Hemileia vastatrix in Coffea spp.: Distribution of Urediniospores Grouped by Size and Insights into Morphological Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Distribution of Urediniospores
2.1.1. Symptomatic Leaf Samples and Location Characteristics
2.1.2. Sample Subsets
2.2. Urediniospore Size
Size
2.3. Grouping of Urediniospores by Size
2.3.1. Size Range
2.3.2. Grouping
2.4. Distribution of Groups
2.5. Descriptive Insights into Morphological Structures
2.5.1. Re-Examination of Uredinia and Urediniospores
Hand-Prepared Slide Montages
Histological Analysis
Scanning Electron Microscopy (SEM)
Transmission Electron Microscopy (TEM)
2.6. Species Corroboration
3. Results
3.1. Urediniospore Size Range Analysis
3.2. Urediniospore Groups and Distribution
3.2.1. Groups
3.2.2. Distribution
3.3. Re-Examined Morphological Structures of Uredinia
3.3.1. Hand-Prepared Slide Montages
3.3.2. Histological Analysis
3.3.3. Scanning Electron Microscopy (SEM)
3.3.4. Transmission Electron Microscopy (TEM)
3.4. Other Analyzed Structures
3.4.1. Hyphal Anastomoses
3.4.2. Haustoria Anastomoses
3.5. Hemileia vastatrix Confirmation
4. Discussion
4.1. Groups of Urediniospores and Distribution
4.2. Morphological Structures
4.3. Insights into Other Features of Infected Tissue
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Group No. 1,2 | Subsamples (Leaves No.) | State 3 | Altitude (m) | Coffee Cultivar 4 | Spore Size (Width 5 × Length 6; µm) 7 |
---|---|---|---|---|---|
3 1 a 2 | 11 | Puebla | 229 | Caturra Rojo | 29.5–40 5 × 19–32.5 6 (–35) 7 |
1b | 1 | Puebla | 650 | Caturra Rojo | (25–) 7 28–38 × 16–25 (–28) |
2 | Puebla | 650 | Catuai | 29–36 × 18–25 | |
4 | Puebla | 650 | Oro Azteca | 26–36 × 18–29 | |
6 8 | Puebla | 1100 | Caturra Rojo | (24–) 27–37 × 16.5–25 | |
8 8 | Puebla | 1100 | Caturra Rojo | 27–37 × 17.5–26 | |
9 8 | Puebla | 1100 | Costa Rica 95 | (28–) 30–36 × 18–26.5 | |
10 | Puebla | 229 | Caturra Rojo | (28–) 30–38 × 18–25.5 | |
12 | Puebla | 578 | Caturra Rojo | 27–35 (–38) × 19.5–25 (–30) | |
26 | Oaxaca | 1054 | Pluma Hidalgo | (25–) 28–36 × 18–26 | |
29 | Oaxaca | 350 | Caturra Rojo | 23–38 × 15–27 (–37) | |
31 | Oaxaca | 350 | Caturra Rojo | (25–) 27–38 × (16–) 18–28 | |
2c | 3 | Puebla | 650 | Catuai | 29–36 × 18–25 |
5 8 | Puebla | 1100 | Pacamara | (24–) 27–37.5 × 16–27 | |
14 8 | Puebla | 578 | Caturra Rojo | 30–37 × 17.5–25 | |
16 | Oaxaca | 773 | Pluma Hidalgo | 28–35.5 × 18–26 | |
18 | Oaxaca | 773 | Pluma Hidalgo | 23–36 × 13–26 | |
19 | Oaxaca | 905 | Pacamara | (24–) 28.5–35 × (12.5–) 15–27 (–30) | |
20 | Oaxaca | 905 | Pacamara | (22–) 28–36 × (13–) 19–27 | |
23 | Oaxaca | 653 | Caturra Rojo | 24–36 (–38) × (14.5–) 17–26 | |
24 | Oaxaca | 560 | Oro Azteca | (22–) 28–37 (–39) × (14–) 18–26 (–28) | |
27 | Oaxaca | 1054 | Pluma Hidalgo | (24–) 27–35 × (17–) 19–25 (–29) | |
30 | Oaxaca | 350 | Caturra Rojo | (20–) 25–36 (–38) × 15–28 | |
32 | Chiapas | 1241 | Caturra Rojo | (21–) 29–36 (–38) × (14.5–) 19–27 | |
