Changing Epidemiology of Invasive Candidiasis in Children during a 10-Year Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Mycology and Antifungal Susceptibility Test
2.3. Statistical Analysis
2.4. Ethical Approval
2.5. Informed Consent
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Pfaller, M.A.; Diekema, D.J. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef] [PubMed]
- Zaoutis, T. Candidemia in children. Curr. Med. Res. Opin. 2010, 26, 1761–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed]
- Hope, W.W.; Castagnola, E.; Groll, A.H.; Roilides, E.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; Bassetti, M.; Bille, J.; Cornely, O.A.; et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Prevention and management of invasive infections in neonates and children caused by Candida spp. Clin. Microbial. Infect. 2012, 18, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. Rare and emerging opportunistic fungal pathogens: Concern for resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbial. 2004, 42, 4419–4431. [Google Scholar] [CrossRef] [PubMed]
- Guinea, J. Global trends in the distribution of Candida species causing candidemia. Clin. Microbial. Infect. 2014, 20, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Benedict, K.; Roy, M.; Kabbani, S.; Anderson, E.J.; Farley, M.M.; Harb, S.; Harrison, L.H.; Bonner, L.; Wadu, V.L.; Marceaux, K.; et al. Neonatal and Pediatric Candidemia: Results from Population-Based Active Laboratory Surveillance in Four US Locations, 2009–2015. J. Pediatric Infec. Dis. Soc. 2018, 7, e78–e85. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Moet, G.J.; Messer, S.A.; Jones, R.N.; Castanheira, M. Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: Report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009). J. Clin. Microbial. 2011, 49, 396–399. [Google Scholar] [CrossRef]
- De Pauw, B.; Walsh, T.J.; Donnelly, J.P.; Stevens, D.A.; Edwards, J.E.; Calandra, T.; Pappas, P.G.; Maertens, J.; Lortholary, O.; Kauffman, C.A.; et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin. Infect. Dis. 2008, 46, 1813–1821. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). M27–S4: Reference method for broth dilution antifungal susceptibility testing of yeasts, fourth information supplement; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2012. [Google Scholar]
- Pfaller, M.A.; Diekema, D.J. Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J. Clin. Microbiol. 2012, 50, 2846–2856. [Google Scholar] [CrossRef]
- Mesini, A.; Bandettini, R.; Caviglia, I.; Fioredda, F. Candida infections in paediatrics: Results from a prospective single-centre study in a tertiary care children’s hospital. Mycoses 2017, 60, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Ota, K.V.; McGowan, K.L. Declining incidence of candidemia in a tertiary inpatient pediatric population. J. Clin. Microbiol. 2012, 50, 1048–1050. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.T.; Ross, R.K.; Localio, A.R.; Prasad, P.A.; Zaoutis, T.E. Decreasing rates of invasive candidiasis in pediatric hospitals across the United States. Clin. Infect. Dis. 2014, 58, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Tragiannidis, A.; Fegeler, W.; Rellensmann, G.; Debus, V.; Muller, V.; Hoernig-Franz, I.; Siam, K.; Pana, Z.D.; Jurgens, H.; Groll, A.H. Candidaemia in a European Paediatric University Hospital: A 10-year observational study. Clin. Microbial. Infect. 2012, 18, E27–E30. [Google Scholar] [CrossRef] [PubMed]
