Identification of Challenging Dermatophyte Species Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dermatophyte Selection and Culture Conditions for the In-House Library and Test Isolates
2.2. Sample Preparation for MALDI-TOF MS and Protein Extraction
2.3. MS Data Acquisition
2.4. Determination of the Main Spectra Profile (MSP) from Reference Isolates and Construction of the In-House Dermatophyte Library
2.5. Validation of the Bruker and Expanded Libraries via MALDI-TOF MS and Identification of Sequence-Confirmed Test Isolates
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ITS | Internal transcribed spacer |
LS | Log score |
m/z | Mass-to-charge ratio |
MALDI-TOF MS | Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry |
MS | Mass spectrometry |
MSI | Mass Spectrometry Identification database |
MSP | Main spectra profile |
PDA | Potato dextrose agar |
References
- Baumgardner, D.J. Fungal Infections From Human and Animal Contact. J. Patient Cent. Res. Rev. 2017, 4, 78–89. [Google Scholar] [CrossRef]
- Moskaluk, A.E.; VandeWoude, S. Current Topics in Dermatophyte Classification and Clinical Diagnosis. Pathogens 2022, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Theel, E.S.; Hall, L.; Mandrekar, J.; Wengenack, N.L. Dermatophyte identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2011, 49, 4067–4071. [Google Scholar] [CrossRef] [PubMed]
- Aboul-Ella, H.; Hamed, R.; Abo-Elyazeed, H. Recent trends in rapid diagnostic techniques for dermatophytosis. Int. J. Vet. Sci. Med. 2020, 8, 115–123. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Chung, C.-R.; Chen, C.-J.; Lu, K.-P.; Tseng, Y.-J.; Chang, T.-H.; Wu, M.-H.; Huang, W.-T.; Lin, T.-W.; Liu, T.-P.; et al. Clinically Applicable System for Rapidly Predicting Enterococcus faecium Susceptibility to Vancomycin. Microbiol. Spectr. 2021, 9, e0091321. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Y.; Kuo, C.-H.; Chung, C.-R.; Lin, W.-Y.; Wang, Y.-C.; Lin, T.-W.; Yu, J.-R.; Lu, J.-J.; Wu, T.-S. Rapid and Accurate Discrimination of Mycobacterium abscessus Subspecies Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Spectrum and Machine Learning Algorithms. Biomedicines 2022, 11, 45. [Google Scholar] [CrossRef]
- Chung, C.-R.; Wang, H.-Y.; Lien, F.; Tseng, Y.-J.; Chen, C.-H.; Lee, T.-Y.; Liu, T.-P.; Horng, J.-T.; Lu, J.-J. Incorporating Statistical Test and Machine Intelligence Into Strain Typing of Staphylococcus haemolyticus Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Front. Microbiol. 2019, 10, 2120. [Google Scholar] [CrossRef]
- Cassagne, C.; Normand, A.C.; L’Ollivier, C.; Ranque, S.; Piarroux, R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses 2016, 59, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Rizzato, C.; Lombardi, L.; Zoppo, M.; Lupetti, A.; Tavanti, A. Pushing the Limits of MALDI-TOF Mass Spectrometry: Beyond Fungal Species Identification. J. Fungi 2015, 1, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Spanu, T.; Posteraro, B.; Fiori, B.; D’Inzeo, T.; Campoli, S.; Ruggeri, A.; Tumbarello, M.; Canu, G.; Trecarichi, E.M.; Parisi, G.; et al. Direct maldi-tof mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: An observational study in two large microbiology laboratories. J. Clin. Microbiol. 2012, 50, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, S.; Umemura, H.; Nakayama, T. Current Status of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in Clinical Diagnostic Microbiology. Molecules 2020, 25, 4775. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.F. Matrix-Assisted Laser Desorption Ionization Time-of-Flight for Fungal Identification. Clin. Lab. Med. 2021, 41, 267–283. [Google Scholar] [CrossRef] [PubMed]