36 | Chiapas | 823 | Caturra Rojo | 26–36 × (16–) 18–26.5 | |
41 8 | Chiapas | 559 | Robusta | (25–) 27–36 × (15–) 19–25 (–28) | |
48 | Chiapas | 1649 | Bourbon | (23–) 26–36 × (15–) 20–26 | |
59 | Veracruz | 839 | Caturra Rojo | (25–) 28–35 × 17.5–24 | |
4d | 17 | Oaxaca | 773 | Pluma Hidalgo | 25–36 (–38) × (15–) 17–25 |
21 | Oaxaca | 653 | Caturra Rojo | (22.5–) 28–34 (–36) × (14–) 17.5–25 | |
25 | Oaxaca | 560 | Oro Azteca | (23.5–) 29–33.5 (–37) × (14.5–) 17–26 (–28) | |
28 8 | Oaxaca | 1054 | Pacamara | 28–32 (–34) × (16–) 18–25 | |
38 | Chiapas | 823 | Caturra Rojo | (21–) 27–36 (–38) × 15–25 (–27) | |
39 | Chiapas | 823 | Caturra Rojo | (24.5–) 27–35 × (15–) 18–26.5 | |
42 | Chiapas | 559 | Robusta | 24–36 × 15–23 (–27) | |
45 | Chiapas | 389 | Caturra Rojo | (20–) 27–35 × (14–) 19–26 | |
53 | Veracruz | 1318 | Maragogipe | (25–) 28–34 × (14.5–) 16–26 | |
58 | Veracruz | 1053 | Caturra Rojo | (25–) 28–35 (–38) × (14.5–) 18–25 | |
60 | Veracruz | 839 | Bourbon | 27–35 × 17–25 (–28) | |
61 | Veracruz | 565 | Caturra Rojo | 25–35 × 17.5–26 | |
5e | 35 | Chiapas | 1241 | Caturra Rojo | (21–) 25–33.5 (–35) × (15–) 18–27 (–29) |
46 | Chiapas | 1649 | Bourbon | (25–) 27–35 × (15.5–) 20–26 (–28.5) | |
47 | Chiapas | 1649 | Bourbon | (21–) 26–35 × (15–) 19–26 (–28) | |
49 | Veracruz | 1318 | Garnica | (22–) 27–34 × (14.5–) 16–25 (–28) | |
57 | Veracruz | 1318 | Blue Mountain | (25–) 27–34 × (15–) 17–25 (–30) | |
7f | 13 | Puebla | 578 | Caturra Rojo | (25.5–) 28–36 (–38) × 18–25 (–26.5) |
22 | Oaxaca | 653 | Caturra Rojo | (24–) 28–35 × 14–25 | |
40 | Chiapas | 559 | Robusta | (25–) 28–35 × 15–24 | |
6g | 7 8 | Puebla | 1100 | Caturra Rojo | 26.5–34 (–37) × 16–25 |
33 | Chiapas | 1241 | Caturra Rojo | (22.5) 28–33 × 14.5–25 | |
34 8 | Chiapas | 1241 | Caturra Rojo | (21–) 24–32 × (15–) 17–26 | |
37 8 | Chiapas | 823 | Caturra Amarillo | (23.5–) 25–33.5 (–35.5) × 15–26 | |
43 | Chiapas | 389 | Caturra Rojo | 23–32 (–35) × (14–) 18–23 (–26) | |
44 | Chiapas | 389 | Caturra Rojo | (20–) 24–34 × (14–) 17.5–27 (–28) | |
54 | Veracruz | 1318 | Mundo Novo | (20–) 24–34 × 14–23 (–28) | |
62 | Veracruz | 565 | Typica | (20–) 28–35 × 15–24 (–28) | |
63 | Veracruz | 1332 | Colombia | (23–) 25–32 (–34) × 14–25 | |
64 | Veracruz | 1332 | Oro Azteca | (21–) 24.5–35 × 14–24 | |
65 | Veracruz | 1332 | Typica | 24–32 (–35) × (14–) 18–25 | |
8h | 15 | Oaxaca | 773 | Pacamara | 24–32 × 15–21.5 (–26) |
50 | Veracruz | 1318 | Garnica | (20–) 24–30.5 (–33) × 15–23 (–25.5) | |
51 | Veracruz | 1318 | Surinam | (20–) 23–34 × 15–26 | |
52 | Veracruz | 1318 | Pluma Hidalgo | (19–) 25–32 × 14–21.5 (–23.5) | |
55 | Veracruz | 1318 | Moka | 25–35 × 14–25 | |
56 | Veracruz | 1318 | Blue Mountain | 22–33 × 15–23 (–25) | |
Overall no.: 65 4 Overall range: | 229–1649 m | 17 | (20–) 24–37 (–40) × (11.5–) 15–27 (–30.5) µm |
States Sampled 1 Groups (1–8) 2 Leaves Analyzed | Location (14 Regions) | Altitude (m) | Geographical Coordinates | Climate 3 | Temperature (°C) 4,5 | Rain 4,5 (mm) 8 | |
