Exposure of Aspergillus fumigatus to Atorvastatin Leads to Altered Membrane Permeability and Induction of an Oxidative Stress Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aspergillus Isolates
2.2. Statin
2.3. Susceptibility of A. fumigatus to Atorvastatin
2.4. Effect of Atorvastatin on A. fumigatus on Biomass Production
2.5. Ergosterol Extraction and Quantification
2.6. Determination of Amino Acid and Protein Leakage
2.7. Gliotoxin Extraction and Qquantification
2.8. Protein Extraction and Preparation for Label-Free Mass Spectrometry Analysis
2.9. Protein Data and Analysis
2.10. Statistical Analysis
2.11. Data Availability
3. Results
3.1. Effect of Atorvastatin on Growth of A. fumigatus
3.2. Measurement of Ergosterol from A. fumigatus Mycelium Exposed to Atorvastatin
3.3. Atorvastatin Induces Leakage from A. fumigatus
3.4. Proteomic Analysis of Response of A. fumigatus to Atorvastatin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Margalit, A.; Kavanagh, K. The innate immune response to Aspergillus fumigatus at the alveolar surface. FEMS Microbiol. Rev. 2015, 39, 670–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latgé, J.P.; Chamilos, G. Aspergillus fumigatus and aspergillosis in 2019. Clin. Microbiol. Rev. 2020, 33. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, T.R.T.; Keller, N.P. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin. Microbiol. Rev. 2009, 22, 447–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabi, M.L.; Goracci, A.; Roche, N.; Paugam, A.; Lupo, A.; Revel, M.P. Pulmonary aspergillosis. Diagn. Interv. Imaging 2015, 96, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Daly, P.; Kavanagh, K. Pulmonary aspergillosis: Clinical presentation, diagnosis and therapy. Br. J. Biomed. Sci. 2001, 58, 197–205. [Google Scholar]
- Osherov, N. The virulence of Aspergillus fumigatus. In New Insights in Medical Mycology; Springer: New York, NY, USA, 2007; pp. 185–212. ISBN 9781402063978. [Google Scholar]
- Kwon-Chung, K.J.; Sugui, J.A. Aspergillus fumigatus—What makes the species a ubiquitous human fungal pathogen? PLoS ONE Pathog. 2013, 9, 1–4. [Google Scholar] [CrossRef]
- Fallon, J.P.; Reeves, E.P.; Kavanagh, K. Inhibition of neutrophil function following exposure to the Aspergillus fumigatus toxin fumagillin. J. Med. Microbiol. 2010, 59, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Fallon, J.P.; Reeves, E.P.; Kavanagh, K. The Aspergillus fumigatus toxin fumagillin suppresses the immune response of Galleria mellonella larvae by inhibiting the action of haemocytes. Microbiology 2011, 157, 1481–1488. [Google Scholar] [CrossRef] [Green Version]
- Stone, N.R.H.; Bicanic, T.; Salim, R.; Hope, W. Liposomal amphotericin B (AmBisome®): A review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 2016, 76, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Annaloro, C.; Olivares, C.; Usardi, P.; Onida, F.; Della Volpe, A.; Tagliaferri, E.; Deliliers, G.L. Retrospective evaluation of amphotericin B deoxycholate toxicity in a single centre series of haematopoietic stem cell transplantation recipients. J. Antimicrob. Chemother. 2009, 63, 625–626. [Google Scholar] [CrossRef] [Green Version]
- Eschenauer, G.; DePestel, D.D.; Carver, P.L. Comparison of echninocandin antifungals. Ther. Clin. Risk Manag. 2007, 3, 71–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, V.M.G.; Thompson, G.R. HMG CoA reductase inhibitors as lipid-lowering agents: Five years experience with lovastatin and an appraisal of simvastatin and pravastatin. QJM 1990, 74, 165–175. [Google Scholar] [CrossRef]