- Mantadakis, E.; Pana, Z.D.; Zaoutis, T. Candidemia in children: Epidemiology, prevention and management. Mycoses 2018. [Google Scholar] [CrossRef] [PubMed]
- Sutcu, M.; Acar, M.; Genc, G.E.; Kokcu, I.; Akturk, H.; Atay, G.; Torun, S.H.; Salman, N.; Erturan, Z.; Somer, A. Evaluation of Candida species and antifungal susceptibilities among children with invasive candidiasis. Turk. Pediatri. Arsivi. 2017, 52, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzi, L.; Ilia, S.; Sideri, G.; Vagelakoudi, E.; Vassilopoulou, M.; Sdougka, M.; Briassoulis, G.; Papadatos, I.; Kalabalikis, P.; Sianidou, L.; et al. Invasive candidiasis in pediatric intensive care in Greece: A nationwide study. Intens. Care Med. 2013, 39, 2188–2195. [Google Scholar] [CrossRef] [PubMed]
- Caudle, K.E.; Inger, A.G.; Butler, D.R.; Rogers, P.D. Echinocandin use in the neonatal intensive care unit. Ann. Pharmacother. 2012, 46, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Jones, R.N.; Messer, S.A.; Hollis, R.J. Trends in antifungal susceptibility of Candida spp. isolated from pediatric and adult patients with bloodstream infections: SENTRY Antimicrobial Surveillance Program, 1997 to 2000. J. Clin. Microbial. 2002, 40, 852–856. [Google Scholar] [CrossRef]
- Alexander, B.D.; Johnson, M.D.; Pfeiffer, C.D.; Jimenez-Ortigosa, C.; Catania, J.; Booker, R.; Castanheira, M.; Messer, S.A.; Perlin, D.S.; Pfaller, M.A. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 2013, 56, 1724–1732. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Andes, D.; Arendrup, M.C.; Brown, S.D.; Lockhart, S.R.; Motyl, M.; Perlin, D.S. Clinical breakpoints for the echinocandins and Candida revisited: Integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist. Update. 2011, 14, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Pfaller, M.A. Caspofungin Etest susceptibility testing of Candida species: Risk of misclassification of susceptible isolates of C. glabrata and C. krusei when adopting the revised CLSI caspofungin breakpoints. Antimicrob. Agents Chemother. 2012, 56, 3965–3968. [Google Scholar] [CrossRef] [PubMed]
- Gualco, L.; Debbia, E.A.; Bandettini, R.; Pescetto, L.; Cavallero, A.; Ossi, M.C.; Schito, A.M.; Marchese, A. Antifungal resistance in Candida spp. isolated in Italy between 2002 and 2005 from children and adults. Int. J. Antimicrob. Agents 2007, 29, 179–184. [Google Scholar] [CrossRef] [PubMed]