---|---|---|---|---|---|---|---|
Max 6 | Min 7 | ||||||
Puebla 1: 22 and 23 August 2015 | |||||||
1 9 b 10, 3 11 | Mazacoatlan 12, Zihuateutla 13 | 1100 | 20.37 N, −97.86 W | Warm and humid | 23 | 13 | 98 |
1b, 2c, 7f 5 | Pozo del Tigre, Jalpan | 578, 650 | 20.42 N, −97.87 W | Mild–warm and damp | 28 | 13 | 60 |
3a, 1b 2 | San Bartolo del Escobal, Venustiano Carranza | 229 | 20.42 N, −97.66 W | Warm, damp, and humid | 32 | 23 | 70 |
1b, 2c, 6g 4 | Santa Rita, Xicotepec | 578, 650, 823, 1100 | 20.27 N, −97.98 W | Mild–warm and damp | 25 | 13 | 66 |
Oaxaca: 9 and 10 October 2015 | |||||||
1b, 2c, 4d, 7f, 8h 14 | San Jose del Pacifico, San Mateo | 560, 653, 773, 905, 1054 | 15.94 N, −96.45 W | Mild–warm and humid | 28 14 | 22 14 | 200 14 |
1b, 2c 3 | Frontera 13 | 350 | 15.89 N, −96.48 W | Mild–warm and humid | |||
Chiapas: 5 and 6 November 2015 | |||||||
2c, 5e 3 | Granadilla, Zinacantan | 1649 | 16.70 N, −92.83 W | Temperate and damp | 19 | 9 | 68 |
2c, 4d, 6g 4 | La Trinidad, Union Juarez | 823 | 15.03 N, −92.10 W | Mild–warm and humid | 23 | 15 | 137 |
2c, 4d, 7f, 6g 6 | Rosario Izapa, Tuxtla Chico | 389 559 | 14.95 N, −92.15 W 15.00 N, −92.15 W | Warm and humid | 31 | 21 | 69 |
2c, 5e, 6g 4 | Union Juarez, Union Juarez | 1241 | 15.89 N, −92.07 W | Mild–warm and humid | 23 | 15 | 137 |
Veracruz: 16 and 18 November 2015 | |||||||
2c 1 11 | Huatusco, Huatusco | 839 | 19.17 N, −96.96 W | Warm and humid | 22 | 12 | 49 |
4d, 5e, 6g, 8h 9 | Huatusco, Huatusco | 1318 | 19.17 N, −96.96 W | Warm and humid | 22 | 12 | 49 |
6g 3 | Ixhuatlan del Café | 1332 | 19.05 N, −96.98 W | Temperate and humid | 23 | 11 | 45 |
4d 1 | Puerto Rico, Coatepec | 1053 | 19.43 N, −96.90 W | Temperate and humid | 23 | 11 | 80 |
4d, 6g 3 | Tuzamapan, Coatepec | 565, 839 | 19.20 N, −96.85 W 19.39 N, −96.86 W | Temperate and humid Regular | 25 | 14.5 | 64 |
Appendix B
B.1. Materials and Methods
Molecular Characteristics: PCR Amplification and Sequence Analysis
B.2. Results
Species Confirmation via Molecular Analysis
References
- Torres-Castillo, N.E.; Melchor-Martínez, E.M.; Ochoa-Sierra, J.S.; Ramirez-Mendoza, R.A.; Parra-Saldivar, R.; Iqbal, H.M.N. Impact of climate change and early development of coffee rust—An overview of control strategies to preserve organic cultivars in Mexico. Sci. Total Environ. 2020, 738, 140–225. [Google Scholar] [CrossRef]
- SIAP (Servicio de Información Agroalimentaria y Pesquera). Producción Anual del Sistema Producto Café. 2024. Available online: https://www.google.com/search?q=2024+SIAP+Producci%C3%B3n+anual+del+sistema+producto+caf%C3%A9&rlz=1C1CHBD_esMX906MX906&oq=2024+SIAP+Producci%C3%B3n+anual+del+sistema+producto+caf%C3%A9+&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIKCAEQABiABBiiBDIKCAIQABiABBiiBDIKCAMQABiABBiiBDIKCAQQABiABBiiBNIBCTI0OTI2ajBqN6gCCLACAQ&sourceid=chrome&ie=UTF-8 (accessed on 20 September 2024).