- Stancu, C.; Sima, A. Statins: Mechanism of action and effects. J. Cell. Mol. Med. 2001, 5, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Macreadie, I.G.; Johnson, G.; Schlosser, T.; Macreadie, P.I. Growth inhibition of candida species and aspergillus fumigatus by statins. FEMS Microbiol. Lett. 2006, 262, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, J.; Kontoyiannis, D.P.; Wan, Z.; Li, R.; Liu, W. Antifungal activity of statins against aspergillus species. Med. Mycol. 2007, 45, 589–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westermeyer, C.; Macreadie, I.G. Simvastatin reduces ergosterol levels, inhibits growth and causes loss of mtDNA in candida glabrata. FEMS Yeast Res. 2007, 7, 436–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forrest, G.N.; Kopack, A.M.; Perencevich, E.N. Statins in candidemia: Clinical outcomes from a matched cohort study. BMC Infect. Dis. 2010, 10. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Singh, N. Antimicrobial and immunomodulatory attributes of statins: relevance in solid-organ transplant recipients. Clin. Infect. Dis. 2009, 48, 745–755. [Google Scholar] [CrossRef] [Green Version]
- Spanakis, E.K.; Kourkoumpetis, T.K.; Livanis, G.; Peleg, A.Y.; Mylonakis, E. Statin therapy and decreased incidence of positive candida cultures among patients with type 2 diabetes mellitus undergoing gastrointestinal surgery. Mayo Clin. Proc. 2010, 85, 1073–1079. [Google Scholar] [CrossRef] [Green Version]
- Galgóczy, L. Statins as antifungal agents. World J. Clin. Infect. Dis. 2011, 1, 4. [Google Scholar] [CrossRef]
- Arthington-Skaggs, B.A.; Jradi, H.; Desai, T.; Morrison, C.J. Quantitation of ergosterol content: Novel method for determination of fluconazole susceptibility of candida albicans. J. Clin. Microbiol. 1999, 37, 3332–3337. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, G.; Nagl, M.; Kavanagh, K. Exposure to N-chlorotaurine induces oxidative stress responses in aspergillus fumigatus. J. Med. Microbiol. 2018, 68, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, G.; Bergsson, G.; McElvaney, N.G.; Reeves, E.P.; Kavanagh, K. The human cathelicidin antimicrobial peptide LL-37 promotes the growth of the pulmonary pathogen aspergillus fumigatus. Infect. Immun. 2018, e00097-18. [Google Scholar] [CrossRef] [Green Version]
- Côté, R.G.; Griss, J.; Dianes, J.A.; Wang, R.; Wright, J.C.; van den Toorn, H.W.P.; van Breukelen, B.; Heck, A.J.R.; Hulstaert, N.; Martens, L.; et al. The PRoteomics IDEntification (PRIDE) Converter 2 framework: An improved suite of tools to facilitate data submission to the PRIDE Database and the proteomexchange consortium. Mol. Cell. Proteomics 2012, 11, 1682–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Perera, O.; Pérez-Sala, D.; Navarro-Antolín, J.; Sánchez-Pascuala, R.; Hernández, G.; Díaz, C.; Lamas, S. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J. Clin. Investig. 1998, 101, 2711–2719. [Google Scholar] [CrossRef] [PubMed]
- Takemoto, M.; Liao, J.K. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 1712–1719. [Google Scholar] [CrossRef] [Green Version]
- Donnino, M.W.; Cocchi, M.N.; Howell, M.; Clardy, P.; Talmor, D.; Cataldo, L.; Chase, M.; Al-Marshad, A.; Ngo, L.; Shapiro, N.I. Statin therapy is associated with decreased mortality in patients with infection. Acad. Emerg. Med. 2009, 16, 230–234. [Google Scholar] [CrossRef]