- De Francesco, M.A.; Piccinelli, G.; Gelmi, M.; Gargiulo, F.; Ravizzola, G.; Pinsi, G.; Peroni, L.; Bonfanti, C.; Caruso, A. Invasive Candidiasis in Brescia, Italy: Analysis of Species Distribution and Antifungal Susceptibilities During Seven Years. Mycopathologia 2017, 182, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Sarvikivi, E.; Lyytikainen, O.; Soll, D.R.; Pujol, C.; Pfaller, M.A.; Richardson, M.; Koukila-Kahkola, P.; Luukkainen, P.; Saxen, H. Emergence of fluconazole resistance in a Candida parapsilosis strain that caused infections in a neonatal intensive care unit. J. Clin. Microbial. 2005, 43, 2729–2735. [Google Scholar] [CrossRef] [PubMed]
- Trouve, C.; Blot, S.; Hayette, M.P.; Jonckheere, S.; Patteet, S.; Rodriguez-Villalobos, H.; Symoens, F.; Van Wijngaerden, E.; Lagrou, K. Epidemiology and reporting of candidaemia in Belgium: A multi-centre study. Eur. J. Clin. Microbial. Infect. Dis. 2017, 36, 649–655. [Google Scholar] [CrossRef] [PubMed]
Candida Species (n = 178) | Blood (n = 155) | CSF (n = 14) | Peritoneal Fluid (n = 7) | Pleural Fluid (n = 2) |
---|---|---|---|---|
C. albicans (n = 85) | 74 (47.7) | 7 (50.0) | 3 (42.9) | 1 (50.0) |
C. parapsilosis (sl) (n = 51) | 45 (29.0) | 3 (21.4) | 3 (42.9) | 0 (0.0) |
C. lusitaniae (n = 11) | 9 (5.8) | 2 (14.3) | 0 (0.0) | 0 (0.0) |
C. tropicalis (n = 8) | 6 (3.9) | 1 (7.1) | 0 (0.0) | 1 (50.0) |
C. glabrata (n = 8) | 8 (5.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
C. famata (n = 6) | 5 (3.2) | 1 (7.1) | 0 (0.0) | 0 (0.0) |
C. krusei (n = 5) | 4 (2.6) | 0 (0.0) | 1 (14.3) | 0 (0.0) |
C. guilliermondii (n = 2) | 2 (1.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
C. kefyr (n = 1) | 1 (0.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
C. rugosa (n = 1) | 1 (0.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Candida Species (n = 178) | PICU (n = 37) | NICU (n = 77) | HOU (n = 26) | PU (n = 23) | SU (n = 15) | p-Value |
---|---|---|---|---|---|---|
C. albicans (n = 85) | 20 (54.1) | 40 (51.9) | 9 (34.6) | 8 (34.8) | 8 (53.3) | 0.323 |
Candida non-albicans (n = 93) | 17 (45.9) | 37 (48.1) | 17 (65.4) | 15 (65.2) | 7 (46.7) | |
C. parapsilosis (sl) (n = 51) | 6 (16.2) | 24 (31.2) | 8 (30.8) | 9 (39.1) | 4 (26.7) | |
C. lusitaniae (n = 11) | 2 (5.4) | 5 (6.5) | 2 (7.7) | 1 (4.3) | 1 (6.7) | |
C. tropicalis (n = 8) | 5 (13.5) | 0 (0.0) | 1 (3.8) | 2 (8.7) | 0 (0.0) | |
C. glabrata (n = 8) | 0 (0.0) | 7 (9.1) | 0 (0.0) | 0 (0.0) | 1 (6.7) | |
C. famata (n = 6) | 2 (5.7) | 1 (1.3) | 2 (7.7) | 1 (4.3) | 0 (0.0) | |
C. krusei (n = 5) | 1 (2.7) | 0 (0.0) | 2 (7.7) | 2 (8.7) | 0 (0.0) | |
C. guilliermondii (n = 2) | 1 (2.7) | 0 (0.0) | 1 (3.8) | 0 (0.0) | 0 (0.0) | |
C. kefyr (n = 1) | 0 (0.0) | 0 (0.0) | 1 (3.8) | 0 (0.0) | 0 (0.0) | |
C. rugosa (n = 1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (6.7) |
2008–2017 | 2008–2012 | 2013–2017 | p-Value | |
---|---|---|---|---|
Total invasive candidiasis/1000 hospitalization days | 0.16 ± 0.08 | 0.21 ± 0.06 | 0.11 ± 0.06 | 0.04 |
PICU | 0.60 ± 0.45 | 0.72 ± 0.56 | 0.48 ± 0.31 | 0.43 |
NICU | 0.15 ± 0.08 | 0.17 ± 0.09 | 0.14 ± 0.10 | 0.67 |
HOU | 0.15 ± 0.13 | 0.17 ± 0.17 | 0.13 ± 0.08 | 0.65 |
PU | 0.05 ± 0.03 | 0.06 ± 0.03 | 0.04 ± 0.04 | 0.41 |
SU | 0.09 ± 0.06 | 0.11 ± 0.07 | 0.07 ± 0.05 | 0.32 |