- Sanguinetti, M.; Posteraro, B. Identification of Molds by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2017, 55, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Shao, J.; Song, Y.; Wan, Z.; Yao, L.; Wang, H.; Yu, J. Performance of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of. Front. Microbiol. 2022, 13, 841286. [Google Scholar] [CrossRef]
- Putignani, L.; Del Chierico, F.; Onori, M.; Mancinelli, L.; Argentieri, M.; Bernaschi, P.; Coltella, L.; Lucignano, B.; Pansani, L.; Ranno, S.; et al. MALDI-TOF mass spectrometry proteomic phenotyping of clinically relevant fungi. Mol. Biosyst. 2011, 7, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.E.; Kaleta, E.J.; Arora, A.; Wolk, D.M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. [Google Scholar] [CrossRef]
- De Carolis, E.; Posteraro, B.; Lass-Flörl, C.; Vella, A.; Florio, A.R.; Torelli, R.; Girmenia, C.; Colozza, C.; Tortorano, A.M.; Sanguinetti, M.; et al. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 2012, 18, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Cherkaoui, A.; Hibbs, J.; Emonet, S.; Tangomo, M.; Girard, M.; Francois, P.; Schrenzel, J. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J. Clin. Microbiol. 2010, 48, 1169–1175. [Google Scholar] [CrossRef]
- L’Ollivier, C.; Ranque, S. MALDI-TOF-Based Dermatophyte Identification. Mycopathologia 2017, 182, 183–192. [Google Scholar] [CrossRef] [PubMed]
- MBT Filamentous Fungi Library 4.0 Release Notes; Bruker Daltonics GmbH & Co. KG: Bremen, Germany, 2021; Revision D Doc. no. 5027071.
- Paul, S.; Singh, P.; Sharma, S.; Prasad, G.S.; Rudramurthy, S.M.; Chakrabarti, A.; Ghosh, A.K. MALDI-TOF MS-Based Identification of Melanized Fungi is Faster and Reliable After the Expansion of In-House Database. Proteomics Clin. Appl. 2019, 13, e1800070. [Google Scholar] [CrossRef]
- Zvezdanova, M.E.; Escribano, P.; Ruiz, A.; Martínez-Jiménez, M.C.; Peláez, T.; Collazos, A.; Guinea, J.; Bouza, E.; Rodríguez-Sánchez, B. Increased species-assignment of filamentous fungi using MALDI-TOF MS coupled with a simplified sample processing and an in-house library. Med. Mycol. 2019, 57, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Becker, P.T.; de Bel, A.; Martiny, D.; Ranque, S.; Piarroux, R.; Cassagne, C.; Detandt, M.; Hendrickx, M. Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: Clinical evaluation of an extended reference spectra library. Med. Mycol. 2014, 52, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Honsig, C.; Selitsch, B.; Hollenstein, M.; Vossen, M.G.; Spettel, K.; Willinger, B. Identification of Filamentous Fungi by MALDI-TOF Mass Spectrometry: Evaluation of Three Different Sample Preparation Methods and Validation of an In-House Species Cutoff. J. Fungi 2022, 8, 383. [Google Scholar] [CrossRef]
- Normand, A.-C.; Cassagne, C.; Gautier, M.; Becker, P.; Ranque, S.; Hendrickx, M.; Piarroux, R. Decision criteria for MALDI-TOF MS-based identification of filamentous fungi using commercial and in-house reference databases. BMC Microbiol. 2017, 17, 25. [Google Scholar] [CrossRef] [PubMed]
- DATAtab e.U. G, Austria. DATAtab: Online Statistics Calculator. Available online: https://datatab.net (accessed on 17 September 2024).
