The Antimicrobial Resistance of Candida: A 5-Year Retrospective Analysis at a Tertiary Hospital in Jordan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Pathogen Identification and Antimicrobial Susceptibility Testing
2.3. Data Analysis
3. Results
3.1. Candida Species Isolated from Inpatient Blood Samples and Their Antifungal Resistance
3.2. Candida Species Isolated from High Vaginal Swabs (HVS) and Their Antifungal Resistance
3.3. Candida Species Isolated from Sputum and Bronchoalveolar Lavage (BAL) Fluid and Their Antifungal Resistance
3.4. Candida Species Isolated from Urine Samples and Their Antifungal Resistance
3.5. Comparing the Antifungal Resistance of C. albicans Isolated from Different Sites
3.6. Comparing the Antifungal Resistance Among Inpatient and Outpatient Candida Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef]
- Rayens, E.; Norris, K.A. (Eds.) Prevalence and healthcare burden of fungal infections in the United States 2018. Open Forum Infect. Dis. 2022, 9, ofab593. [Google Scholar] [PubMed]
- Perfect, J.R.; Hachem, R.; Wingard, J.R. Update on epidemiology of and preventive strategies for invasive fungal infections in cancer patients. Clin. Infect. Dis. 2014, 59 (Suppl. S5), S352–S355. [Google Scholar] [CrossRef] [PubMed]
- Gold, J.A.; Ahmad, F.B.; Cisewski, J.A.; Rossen, L.M.; Montero, A.J.; Benedict, K.; Jackson, B.R.; Toda, M. Increased Deaths From Fungal Infections During the Coronavirus Disease 2019 Pandemic—National Vital Statistics System, United States, January 2020–December 2021. Clin. Infect. Dis. 2023, 76, e255–e262. [Google Scholar] [CrossRef] [PubMed]
- Parums, D.V. The World Health Organization (WHO) fungal priority pathogens list in response to emerging fungal pathogens during the COVID-19 pandemic. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2022, 28, e939088-1. [Google Scholar] [CrossRef] [PubMed]
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.A.; Butler, G. The Candida pathogenic species complex. Cold Spring Harb. Perspect. Med. 2014, 4, a019778. [Google Scholar] [CrossRef]
- Kmeid, J.; Jabbour, J.-F.; Kanj, S.S. Epidemiology and burden of invasive fungal infections in the countries of the Arab League. J. Infect. Public Health 2020, 13, 2080–2086. [Google Scholar] [CrossRef]
- Alothman, A.F.; Althaqafi, A.; Matar, M.J.; Moghnieh, R.; Alenazi, T.H.; Farahat, F.M.; Corman, S.; Solem, C.T.; Raghubir, N.; Macahilig, C.; et al. Burden and treatment patterns of invasive fungal infections in hospitalized patients in the Middle East: Real-world data from Saudi Arabia and Lebanon. Infect. Drug Resist. 2017, 10, 35–41. [Google Scholar] [CrossRef]
- Taj-Aldeen, S.J.; Kolecka, A.; Boesten, R.; Alolaqi, A.; Almaslamani, M.; Chandra, P.; Meis, J.F.; Boekhout, T. Epidemiology of candidemia in Qatar, the Middle East: Performance of MALDI-TOF MS for the identification of Candida species, species distribution, outcome, and susceptibility pattern. Infection 2014, 42, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.; Al Bikai, A.; Rafei, R.; Mallat, H.; Dabboussi, F.; Hamze, M. Species distribution and antifungal susceptibility patterns of clinical Candida isolates in North Lebanon: A pilot cross-sectional multicentric study. J. Med Mycol. 2020, 30, 100986. [Google Scholar] [CrossRef]
- Zaki, S.M.; Denning, D.W. Serious fungal infections in Egypt. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Wadi, J.; Denning, D.W. Burden of serious fungal infections in Jordan. J. Fungi 2018, 4, 15. [Google Scholar] [CrossRef]