- SENASICA (Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria). Ficha Técnica No. 40: Roya del Café Hemileia vastatrix Berkeley & Broom. 2023. Available online: https://prod.senasica.gob.mx/SIRVEF/ContenidoPublico/Roya%20cafeto/Fichas%20tecnicas/Ficha%20T%C3%A9cnica%20de%20Roya%20del%20cafeto.pdf (accessed on 15 February 2024).
- Flores, D.; Harrison, T. Mexico Coffee Annual: Mexico Launches New Policies as Rust Continues to Impact Production. GAIN (Global Agricultural Information Network) Report Number MX6019. USDA Foreign Agricultural Service. 2016. Available online: https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Coffee%20Annual_Mexico%20City_Mexico_5-13-2016.pdf (accessed on 15 January 2024).
- Berkeley, M.J.; Broome, C.E. Hemileia vastatrix. Gard. Chron. 1869, 6, 1157. [Google Scholar]
- McCain, J.W. A Study of Sorus and Spore Ontogeny in Uredinia of Hemileia vastatrix by Light and Scanning Electron Microscopy. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 1983. [Google Scholar]
- Rivillas, C.A.; Cristancho, M.A. Coffee leaf rust. In Compendium of Coffee Diseases and Pests; Gaitán, A.L., Cristancho, M.A., Castro, C.B.L., Rivillas, C.A., Cadena, G.G., Eds.; The American Phytopathological Society: St. Paul, MN, USA, 2015; pp. 32–34. [Google Scholar]
- Aristizábal, L.F.; Johnson, M.A. Monitoring coffee leaf rust (Hemileia vastatrix) on commercial coffee farms in Hawaii: Early insights from the first year of disease incursion. Agronomy 2022, 12, 1134. [Google Scholar] [CrossRef]
- Large, E.C. The Advance of the Fungi; The American Phytopathological Society: St. Paul, MN, USA, 2003. [Google Scholar]
- Cristancho, M.A.; Rozo, Y.; Escobar, C.; Rivillas, C.A.; Gaitán, A.L. Outbreak of coffee leaf rust (Hemileia vastatrix) in Colombia. New Dis. Rep. 2012, 25, 19. [Google Scholar] [CrossRef]
- Monaco, L.C. Consequences of the introduction of coffee rust into Brazil. In The Genetic Basis of Epidemics in Agriculture; Day, P.R., Ed.; Annals of the New York Academic of Science: New York, NY, USA, 1977; Volume 287, pp. 57–71. [Google Scholar]
- Avelino, J.; Cristancho, M.; Georgiou, S.; Imbach, P.; Aguilar, L.; Bornemann, G.; Läderach, P.; Anzueto, F.; Hruska, A.J.; Morales, C. The coffee rust crises in Colombia and Central America (2008–2013): Impacts, plausible causes and proposed solutions. Food Secur. 2015, 7, 303–321. [Google Scholar] [CrossRef]
- Talhinhas, P.; Batista, D.; Diniz, I.; Vieira, A.; Silva, D.N.; Loureiro, A.; Tavares, S.; Pereira, A.P.; Azinheira, H.G.; Guerra-Guimara, L.; et al. The coffee leaf rust pathogen Hemileia vastatrix: One and a half centuries around the tropics. Mol. Plant Pathol. 2017, 18, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Várzea, V. International Coffee Council. 115th Session, International Coffee Organization, Milan, Italy. 2015. Available online: http://www.ico.org/documents/cy2014-15/icc-114-5-r1e-overview-coffee-sector-africa.pdf (accessed on 25 June 2024).
