.; Aili, A. Integrative mechanisms of plant salt tolerance: Biological pathways, phytohormonal regulation, and technological innovations. Plant Stress 2024, 14, 100652. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Chen, M.; Wang, H.; Wang, Q.; Song, X.; Hao, H.; Feng, Z. Kojic acid-mediated damage responses induce mycelial regeneration in the basidiomycete Hypsizygus marmoreus. PLoS ONE 2017, 12, e0187351. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, W.; Sun, W.; Lei, Y.; Tan, Q.; Zhao, G.; Yun, J.; Zhao, F. Overexpression of cat2 restores antioxidant properties and production traits in degenerated strains of Volvariella volvacea. Free Radic. Biol. Med. 2024, 215, 94–105. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Al Mahmud, J.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, H.; Chen, M.; Wang, H.; Feng, Z.; Chen, H. Hydrogen-rich water alleviates the toxicities of different stresses to mycelial growth in Hypsizygus marmoreus. Amb. Express 2017, 7, 107. [Google Scholar] [CrossRef]
- Santos, T.; Connolly, C.; Murphy, R. Trace element inhibition of phytase activity. Biol. Trace Elem. Res. 2015, 163, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Pischetsrieder, M.; St Leger, R.J.; Wang, C. Associated links among mtDNA glycation, oxidative stress and colony sectorization in Metarhizium anisopliae. Fungal Genet. Biol. 2008, 45, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Li, Y.; Liu, Y.; Gao, Y.; Qi, Y.; Shen, J. Particle and naked RNA mycoviruses in industrially cultivated mushroom Pleurotus ostreatus in China. Fungal Biol. 2010, 114, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Xin, X.D.; Weng, Y.J.; Gui, Z.Z. Transcriptome-wide analysis reveals the progress of Cordyceps militaris subculture degeneration. PLoS ONE 2017, 12, e0186279. [Google Scholar] [CrossRef]
- Tuteja, N.; Tuteja, R. Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur. J. Biochem. 2004, 271, 1835–1848. [Google Scholar] [CrossRef]
- Xin, X.; Yin, J.; Zhang, B.; Li, Z.; Zhao, S.; Gui, Z. Genome-wide analysis of DNA methylation in subcultured Cordyceps militaris. Arch. Microbiol. 2019, 201, 369–375. [Google Scholar] [CrossRef]
- Zhang, H.; Lang, Z.; Zhu, J.-K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mo. Cell Biol. 2018, 19, 489–506. [Google Scholar] [CrossRef]
- Dinh, T.N.; Nagahisa, K.; Hirasawa, T.; Furusawa, C.; Shimizu, H. Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS ONE 2008, 3, e2623. [Google Scholar] [CrossRef]
Gene Symbol | Description | Primer Sequence (5′→3′) |
---|---|---|
jgi|Volvo1|112751 | E3 ubiquitin–protein ligase | F: AGTTCACGCAATGCGAATAR: TCATCTGGATCGTGTGTAATGG |
jgi|Volvo1|113089 | catalase (CAT) | F: AGGCTCTGACATTCATCATTGR: AAAGCAGCTTCACCCATAC |
jgi|Volvo1|113259 | DNA-methyltransferase 1A | F: TGTGCTCAAGAACCAACCTAR: CCCTGGGCAATACGGGATA |
jgi|Volvo1|114089 | cellobiohydrolase I-I | F: ACAAACGGAATCACAACTAGCR: CGCGTGACACAGTATCAG |
jgi|Volvo1|114279 | endo -beta-1,4-glucanase D | F: TTATTCCCGATATTCCTGCTGGR: TTCTGAGAGTACAGTGCGT |
jgi|Volvo1|115957 | DNA-methyltransferase 1B | F: CGACGATGGATTTACAGCATTAR: TTGCCACTCGTACAAGTCAG |
jgi|Volvo1|118151 | Mn superoxide dismutase (SOD) | F: CACAAAGACCGCTGCTATCR: TAGTAACGACCTCTAGCTTGC |
jgi|Volvo1|118375 | glutathione peroxidase (GPX) | F: TCGGAGGTGAATGGGAACR: TTGATCCTCGTCAGACCCATA |
jgi|Volvo1|120455 | ATP-dependent helicase IRC5 | F: CCAACGCGAAGCCTATAACR: GCTCCTCATCTTTCTTAGCTG |
jgi|Volvo1|121578 | aryl alcohol oxidase | F: GAATCCGTTCTCCCTCAAGR: GCGCAGTGGTAGTGTAAT |
jgi|Volvo1|115476 | laccase-4 | F: ATGCGGTTCTGGTCAATGR: TTGTGTGACAGAGAGTTCGT |
jgi|Volvo1|120498 | tyrosinase | F: GGGCGAAACTGAACTGGR: CTGGGAGCGTCATAGGA |
jgi|Volvo1|117803 | glyceraldehyde-3-phosphate dehydrogenase (GPD) | F: GGCTTGATGACCACCGTACATR: GCACCAGTGGAAGATGGAATAATG |
Strains | M0 | M1 | M2 | M3 | M4 | M5 |
---|---|---|---|---|---|---|
Raw reads M | 49.55 | 49.37 | 49.38 | 49.48 | 49.42 | 49.55 |
Clean reads M | 48.21 | 48.12 | 47.92 | 48.14 | 47.97 | 48.09 |
Valid bases % | 93.45 | 0.93 | 93.53 | 93.61 | 93.36 | 92.45 |
Q30 content % | 93.50 | 93.75 | 93.95 | 94.30 | 94.28 | 94.06 |
GC content % | 51.99 | 51.89 | 51.89 | 51.83 | 51.97 | 51.76 |
Total mapped reads % | 97.45 | 97.00 | 97.23 | 96.80 | 97.61 | 97.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Wang, L.; Lei, Y.; Li, J.; Zhao, F. Molecular Mechanism During Mycelium Subculture Degeneration of Volvariella volvacea. J. Fungi 2025, 11, 7. https://doi.org/10.3390/jof11010007
Feng L, Wang L, Lei Y, Li J, Zhao F. Molecular Mechanism During Mycelium Subculture Degeneration of Volvariella volvacea. Journal of Fungi. 2025; 11(1):7. https://doi.org/10.3390/jof11010007
Chicago/Turabian StyleFeng, Lidan, Lujuan Wang, Yuanxi Lei, Jie Li, and Fengyun Zhao. 2025. "Molecular Mechanism During Mycelium Subculture Degeneration of Volvariella volvacea" Journal of Fungi 11, no. 1: 7. https://doi.org/10.3390/jof11010007
APA StyleFeng, L., Wang, L., Lei, Y., Li, J., & Zhao, F. (2025). Molecular Mechanism During Mycelium Subculture Degeneration of Volvariella volvacea. Journal of Fungi, 11(1), 7. https://doi.org/10.3390/jof11010007