Antifungal Agent | ECV (μg/mL)/(%) | CBP (μg/mL)/(%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WT | (%) | Non-WT | (%) | S | (%) | SDD | (%) | I | (%) | R | (%) | ||
C. albicans | |||||||||||||
Amphotericin B | ≤2 | 98.8 | >2 | 1.2 | |||||||||
Flucytosine | ≤0.5 | 95.2 | >0.5 | 4.8 | |||||||||
Fluconazole | ≤0.5 | >0.5 | ≤2 | 98.8 | 4 | 1.2 | ≥8 | 0.0 | |||||
Itraconazole | ≤0.12 | >0.12 | ≤0.12 | 84.7 | 0.25–0.5 | 10.6 | ≥1 | 4.7 | |||||
Posaconazole | ≤0.06 | 62.4 | >0.06 | 37.6 | |||||||||
Voriconazole | ≤0.03 | >0.03 | ≤0.12 | 100.0 | 0.25–0.5 | 0.0 | ≥1 | 0.0 | |||||
Caspofungin | ≤0.12 | >0.12 | ≤0.25 | 97.7 | 0.5 | 2.3 | ≥1 | 0.0 | |||||
C. parapsilosis | |||||||||||||
Amphotericin B | ≤2 | 98.2 | >2 | 1.8 | |||||||||
Flucytosine | ≤0.5 | 94.1 | >0.5 | 5.9 | |||||||||
Fluconazole | ≤2 | >2 | ≤2 | 92.2 | 4 | 3.9 | ≥8 | 3.9 | |||||
Itraconazole | ≤0.5 | 92.0 | >0.5 | 8.0 | |||||||||
Posaconazole | ≤0.25 | 84.6 | >0.25 | 15.4 | |||||||||
Voriconazole | ≤0.12 | >0.12 | ≤0.12 | 98.1 | 0.25–0.5 | 1.9 | ≥1 | 0.0 | |||||
Caspofungin | ≤1 | >1 | ≤2 | 98.1 | 4 | 1.9 | ≥8 | 0.0 |
2008–2012 MIC (μg/mL) | 2013–2017 MIC (μg/mL) | p-Value | |
---|---|---|---|
C. albicans | |||
Amphotericin B | 0.250 [0.094 0.500] | 0.380 [0.220 0.500] | 0.037 |
Flucytosine | 0.047 [0.023 0.125] | 0.064 [0.023 0.190] | 0.604 |
Fluconazole | 0.380 [0.125 0.750] | 0.380 [0.190 0.625] | 0.853 |
Itraconazole | 0.094 [0.032 0.120] | 0.064 [0.032 0.120] | 0.585 |
Posaconazole | 0.032 [0.023 0.094] | 0.023 [0.016 0.078] | 0.143 |
Voriconazole | 0.016 [0.008 0.120] | 0.012 [0.007 0.023] | 0.405 |
Caspofungin | 0.064 [0.032 0.125] | 0.094 [0.079 0.190] | 0.019 |
C. parapsilosis(sl) | |||
Amphotericin B | 0.190 [0.079 0.500] | 0.500 [0.410 1.000] | 0.004 |
Flucytosine | 0.047 [0.016 0.064] | 0.077 [0.032 0.125] | 0.134 |
Fluconazole | 1.000 [0.410 1.875] | 1.000 [0.750 2.000] | 0.410 |
Itraconazole | 0.109 [0.023 0.282] | 0.125 [0.047 0.235] | 0.892 |
Posaconazole | 0.064 [0.025 0.218] | 0.079 [0.051 0.173] | 0.570 |
Voriconazole | 0.064 [0.012 0.120] | 0.032 [0.007 0.064] | 0.170 |
Caspofungin | 0.500 [0.250 1.500] | 1.500 [0.190 2.000] | 0.279 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noni, M.; Stathi, A.; Vaki, I.; Velegraki, A.; Zachariadou, L.; Michos, A. Changing Epidemiology of Invasive Candidiasis in Children during a 10-Year Period. J. Fungi 2019, 5, 19. https://doi.org/10.3390/jof5010019
Noni M, Stathi A, Vaki I, Velegraki A, Zachariadou L, Michos A. Changing Epidemiology of Invasive Candidiasis in Children during a 10-Year Period. Journal of Fungi. 2019; 5(1):19. https://doi.org/10.3390/jof5010019
Chicago/Turabian StyleNoni, Maria, Angeliki Stathi, Ilia Vaki, Aristea Velegraki, Levantia Zachariadou, and Athanasios Michos. 2019. "Changing Epidemiology of Invasive Candidiasis in Children during a 10-Year Period" Journal of Fungi 5, no. 1: 19. https://doi.org/10.3390/jof5010019
APA StyleNoni, M., Stathi, A., Vaki, I., Velegraki, A., Zachariadou, L., & Michos, A. (2019). Changing Epidemiology of Invasive Candidiasis in Children during a 10-Year Period. Journal of Fungi, 5(1), 19. https://doi.org/10.3390/jof5010019