- Quispe-Apaza, C.S.; Mansilla-Samaniego, R.C.; López-Bonilla, C.F.; Espejo-Joya, R.; Villanueva-Caceda, J.; Monzán, C. Genetic diversity of Hemileia vastatrix of two coffee producing areas in Peru. Mex. J. Phytopathol. 2017, 35, 418–436. [Google Scholar] [CrossRef]
- Nunes, C.C.; Maffia, L.A.; Mizubuti, E.S.G.; Brommonschenkel, S.H.; Silva, J.C. Genetic diversity of populations of Hemileia vastatrix from organic and conventional coffee plantations in Brazil. Australas. Plant Pathol. 2009, 38, 445–452. [Google Scholar] [CrossRef]
- Anzueto, R.F. Variedades de Café, Estrategias de Manejo y Riesgos de Afectación por Roya del Café. In Caminar el Cafetal: Perspectivas Socioambientales del Café y su Gente (Walking the Coffee Plantation: Socio-Environmental Perspectives of Coffee and Its People); Bello-Baltazar, E., Soto-Pinto, L., Huerta-Palacios, G., Gómez-Ruiz, J., Eds.; Juan Pablos: Ciudad de México, México, 2019; pp. 97–114. [Google Scholar]
- Toniutti, L.; Breitler, J.C.; Etienne, H.; Campa, C.; Doulbeau, S.; Urban, L.; Lambot, C.; Pinilla, J.C.H.; Bertrand, B. Influence of environmental conditions and genetic background of Arabica coffee (C. arabica L.) on leaf rust (Hemileia vastatrix) pathogenesis. Front. Plant Sci. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Salustiano, M.E.; Pozza, E.A.; Ferraz-Filho, A.C.; Oliveira-Botelho, A.; Alves, E. Variabilidade em dez populações de Hemileia vastatrix em relação à germinação e ao comprimento do tubo germinativo em quatro temperaturas; Variability in ten populations of Hemileia vastatrix for germination and germinative tube length under four temperatures. Ciênc. Agrotec. 2008, 32, 1651–1656. [Google Scholar] [CrossRef]
- Fernandes, R.C.; Evans, H.C.; Barreto, R.W. Confirmation of the occurrence of teliospores of Hemileia vastatrix in Brazil with observations on their mode of germination. Trop. Plant Pathol. 2009, 34, 108–113. [Google Scholar] [CrossRef]
- Silva, D.N.; Varzea, V.; Salgueiro-Paulo, O.; Batista, D. Population genomic footprints of host adaptation, introgression and recombination in coffee leaf rust. Mol. Plant Pathol. 2018, 19, 1742–1753. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.S.B.; Silva, D.N.; Várzea, V.; Paulo, O.S.; Batista, D. Worldwide population structure of the coffee rust fungus Hemileia vastatrix is strongly shaped by local adaptation and breeding history. Phytopathology 2022, 112, 1998–2011. [Google Scholar] [CrossRef]
- Escamilla, P.E.; Ruiz, R.O.; Zamarripa, C.A.; González, H.V.A. Calidad en variedades de café orgánico en tres regiones de México. Rev. Geograf. Agric. 2015, 55, 45–55. [Google Scholar]
- Boudrot, A.; Pico, J.; Merle, I.; Granados, E.; Vílchez, S.; Tixier, P.; Virginio-Filho, E.M.; Casanoves, F.; Tapia, A.; Allinne, C.; et al. Shade effects on the dispersal of airborne Hemileia vastatrix uredospores. Phytopathology 2016, 106, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Carrión, G. La Naturaleza de las Interacciones Entre la Roya del Cafeto y sus Hongos Hiperparásitos. Ph.D. Thesis, Universidad Nacional Autónoma de México, Ciudad de México, México, 2006. [Google Scholar]
- Monterroso, S.D. El patosistema de roya del café, epidemias y café de alta resiliencia. In Caminar el Cafetal: Perspectivas Socioambientales del Café y su Gente; Walking the Coffee Plantation: Socio-Environmental Perspectives of Coffee and Its People; Bello-Baltazar, E., Soto-Pinto, L., Huerta-Palacios, G., Gómez-Ruiz, J., Eds.; Juan Pablos: Ciudad de Mexico, Mexico, 2019; pp. 73–82. [Google Scholar]
- AMECAFE (Asociación Mexicana de la Cadena Productiva del Café). Padrón Nacional de Cafetaleros. 2024. Available online: https://amecafe.org.mx (accessed on 12 July 2024).