- de Kraker, M.E. Understanding the impact of antimicrobial resistance on outcomes of bloodstream infections in low- and middle-income countries. PLoS Med. 2023, 20, e1004262. [Google Scholar] [CrossRef] [PubMed]
- Nusair, M.B.; Al-Azzam, S.; Alhamad, H.; Momani, M.Y. The prevalence and patterns of self-medication with antibiotics in Jordan: A community-based study. Int. J. Clin. Pract. 2021, 75, e13665. [Google Scholar] [CrossRef] [PubMed]
- Toda, M.; Williams, S.R.; Berkow, E.L.; Farley, M.M.; Harrison, L.H.; Bonner, L.; Marceaux, K.M.; Hollick, R.; Zhang, A.Y.; Schaffner, W.; et al. Population-based active surveillance for culture-confirmed candidemia—Four sites, United States, 2012–2016. Surveill. Summ. 2019, 68, 1–15. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sae-Tia, S.; Fries, B.C. Candidiasis and Mechanisms of Antifungal Resistance. Antibiotics 2020, 9, 312. [Google Scholar] [CrossRef]
- Al-Abeid, H.M.; Abu-Elteen, K.H.; Elkarmi, A.Z.; Hamad, M.A. Isolation and Characterization of Candida spp. in Jordanian Cancer Patients: Prevalence, Pathogenic Determinants, and Antifungal Sensitivity. Jpn. J. Infect. Dis. 2004, 57, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Abu-Elteen, K.H.; Hamad, M.A.; Salah, S.A. Prevalence of oral Candida infections in diabetic patients. Bahrain Med. Bull. 2006, 28, 1–8. [Google Scholar]
- Abdel-Rahman, F.; A Hussein, A.; Rihani, R.; A Hlalah, O.; El Taani, H.; Sharma, S.; Nserat, T.; Sarhan, M.M. Bone marrow and stem cell transplantation at King Hussein cancer center. Bone Marrow Transpl. 2008, 42, S89–S91. [Google Scholar] [CrossRef] [PubMed]
- Bernal, S.; Mazuelos, E.M.; García, M.; Aller, A.; Martínez, M.; Gutiérrez, M. Evaluation of CHROMagar candida medium for the isolation and presumptive identification of species of candida of clinical importance. Diagn. Microbiol. Infect. Dis. 1996, 24, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Dealler, S.F. Candida albicans colony identification in 5 minutes in a general microbiology laboratory. J. Clin. Microbiol. 1991, 29, 1081–1082. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antifungal Susceptibility Testing of Yeasts CLSI Supplement M60 [1st ed.]. 2017. Available online: https://clsi.org/media/1895/m60ed1_sample.pdf (accessed on 27 December 2024).
- CLSI. Epidemiological Cutoff Values for Antifungal Susceptibility Testing CLSI Supplement M59 [2nd ed.]. 2018. Available online: https://clsi.org/media/1934/m59ed2_sample-updated.pdf (accessed on 27 December 2024).
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Y.; Niu, X.; Wu, Y.; Du, Y.; Yang, Y.; Qi, R.; Chen, H.; Gao, X.; Song, B.; et al. A 5-Year Review of Invasive Fungal Infection at an Academic Medical Center. Front. Cell. Infect. Microbiol. 2020, 10, 553648. [Google Scholar] [CrossRef]
- Yamin, D.; Husin, A.; Harun, A. Distribution of candidemia in Malaysian tertiary care hospital revealed predominance of Candida parapsilosis. Trop. Biomed. 2020, 37, 903–910. [Google Scholar]
- Barchiesi, F.; Orsetti, E.; Gesuita, R.; Skrami, E.; Manso, E. Epidemiology, clinical characteristics, and outcome of candidemia in a tertiary referral center in Italy from 2010 to 2014. Infection 2016, 44, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Al Thaqafi, A.H.O.; Farahat, F.M.; Al Harbi, M.I.; Al Amri, A.F.W.; Perfect, J.R. Predictors and outcomes of Candida bloodstream infection: Eight-year surveillance, western Saudi Arabia. Int. J. Infect. Dis. 2014, 21, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Ahmad, S.; Al-Sweih, N.; Mokaddas, E.; Al-Banwan, K.; Alfouzan, W.; Al-Obaid, I.; Al-Obaid, K.; Asadzadeh, M.; Jeragh, A.; et al. Changing trends in epidemiology and antifungal susceptibility patterns of six bloodstream Candida species isolates over a 12-year period in Kuwait. PLOS ONE 2019, 14, e0216250. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Gibbs, D.L.; Newell, V.A.; Nagy, E.; Dobiasova, S.; Rinaldi, M.; Barton, R.; Veselov, A.; the Global Antifungal Surveillance Group. Candida krusei, a multidrug-resistant opportunistic fungal pathogen: Geographic and temporal trends from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005. J. Clin. Microbiol. 2008, 46, 515–521. [Google Scholar] [CrossRef]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Perlin, D.S. Echinocandin resistance: An emerging clinical problem? Current opinion in infectious diseases. Curr. Opin. Infect. Dis. 2014, 27, 484–492. [Google Scholar] [CrossRef]
- Coste, A.T.; Kritikos, A.; Li, J.; Khanna, N.; Goldenberger, D.; Garzoni, C.; Zehnder, C.; Boggian, K.; Neofytos, D.; Riat, A.; et al. Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. Infection 2020, 48, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.D. Vulvovaginal candidosis. Lancet 2007, 369, 1961–1971. [Google Scholar] [CrossRef] [PubMed]
- Corsello, S.; Spinillo, A.; Osnengo, G.; Penna, C.; Guaschino, S.; Beltrame, A.; Blasi, N.; Festa, A. An epidemiological survey of vulvovaginal candidiasis in Italy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 110, 66–72. [Google Scholar] [CrossRef]
- Gunther, L.S.; Martins, H.P.; Gimenes, F.; Abreu, A.L.; Consolaro, M.E.; Svidzinski, T.I. Prevalence of Candida albicans and non-albicans isolates from vaginal secretions: Comparative evaluation of colonization, vaginal candidiasis and recurrent vaginal candidiasis in diabetic and non-diabetic women. Sao Paulo Med. J. 2014, 132, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Richter, S.S.; Galask, R.P.; Messer, S.A.; Hollis, R.J.; Diekema, D.J.; Pfaller, M.A. Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases. J. Clin. Microbiol. 2005, 43, 2155–2162. [Google Scholar] [CrossRef]
- CDC. Vulvovaginal Candidiasis. 2021. Available online: https://www.cdc.gov/std/treatment-guidelines/candidiasis.htm (accessed on 27 December 2024).
- Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species. Front. Microbiol. 2016, 7, 2173. [Google Scholar] [CrossRef] [PubMed]
- Krcmery, V.; Barnes, A.J. Non-albicans Candida spp. causing fungaemia: Pathogenicity and antifungal resistance. J. Hosp. Infect. 2002, 50, 243–260. [Google Scholar] [CrossRef]
- Coleman, J.J.; Mylonakis, E. Efflux in fungi: La pièce de résistance. PLoS Pathog. 2009, 5, e1000486. [Google Scholar] [CrossRef] [PubMed]
- Borman, A.M.; Muller, J.; Walsh-Quantick, J.; Szekely, A.; Patterson, Z.; Palmer, M.D.; Fraser, M.; Johnson, E.M. MIC distributions for amphotericin B, fluconazole, itraconazole, voriconazole, flucytosine and anidulafungin and 35 uncommon pathogenic yeast species from the UK determined using the CLSI broth microdilution method. J. Antimicrob. Chemother. 2020, 75, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Bukhary, Z.A. Candiduria: A review of clinical significance and management. Saudi J. Kidney Dis. Transplant. 2008, 19, 350–360. [Google Scholar]
- Kühbacher, A.; Burger-Kentischer, A.; Rupp, S. Interaction of Candida Species with the Skin. Microorganisms 2017, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Achkar, J.M.; Fries, B.C. Candida infections of the genitourinary tract. Clin. Microbiol. Rev. 2010, 23, 253–273. [Google Scholar] [CrossRef] [PubMed]