- McMullen, A.R.; Wallace, M.A.; Pincus, D.H.; Wilkey, K.; Burnham, C.A. Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System for Identification of Clinically Relevant Filamentous Fungi. J. Clin. Microbiol. 2016, 54, 2068–2073. [Google Scholar] [CrossRef] [PubMed]
- Alanio, A.; Beretti, J.; Dauphin, B.; Mellado, E.; Quesne, G.; Lacroix, C.; Amara, A.; Berche, P.; Nassif, X.; Bougnoux, M. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clin. Microbiol. Infect. 2011, 17, 750–755. [Google Scholar] [CrossRef]
- Kraemer, A.; Mueller, R.S.; Werckenthin, C.; Straubinger, R.K.; Hein, J. Dermatophytes in pet Guinea pigs and rabbits. Vet. Microbiol. 2012, 157, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Bonifaz, A.; Lumbán-Ramírez, P.; Frías-de-León, M.G.; Vidaurri de la Cruz, H. Tineas caused by hedgehogs due to Trichophyton erinacei an ascending agent of dermatophytosis. Expert. Rev. Anti Infect. Ther. 2024, 22, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Frías-De-León, M.G.; Martínez-Herrera, E.; Atoche-Diéguez, C.E.; Cespón, J.L.G.; Uribe, B.; Arenas, R.; Rodríguez-Cerdeira, C. Molecular identification of isolates of the Trichophyton mentagrophytes complex. Int. J. Med. Sci. 2020, 17, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Uhrlaß, S.; Verma, S.B.; Gräser, Y.; Rezaei-Matehkolaei, A.; Hatami, M.; Schaller, M.; Nenoff, P. An Emerging Pathogen Causing Recalcitrant Dermatophytoses in India and Worldwide-A Multidimensional Perspective. J. Fungi 2022, 8, 757. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Zhang, C.H.; Wang, J.D.; Fan, Y.M. Scrotal tinea caused by Nannizzia incurvata in two men using molecular identification. J. Eur. Acad. Dermatol. Venereol. 2022, 36, e957–e959. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.L. Atlas of Clinical Fungi, 2nd Edition by G.S. deHoog H. Gene, and M.J. Figueras. Centraalbureau voor Schimmelcultures. Mycopathologia 2001, 152, 159–160. [Google Scholar] [CrossRef]
- Lau, A.F.; Drake, S.K.; Calhoun, L.B.; Henderson, C.M.; Zelazny, A.M. Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2013, 51, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Yuan, Z.; Shen, J.; Wang, Z.; Xu, Y. Accuracy of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinical pathogenic fungi: A meta-analysis. J. Clin. Microbiol. 2014, 52, 2573–2582. [Google Scholar] [CrossRef]
- Karabıçak, N.; Karatuna, O.; İlkit, M.; Akyar, I. Evaluation of the Bruker Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) System for the Identification of Clinically Important Dermatophyte Species. Mycopathologia 2015, 180, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, I.; Relloso, S.; Guelfand, L.; Fox, B.; Azula, N.; Romano, V.; Cantore, A.; Barrios, R.; Carnovale, S.; Nuske, E.; et al. Evaluation of the MALDI-TOF mass spectrometry technique for the identification of dermatophytes: Use of an extended database. Rev. Iberoam. Micol. 2023, 40, 19–25. [Google Scholar] [CrossRef]
- Jabet, A.; Normand, A.-C.; Moreno-Sabater, A.; Guillot, J.; Risco-Castillo, V.; Brun, S.; Demar, M.; Blaizot, R.; Nabet, C.; Packeu, A.; et al. Investigations upon the Improvement of Dermatophyte Identification Using an Online Mass Spectrometry Application. J. Fungi 2022, 8, 73. [Google Scholar] [CrossRef]
- Lee, H.; Oh, J.; Sung, G.-H.; Koo, J.; Lee, M.-H.; Lee, H.J.; Cho, S.-I.; Choi, J.S.; Park, Y.-J.; Shin, J.H.; et al. Multilaboratory Evaluation of the MALDI-TOF Mass Spectrometry System, MicroIDSys Elite, for the Identification of Medically Important Filamentous Fungi. Mycopathologia 2021, 186, 15–26. [Google Scholar] [CrossRef]