- Wikhe, K.; Westermeyer, C.; Macreadie, I.G. Biological consequences of statins in candida species and possible implications for human health. In Biochemical Society Transactions; Springer: New York, NY, USA, 2007; Volume 35, pp. 1529–1532. [Google Scholar]
- Chow, S.C. Immunomodulation by statins: mechanisms and potential impact on autoimmune diseases. Arch. Immunol. Ther. Exp. 2009, 57, 243–251. [Google Scholar] [CrossRef]
- Zeiser, R. Immune modulatory effects of statins. Immunology 2018, 154, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Forero-Peña, D.A.; Gutierrez, F.R.S. Statins as modulators of regulatory T-cell biology. Mediators Inflamm. 2013, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Reeves, E.P.; Murphy, T.; Daly, P.; Kavanagh, K. Amphotericin B enhances the synthesis and release of the immunosuppressive agent gliotoxin from the pulmonary pathogen aspergillus fumigatus. J. Med. Microbiol. 2004, 53, 719–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neiman, A.M. Ascospore formation in the yeast saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 2005, 69, 565–584. [Google Scholar] [CrossRef] [Green Version]
- Macheleidt, J.; Scherlach, K.; Neuwirth, T.; Schmidt-Heck, W.; Straßburger, M.; Spraker, J.; Baccile, J.A.; Schroeder, F.C.; Keller, N.P.; Hertweck, C.; et al. Transcriptome analysis of cyclic AMP-dependent protein kinase A-regulated genes reveals the production of the novel natural compound fumipyrrole by Aspergillus fumigatus. Mol. Microbiol. 2015, 96, 148–162. [Google Scholar] [CrossRef] [PubMed]
- Tamayo, D.; Muñoz, J.F.; Torres, I.; Almeida, A.J.; Restrepo, A.; McEwen, J.G.; Hernández, O. Involvement of the 90kDa heat shock protein during adaptation of paracoccidioides brasiliensis to different environmental conditions. Fungal Genet. Biol. 2013, 51, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Reddy, L.V.; Sochanik, A.; Kurup, V.P. Isolation and characterization of a recombinant heat shock protein of aspergillus fumigatus. J. Allergy Clin. Immunol. 1993, 91, 1024–1030. [Google Scholar] [CrossRef]
- Nasr Esfahani, A.; Golestannejad, Z.; Khozeimeh, F.; Dehghan, P.; Maheronnaghsh, M.; Zarei, Z. Antifungal effect of atorvastatin against candida species in comparison to fluconazole and nystatin. Med. Pharm. Reports 2019, 92, 368–373. [Google Scholar] [CrossRef]
- de Ribeiro, N.Q.; Costa, M.C.; Magalhães, T.F.F.; Carneiro, H.C.S.; Oliveira, L.V.; Fontes, A.C.L.; Santos, J.R.A.; Ferreira, G.F.; de Araujo, G.R.S.; Alves, V.; et al. Atorvastatin as a promising anticryptococcal agent. Int. J. Antimicrob. Agents 2019, 49, 695–702. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajdidi, A.; Sheehan, G.; Kavanagh, K. Exposure of Aspergillus fumigatus to Atorvastatin Leads to Altered Membrane Permeability and Induction of an Oxidative Stress Response. J. Fungi 2020, 6, 42. https://doi.org/10.3390/jof6020042
Ajdidi A, Sheehan G, Kavanagh K. Exposure of Aspergillus fumigatus to Atorvastatin Leads to Altered Membrane Permeability and Induction of an Oxidative Stress Response. Journal of Fungi. 2020; 6(2):42. https://doi.org/10.3390/jof6020042
Chicago/Turabian StyleAjdidi, Ahmad, Gerard Sheehan, and Kevin Kavanagh. 2020. "Exposure of Aspergillus fumigatus to Atorvastatin Leads to Altered Membrane Permeability and Induction of an Oxidative Stress Response" Journal of Fungi 6, no. 2: 42. https://doi.org/10.3390/jof6020042
APA StyleAjdidi, A., Sheehan, G., & Kavanagh, K. (2020). Exposure of Aspergillus fumigatus to Atorvastatin Leads to Altered Membrane Permeability and Induction of an Oxidative Stress Response. Journal of Fungi, 6(2), 42. https://doi.org/10.3390/jof6020042