- Gileles-Hillel, A.; Shoseyov, D.; Polacheck, I.; Korem, M.; Kerem, E.; Cohen-Cymberknoh, M. Association of chronic Candida albicans respiratory infection with a more severe lung disease in patients with cystic fibrosis. Pediatr. Pulmonol. 2015, 50, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Felton, T.; Troke, P.F.; Hope, W.W. Tissue penetration of antifungal agents. Clin. Microbiol. Rev. 2014, 27, 68–88. [Google Scholar] [CrossRef] [PubMed]
- Pendleton, K.M.; Huffnagle, G.B.; Dickson, R.P. The significance of Candida in the human respiratory tract: Our evolving understanding. Pathog. Dis. 2017, 75, ftx029. [Google Scholar] [CrossRef] [PubMed]
- Clarke, F.; Grenfell, A.; Chao, S.; Richards, H.; Korman, T.; Rogers, B. Use of echinocandin outpatient parenteral antimicrobial therapy for the treatment of infection caused by Candida spp.: Utilization, outcomes and impact of a change to weekly dosing. J. Antimicrob. Chemother. 2024, 79, 2896–2900. [Google Scholar] [CrossRef]
- Rezel-Potts, E.; Gulliford, M. Electronic Health Records and Antimicrobial Stewardship Research: A Narrative Review. Curr. Epidemiol. Rep. 2023, 10, 132–141. [Google Scholar] [CrossRef]
- Herrett, E.; Thomas, S.L.; Schoonen, W.M.; Smeeth, L.; Hall, A.J. Validation and validity of diagnoses in the General Practice Research Database: A systematic review. Br. J. Clin. Pharmacol. 2010, 69, 4–14. [Google Scholar] [CrossRef]
- Melhem, M.S.; Bertoletti, A.; Lucca, H.R.; Silva, R.B.; Meneghin, F.A.; Szeszs, M.W. Use of the VITEK 2 system to identify and test the antifungal susceptibility of clinically relevant yeast species. Braz. J. Microbiol. 2013, 44, 1257–1266. [Google Scholar] [CrossRef]
- Cuenca-Estrella, M.; Gomez-Lopez, A.; Alastruey-Izquierdo, A.; Bernal-Martinez, L.; Cuesta, I.; Buitrago, M.J.; Rodriguez-Tudela, J.L. Comparison of the Vitek 2 antifungal susceptibility system with the clinical and laboratory standards institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) Broth Microdilution Reference Methods and with the Sensititre YeastOne and Etest techniques for in vitro detection of antifungal resistance in yeast isolates. J. Clin. Microbiol. 2010, 48, 1782–1786. [Google Scholar]
- Wong, K.Y.; Gardam, D.; Boan, P. Comparison of Vitek 2 YS08 with Sensititre YeastOne for Candida susceptibility testing. Pathology 2019, 51, 668–669. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Pfaller, M.A. Caspofungin Etest susceptibility testing of Candida species: Risk of misclassification of susceptible isolates of C. glabrata and C. krusei when adopting the revised CLSI caspofungin breakpoints. Antimicrob. Agents Chemother. 2012, 56, 3965–3968. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Espinel-Ingroff, A.; Canton, E.; Castanheira, M.; Cuenca-Estrella, M.; Diekema, D.J.; Fothergill, A.; Fuller, J.; Ghannoum, M.; Jones, R.N.; et al. Wild-type MIC distributions and epidemiological cutoff values for amphotericin B, flucytosine, and itraconazole and Candida spp. as determined by CLSI broth microdilution. J. Clin. Microbiol. 2012, 50, 2040–2046. [Google Scholar] [CrossRef] [PubMed]
Species | C. albicans (n = 53) | C. tropicalis (n = 26) | P. kudriavzevii (n = 13) | N. glabratus (n = 20) | C. parapsilosis (n = 25) | |
---|---|---|---|---|---|---|
Antifungal | ||||||
Amphotericin B | 1.9% | 4.0% | 7.7% | 0.0% | 8.3% | |
Caspofungin | 1.9% | 7.7% | 23.1% | 30.0% | 32.0% | |
Micafungin | 0.0% | 0.0% | 0.0% | 6.3% | 5.9% | |
Fluconazole | 1.9% | 9.1% | NA | NA | 0.0% | |
Voriconazole | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | |
Flucytosine | 0.0% | 4.0% | 92.3% | 0.0% | 0.0% |