- Wilkendorf, L.S.; Bowles, E.; Buil, J.B.; van der Lee, H.A.L.; Posteraro, B.; Sanguinetti, M.; Verweij, P.E. Update on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Identification of Filamentous Fungi. J. Clin. Microbiol. 2020, 58, e01263-20. [Google Scholar] [CrossRef] [PubMed]
- Jeraldine, V.M.; Wim, L.; Ellen, V.E. A comparative study for optimization of MALDI-TOF MS identification of filamentous fungi. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Hamal, P.; Vavrova, A.; Mrazek, J.; Svobodova, L. Identification of filamentous fungi including dermatophytes using MALDI-TOF mass spectrometry. Folia Microbiol. 2022, 67, 55–61. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, K.C.; Riat, A.; Normand, A.; Bosshard, P.P.; de Almeida, M.T.G.; Piarroux, R.; Schrenzel, J.; Fontao, L. Fast identification of dermatophytes by MALDI-TOF/MS using direct transfer of fungal cells on ground steel target plates. Mycoses 2018, 61, 691–697. [Google Scholar] [CrossRef]
- Hua, L.; Yang, Z.; Xiao, C. MALDI-TOF MS Identification of some Clinically-Relevant Filamentous Fungi with the Direct Smear Method, a Simple Sample Preparation Method. Clin. Lab. 2023, 69, 1381. [Google Scholar] [CrossRef]
- Croxatto, A.; Prod’hom, G.; Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 2012, 36, 380–407. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, H.; Cai, K.; Yu, P.; Liu, Y.; Zhao, G.; Chen, R.; Xu, R.; Yu, M. Evaluation of three sample preparation methods for the identification of clinical strains by using two MALDI-TOF MS systems. J. Mass. Spectrom. 2021, 56, e4696. [Google Scholar] [CrossRef]
- Robert, M.G.; Romero, C.; Dard, C.; Garnaud, C.; Cognet, O.; Girard, T.; Rasamoelina, T.; Cornet, M.; Maubon, D. Evaluation of ID Fungi Plates Medium for Identification of Molds by MALDI Biotyper. J. Clin. Microbiol. 2020, 58, e01687-19. [Google Scholar] [CrossRef] [PubMed]
- Schulthess, B.; Ledermann, R.; Mouttet, F.; Zbinden, A.; Bloemberg, G.V.; Böttger, E.C.; Hombach, M. Use of the Bruker MALDI Biotyper for identification of molds in the clinical mycology laboratory. J. Clin. Microbiol. 2014, 52, 2797–2803. [Google Scholar] [CrossRef]
- Sleiman, S.; Halliday, C.L.; Chapman, B.; Brown, M.; Nitschke, J.; Lau, A.F.; Chen, S.C.-A. Performance of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Aspergillus, Scedosporium, and Fusarium spp. in the Australian Clinical Setting. J. Clin. Microbiol. 2016, 54, 2182–2186. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Velásquez, J.C.; Loaiza-Díaz, N.; Norela Hernández, G.; Lima, N.; Mesa-Arango, A.C. Development and Validation of an In-House Library for Filamentous Fungi Identification by MALDI-TOF MS in a Clinical Laboratory in Medellin (Colombia). Microorganisms 2020, 8, 1362. [Google Scholar] [CrossRef]
- Cassagne, C.; Ranque, S.; Normand, A.-C.; Fourquet, P.; Thiebault, S.; Planard, C.; Hendrickx, M.; Piarroux, R. Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS ONE 2011, 6, e28425. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.; Tran, V.; Nichol, K.A.; Lagacé-Wiens, P.; Pieroni, P.; Adam, H.J.; Turenne, C.; Walkty, A.J.; Normand, A.; Hendrickx, M.; et al. Evaluation of three MALDI-TOF mass spectrometry libraries for the identification of filamentous fungi in three clinical microbiology laboratories in Manitoba, Canada. Mycoses 2018, 61, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Kano, R.; Hasegawa, A. [Historic topics on classification of Trichophyton mentagrophytes complex]. Med. Mycol. J. 2014, 55, J73–J77. [Google Scholar] [CrossRef]
- Nenoff, P.; Erhard, M.; Simon, J.C.; Muylowa, G.K.; Herrmann, J.; Rataj, W.; Gräser, Y. MALDI-TOF mass spectrometry—A rapid method for the identification of dermatophyte species. Med. Mycol. 2013, 51, 17–24. [Google Scholar] [CrossRef]