- Weather Atlas. 2024. Available online: https://www.weather-atlas.com/es (accessed on 20 August 2024).
- Weather Spark. 2024. Available online: https://es.weatherspark.com/ (accessed on 7 April 2024).
- Crous, P.W.; Verkley, G.J.M.; Groenewald, J.Z.; Houbraken, J. (Eds.) Fungal Biodiversity: Westerdijk Laboratory Manual Series, 2nd ed.; Westerdijk Fungal Biodiversity Institute: Utrecht, The Netherlands, 2019. [Google Scholar]
- Mardia, K.; Kent, J.; Bibby, J. Multivariate Analysis: Probability and Mathematical Statistics; Academic Press: London, UK; New York, NY, USA, 1979. [Google Scholar]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat, versión 8, Grupo InfoStat, FCA; Universidad Nacional de Córdoba, Argentina. 2008. Available online: https://www.researchgate.net/publication/319875366_Grupo_InfoStat_FCA_Universidad_Nacional_de_Cordoba_Argentina (accessed on 5 January 2020).
- Hernández, J.R.; Systematic Mycology and Microbiology Laboratory, ARS, USDA. Invasive Fungi. Coffee Leaf Rust—Hemileia vastatrix. 2005. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e9c4156a32090dc46a5db2699e99e47bedfb6923 (accessed on 15 January 2024).
- Laundon, G.F.; Waterston, J.M. Hemileia vastatrix, CMI Descriptions of Pathogenic Fungi and Bacteria; CAB International: Wallingford, UK, 1964; Volume 1, p. 2281. [Google Scholar] [CrossRef]
- Márquez, J.; Wong, R.; Pérez, M.; López, L.; Munguía, G. Técnicas Para el Estudio del Desarrollo en Angiospermas; UNAM y Prensas de Ciencias: Ciudad de México, México, 2016. [Google Scholar]
- Bozzola, J.J.; Russell, L.D. Electron Microscopy: Principles and Techniques for Biologists, 2nd ed.; Jones and Bartlett: Sudbury, MA, USA, 1999. [Google Scholar]
- Vázquez-Nin, G.; Echeverría, O. Introducción a la Microscopía Electrónica Aplicada a las Ciencias Biológicas; UNAM y Fondo de Cultura Económica: Ciudad de México, México, 2000. [Google Scholar]
- Cummins, G.B.; Hiratsuka, Y. Illustrated Genera of Rust Fungi, 3rd ed.; The American Phytopathological Society: St. Paul, MN, USA, 2003. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- Demesure, B.; Sodzi, N.; Petit, R.J. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol. Ecol. 1995, 4, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Alspaugh, J.A.; Liu, H.; Harris, S. Fungal morphogenesis. Cold Spring Harb. Perspect. Med. 2015, 5, a019679. [Google Scholar] [CrossRef] [PubMed]
- Afanador-Kafuri, L.; González, A.; Gañán, L.; Mejía, J.F.; Cardona, N.; Alvarez, E. Characterization of the Colletotrichum species causing anthracnose in Andean blackberry in Colombia. Plant Dis. 2014, 98, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Littlefield, L.J.; Heath, M.C. Ultrastructure of Rust Fungi; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Cole, G.T.; Samson, R.A. Patterns of Development in Conidial Fungi; Pitman: London, UK, 1979. [Google Scholar]
- Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. (Eds.) Ainsworth and Bisby’s Dictionary of the Fungi, 10th ed.; CAB International: Wallingford, UK, 2008. [Google Scholar]
- Deacon, J. Fungal Biology, 4th ed.; Blackwell: Malden, MA, USA, 2006. [Google Scholar]
- Qu, J.; Zou, X.; Yu, J.; Zhou, Y. The conidial mucilage, natural film coatings, is involved in environmental adaptability and pathogenicity of Hirsutella satumaensis Aoki. Sci. Rep. 2017, 7, 1301. [Google Scholar] [CrossRef] [PubMed]
- Borkovich, K.; Ebbole, D.J. Cellular and Molecular Biology of Filamentous Fungi; American Society for Microbiology: Washington, DC, USA, 2010. [Google Scholar]
- Vittal, R.; Yang, H.C.; Hartman, G.L. Anastomosis of germ tubes and migration of nuclei in germ tube networks of the soybean rust pathogen, Phakopsora pachyrhizi. Eur. J. Plant Pathol. 2012, 132, 163–167. [Google Scholar] [CrossRef]
- Chinnappa, C.C.; Sreenivasan, M.S. Cytology of Hemileia vastatrix. Caryologia 1968, 21, 75–82. [Google Scholar] [CrossRef]
- McTaggart, A.R.; James, T.Y.; Idnurm, A.; Park, R.F.; Shuey, L.S.; Demers, M.N.K.; Aime, M.C. Sexual reproduction is the null hypothesis for life cycles of rust fungi. PLoS Pathog. 2022, 18, e1010439. [Google Scholar] [CrossRef]
- Yirga, M. Potential effects, biology and management options of Coffee Leaf Rust (Hemileia vastatrix): A Review. Int. J. For. Hortic. 2020, 6, 19–31. [Google Scholar] [CrossRef]
- Maia, T.A.; Maciel-Zambolim, E.; Caixeta, E.T.; Mizubuti, E.S.G.; Zambolim, L. The population structure of Hemileia vastatrix in Brazil inferred from AFLP. Australas. Plant Pathol. 2013, 42, 533–542. [Google Scholar] [CrossRef]
- Santana, M.F.; Zambolim, E.M.; Caixeta, E.T.; Zambolim, L. Population genetic structure of the coffee pathogen Hemileia vastatrix in Minas Gerais, Brazil. Trop. Plant Pathol. 2018, 43, 473–476. [Google Scholar] [CrossRef]
Group 1 | Leaves 2 per Group | Number of States Sampled | Altitude Range (m) | Number of Cultivars (Cultivar Name) | Spore Size (µm) Range (Width 3 × Length 4) 5 |
---|---|---|---|---|---|
3 1 a 6 | 1 | 1 | 229 | 1 (Caturra Rojo) | 29.5–40 3 × 19–32.5 4 (–35) 5 a 6 |
1b | 11 | 3 | 229–1100 | 5 (Catuai, Caturra Rojo, Costa Rica 95, Oro Azteca, Pluma Hidalgo) | 23–38 × 15–29 (–37) b |
2c | 16 | 4 | 350–1649 | 7 (Bourbon, Catuai, Caturra Rojo, Oro Azteca, Pacamara, Pluma Hidalgo, Robusta) | (20–) 5 23–37.5 (–39) × (12.5–) 13–28 (–30)c |
4d | 12 | 4 | 389–1318 | 7 (Bourbon, Caturra Rojo, Maragogipe, Oro Azteca, Pacamara, Pluma Hidalgo, Robusta) | (20–) 24–36 (–38) × (14–) 15–25 (–28) d |
5e | 5 | 2 | 1241–1649 | 4 (Bourbon, Blue Mountain, Caturra Rojo, Garnica) | (21–) 25–35 × (14.5–) 16–27 (–30) e |
7f | 3 | 3 | 559–653 | 2 (Caturra Rojo, Robusta) | (24–) 28–36 (–38) × 14–25 (–26.5) f |