Species | C. albicans (n = 256) | C. tropicalis (n = 3) | P. kudriavzevii (n = 12) | N. glabratus (n = 115) | C. parapsilosis (n = 16) | |
---|---|---|---|---|---|---|
Antifungal | ||||||
Amphotericin B | 2.3% | 0.0% | 0.0% | 1.8% | 0.0% | |
Caspofungin | 2.0% | 0.0% | 0.0% | 20.4% | 6.3% | |
Micafungin | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | |
Fluconazole | 2.0% | 33.3% | NA | NA | 93.8% | |
Voriconazole | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | |
Flucytosine | 0.4% | 0.0% | 100.0% | 1.7% | 0.0% |
Species | C. albicans (n = 579) | C. tropicalis (n = 49) | P. kudriavzevii (n = 23) | N. glabratus (n = 38) | C. parapsilosis (n = 8) | |
---|---|---|---|---|---|---|
Antifungal | ||||||
Amphotericin B | 2.1% | 0.0% | 4.3% | 7.9% | 0.0% | |
Caspofungin | 2.8% | 2.0% | 21.7% | 13.2% | 37.5% | |
Micafungin | 0.5% | 0.0% | 10.0% | 4.5% | 0.0% | |
Fluconazole | 3.9% | 4.2% | NA | NA | 14.3% | |
Voriconazole | 0.4% | 0.0% | 0.0% | 0.0% | 0.0% | |
Flucytosine | 5.0% | 4.1% | 95.7% | 0.0% | 0.0% |
Species | C. albicans (n = 472) | C. tropicalis (n = 113) | P. kudriavzevii (n = 57) | N. glabratus (n = 93) | C. parapsilosis (n = 28) | |
---|---|---|---|---|---|---|
Antifungal | ||||||
Amphotericin B | 3.4% | 0.9% | 3.6% | 1.1% | 0.0% | |
Caspofungin | 2.6% | 6.3% | 10.9% | 19.5% | 14.8% | |
Micafungin | 0.9% | 2.8% | 4.2% | 0.0% | 0.0% | |
Fluconazole | 2.4% | 2.8% | NA | NA | 24.0% | |
Voriconazole | 0.4% | 0.9% | 0.0% | 1.1% | 0.0% | |
Flucytosine | 1.7% | 0.0% | 94.7% | 2.2% | 0.0% |
Species | C. albicans (n = 207) | C. tropicalis (n = 34) | P. kudriavzevii (n = 45) | N. glabratus (n = 81) | C. parapsilosis (n = 15) | |
---|---|---|---|---|---|---|
Antifungal | ||||||
Amphotericin B | 2.9% | 5.9% | 6.7% | 9.9% | 0.0% | |
Caspofungin | 1.0% | 9.1% | 0.0% | 26.9% | 0.0% | |
Micafungin | 0.0% | 0.0% | 0.0% | 3.2% | 0.0% | |
Fluconazole | 1.5% | 0.0% | NA | NA | 40.0% | |
Voriconazole | 0.0% | 0.0% | 0.0% | 1.3% | 0.0% | |
Flucytosine | 1.4% | 0.0% | 100.0% | 6.2% | 0.0% |
Antifungal | Inpatients (n = 1972) | Outpatients (n = 1101) | p-Value |
---|---|---|---|
Amphotericin B | 3.0% | 3.4% | 0.59 |
Caspofungin | 7.4% | 7.5% | 0.94 |
Micafungin | 1.4% | 0.4% | 0.01 |
Fluconazole | 4.6% | 5.5% | 0.33 |
Voriconazole | 0.6% | 1.2% | 0.08 |
Flucytosine | 8.7% | 9.0% | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Humaidan, A.H.; Alshdaifat, A.; Awajan, D.; Abu-Hmidan, M.; Alshdifat, A.; Hasan, H.; Ahmad, F.M.; Alaridah, N.; Irshaid, A.; Yamin, D. The Antimicrobial Resistance of Candida: A 5-Year Retrospective Analysis at a Tertiary Hospital in Jordan. J. Fungi 2025, 11, 87. https://doi.org/10.3390/jof11020087
Abu-Humaidan AH, Alshdaifat A, Awajan D, Abu-Hmidan M, Alshdifat A, Hasan H, Ahmad FM, Alaridah N, Irshaid A, Yamin D. The Antimicrobial Resistance of Candida: A 5-Year Retrospective Analysis at a Tertiary Hospital in Jordan. Journal of Fungi. 2025; 11(2):87. https://doi.org/10.3390/jof11020087
Chicago/Turabian StyleAbu-Humaidan, Anas H., Areen Alshdaifat, Dima Awajan, Mohammad Abu-Hmidan, Abeer Alshdifat, Hanan Hasan, Fatima M. Ahmad, Nader Alaridah, Amal Irshaid, and Dina Yamin. 2025. "The Antimicrobial Resistance of Candida: A 5-Year Retrospective Analysis at a Tertiary Hospital in Jordan" Journal of Fungi 11, no. 2: 87. https://doi.org/10.3390/jof11020087
APA StyleAbu-Humaidan, A. H., Alshdaifat, A., Awajan, D., Abu-Hmidan, M., Alshdifat, A., Hasan, H., Ahmad, F. M., Alaridah, N., Irshaid, A., & Yamin, D. (2025). The Antimicrobial Resistance of Candida: A 5-Year Retrospective Analysis at a Tertiary Hospital in Jordan. Journal of Fungi, 11(2), 87. https://doi.org/10.3390/jof11020087