- de Respinis, S.; Tonolla, M.; Pranghofer, S.; Petrini, L.; Petrini, O.; Bosshard, P.P. Identification of dermatophytes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Med. Mycol. 2013, 51, 514–521. [Google Scholar] [CrossRef]
- Shaw, D.; Ghosh, A.K.; Paul, S.; Singh, S.; Chakrabarti, A.; Kaur, H.; Narang, T.; Dogra, S.; Rudramurthy, S.M. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry: Protocol standardisation, comparison and database expansion for faster and reliable identification of dermatophytes. Mycoses 2021, 64, 926–935. [Google Scholar] [CrossRef] [PubMed]
Dermatophyte Species | Number of Isolates Used to Construct the In-House Library | Number of Test Isolates |
---|---|---|
Trichophyton interdigitale | 15 | 25 |
Trichophyton rubrum | 20 | 21 |
Trichophyton mentagrophytes | 5 | 15 |
Trichophyton tonsurans | 4 | 12 |
Trichophyton indotineae | 4 | 11 |
Trichophyton benhamiae | 3 | 5 |
Trichophyton erinacei | 3 | 2 |
Nannizzia gypsea | 7 | 12 |
Nannizzia incurvata | 7 | 4 |
Microsporum canis | 3 | 10 |
Epidermophyton floccosum | 2 | 1 |
Total | 73 | 118 |
Correct Identification: Number (Percentage) | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
Bruker | Expanded (Bruker + In-House) | Cutoff: 1.7 | Cutoff: 2.0 | ||||||
Dermatophyte Species | Number of Test Strains | Cutoff: 1.7 | Cutoff: 2.0 | Cutoff: 1.7 | Cutoff: 1.8 | Cutoff: 1.9 | Cutoff: 2.0 | ||
Trichophyton interdigitale | 25 | 2 (8%) | 0 (0%) | 22 (88%) | 22 (88%) | 19 (76%) | 15 (60%) | <0.001 | <0.001 |
Trichophyton indotineae | 11 | 0 (0%) | 0 (0%) | 10 (90.9%) | 10 (90.9%) | 7 (63.6%) | 6 (54.5%) | <0.001 | 0.012 |
Trichophyton mentagrophytes | 15 | 0 (0%) | 0 (0%) | 14 (93.3%) | 10 (66.7%) | 7 (46.7%) | 7 (46.7%) | <0.001 | <0.001 |
Trichophyton tonsurans | 12 | 2 (16.7%) | 0 (0%) | 11 (91.7%) | 11 (91.7%) | 8 (66.7%) | 5 (41.7%) | <0.001 | <0.001 |
Trichophyton benhamiae | 5 | 0 (0%) | 0 (0%) | 5 (100%) | 3 (60%) | 3 (60%) | 0 (0%) | 0.008 | 1.0 |
Trichophyton erinacei | 2 | 0 (0%) | 0 (0%) | 2 (100%) | 2 (100%) | 2 (100%) | 2 (100%) | 0.333 | 0.333 |
Trichophyton rubrum | 21 | 5 (23.8%) | 0 (0%) | 19 (90.5%) | 17 (81%) | 11 (53.4%) | 10 (47.6%) | <0.001 | <0.001 |
Microsporum canis | 10 | 8 (80%) | 3 (30%) | 10 (100%) | 10 (100%) | 7 (70%) | 5 (50%) | 0.474 | 0.650 |
Nannizzia gypsea | 12 | 1 (8.3%) | 0 (0%) | 9 (75%) | 5 (41.7%) | 3 (25%) | 2 (16.7%) | <0.001 | 0.478 |
Nannizzia incurvata | 4 | 0 (0%) | 0 (0%) | 4 (100%) | 2 (50%) | 2 (50%) | 2 (50%) | 0.029 | 0.429 |
Epidermophyton floccosum | 1 | 1 (100%) | 0 (0%) | 1 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | 1.0 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, T.-F.; Fan, Y.-C.; Lu, J.-J.; Chien, C.-C.; Wang, H.-Y.; Sun, P.-L. Identification of Challenging Dermatophyte Species Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. J. Fungi 2025, 11, 107. https://doi.org/10.3390/jof11020107
Tsai T-F, Fan Y-C, Lu J-J, Chien C-C, Wang H-Y, Sun P-L. Identification of Challenging Dermatophyte Species Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Journal of Fungi. 2025; 11(2):107. https://doi.org/10.3390/jof11020107
Chicago/Turabian StyleTsai, Tsung-Fu, Yun-Chen Fan, Jang-Jih Lu, Chun-Chih Chien, Hsin-Yao Wang, and Pei-Lun Sun. 2025. "Identification of Challenging Dermatophyte Species Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry" Journal of Fungi 11, no. 2: 107. https://doi.org/10.3390/jof11020107
APA StyleTsai, T.-F., Fan, Y.-C., Lu, J.-J., Chien, C.-C., Wang, H.-Y., & Sun, P.-L. (2025). Identification of Challenging Dermatophyte Species Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Journal of Fungi, 11(2), 107. https://doi.org/10.3390/jof11020107