6g | 11 | 3 | 389–1332 | 7 (Caturra Amarillo, Colombia, Caturra Rojo, Costa Rica 95, Mundo Novo, Oro Azteca, Typica) | (20–) 23–35 (–37) × 14–27 (–28) g |
8h | 6 | 2 | 773–1318 | 6 (Blue Mountain, Garnica, Moka, Pacamara, Pluma Hidalgo, Surinam) | (19–) 22–35 × 14–26 h |
Overall spore size (all 8 groups): Average: width (±standard deviation (SD)) × length (±SD): | (19–) 22–40 × (12.5) 13–32.5 (–37) 30.56 (±3.32) × 20.96 (±3.04) |
Spore | Spore Size (µm) Range 1 (Width 2 × Length 3) | Wall Thickness | Average (±Standard Deviation) |
---|---|---|---|
Shape and size (from this study) 4: | |||
Reniform | 1 (18–) 22–37 2 (–40) × (15–) 17–29 3 | 1.0 | 30.50 2 (±2.77) × 26.32 3 (±2.69) |
Oval | (27–) 29.5–37 (–39) × (24) 27–30 (–35) | 1.0 | 34.03 (±3.36) × 26.93 (±4.18) |
Overall spore size 5,6: | (19–) 22–40 × (12.5–) 13–32.5 (–37) | 1.0 | 30.56 (±3.32) × 20.96 (±3.04) |
Comparative Size (from the literature) 6: | |||
[6] 7 | (20.5–) 25–40 (–43) × (10.2–) 15–32 | 1.0–1.5 | |
[7] | 25–35 × 12–28 | - 8 | |
[33] | 26–40 × 18–28 | 1.0–2.0 | |
[34] | 28–36 × 18–28 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelayo-Sánchez, G.; Yáñez-Morales, M.d.J.; Solano-Vidal, R.; Silva-Rojas, H.V.; Alvarado-Rosales, D.; Morales-Rodriguez, S.; Jiménez-García, L.F.; Lara-Martínez, R.; Ramírez-Ramírez, I.; Valdez-Carrasco, J.M. Hemileia vastatrix in Coffea spp.: Distribution of Urediniospores Grouped by Size and Insights into Morphological Structures. J. Fungi 2025, 11, 109. https://doi.org/10.3390/jof11020109
Pelayo-Sánchez G, Yáñez-Morales MdJ, Solano-Vidal R, Silva-Rojas HV, Alvarado-Rosales D, Morales-Rodriguez S, Jiménez-García LF, Lara-Martínez R, Ramírez-Ramírez I, Valdez-Carrasco JM. Hemileia vastatrix in Coffea spp.: Distribution of Urediniospores Grouped by Size and Insights into Morphological Structures. Journal of Fungi. 2025; 11(2):109. https://doi.org/10.3390/jof11020109
Chicago/Turabian StylePelayo-Sánchez, Gabriela, María de Jesús Yáñez-Morales, Roney Solano-Vidal, Hilda Victoria Silva-Rojas, Dionicio Alvarado-Rosales, Simón Morales-Rodriguez, Luis Felipe Jiménez-García, Reyna Lara-Martínez, Iván Ramírez-Ramírez, and Jorge M. Valdez-Carrasco. 2025. "Hemileia vastatrix in Coffea spp.: Distribution of Urediniospores Grouped by Size and Insights into Morphological Structures" Journal of Fungi 11, no. 2: 109. https://doi.org/10.3390/jof11020109
APA StylePelayo-Sánchez, G., Yáñez-Morales, M. d. J., Solano-Vidal, R., Silva-Rojas, H. V., Alvarado-Rosales, D., Morales-Rodriguez, S., Jiménez-García, L. F., Lara-Martínez, R., Ramírez-Ramírez, I., & Valdez-Carrasco, J. M. (2025). Hemileia vastatrix in Coffea spp.: Distribution of Urediniospores Grouped by Size and Insights into Morphological Structures. Journal of Fungi, 11(2), 109. https://doi.org/10.3390/jof11020109