In Vitro Interaction between Isavuconazole and Tacrolimus, Cyclosporin A, or Sirolimus against Aspergillus Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolates
2.2. Medium Preparation
2.3. Drugs and Microplate Preparation
2.4. Inoculum Preparation and Inoculation of Microplates
2.5. Interpretation of the Results
3. Results
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
Congress Presentations
References
- Steinbach, W.J.; Marr, K.A.; Anaissie, E.J.; Azie, N.; Quan, S.P.; Meier-Kriesche, H.U.; Apewokin, S.; Horn, D.L. Clinical epidemiology of 960 patients with invasive aspergillosis from the path alliance registry. J. Infect. 2012, 65, 453–464. [Google Scholar] [CrossRef]
- Segal, B.H. Aspergillosis. N. Engl. J. Med. 2009, 360, 1870–1884. [Google Scholar] [CrossRef]
- Heylen, L.; Maertens, J.; Naesens, M.; Van Wijngaerden, E.; Lagrou, K.; Bammens, B.; Claes, K.; Evenepoel, P.; Meijers, B.; Kuypers, D.; et al. Invasive aspergillosis after kidney transplant: Case-control study. Clin. Infect. Dis. 2015, 60, 1505–1511. [Google Scholar] [CrossRef] [Green Version]
- Iversen, M.; Burton, C.M.; Vand, S.; Skovfoged, L.; Carlsen, J.; Milman, N.; Andersen, C.B.; Rasmussen, M.; Tvede, M. Aspergillus infection in lung transplant patients: Incidence and prognosis. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 879–886. [Google Scholar] [CrossRef]
- Rosenhagen, M.; Feldhues, R.; Schmidt, J.; Hoppe-Tichy, T.; Geiss, H.K. A risk profile for invasive aspergillosis in liver transplant recipients. Infection 2009, 37, 313–319. [Google Scholar] [CrossRef]
- Herbrecht, R.; Denning, D.W.; Patterson, T.F.; Bennett, J.E.; Greene, R.E.; Oestmann, J.W.; Kern, W.V.; Marr, K.A.; Ribaud, P.; Lortholary, O.; et al. Voriconazole versus amphotericin b for primary therapy of invasive aspergillosis. N. Engl. J. Med. 2002, 347, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Maertens, J.A.; Raad, I.I.; Marr, K.A.; Patterson, T.F.; Kontoyiannis, D.P.; Cornely, O.A.; Bow, E.J.; Rahav, G.; Neofytos, D.; Aoun, M.; et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): A phase 3, randomised-controlled, non-inferiority trial. Lancet 2016, 387, 760–769. [Google Scholar] [CrossRef]
- Chowdhary, A.; Kathuria, S.; Xu, J.; Meis, J.F. Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathog. 2013, 9, e1003633. [Google Scholar] [CrossRef]
- van der Linden, J.W.; Arendrup, M.C.; Warris, A.; Lagrou, K.; Pelloux, H.; Hauser, P.M.; Chryssanthou, E.; Mellado, E.; Kidd, S.E.; Tortorano, A.M.; et al. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg. Infect. Dis. 2015, 21, 1041–1044. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Frade, J.P.; Etienne, K.A.; Pfaller, M.A.; Diekema, D.J.; Balajee, S.A. Azole resistance in Aspergillus fumigatus isolates from the artemis global surveillance study is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrob. Agents Chemother. 2011, 55, 4465–4468. [Google Scholar] [CrossRef] [Green Version]
- Verweij, P.E.; Snelders, E.; Kema, G.H.; Mellado, E.; Melchers, W.J. Azole resistance in Aspergillus fumigatus: A side-effect of environmental fungicide use? Lancet Infect. Dis. 2009, 9, 789–795. [Google Scholar] [CrossRef]
- Verweij, P.E.; Chowdhary, A.; Melchers, W.J.; Meis, J.F. Azole resistance in Aspergillus fumigatus: Can we retain the clinical use of mold-active antifungal azoles? Clin. Infect. Dis. 2016, 62, 362–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messer, S.A.; Carvalhaes, C.G.; Castanheira, M.; Pfaller, M.A. In vitro activity of isavuconazole versus opportunistic filamentous fungal pathogens from the SENTRY antifungal surveillance program, 2017–2018. Diagn. Microbiol. Infect. Dis. 2020, 97, 115007. [Google Scholar] [CrossRef]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Florl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24 (Suppl. 1), e1–e38. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Sharma, C.; van den Boom, M.; Yntema, J.B.; Hagen, F.; Verweij, P.E.; Meis, J.F. Multi-azole-resistant Aspergillus fumigatus in the environment in tanzania. J. Antimicrob. Chemother. 2014, 69, 2979–2983. [Google Scholar] [CrossRef] [PubMed]
- Gregson, L.; Goodwin, J.; Johnson, A.; McEntee, L.; Moore, C.B.; Richardson, M.; Hope, W.W.; Howard, S.J. In vitro susceptibility of Aspergillus fumigatus to isavuconazole: Correlation with itraconazole, voriconazole, and posaconazole. Antimicrob. Agents Chemother. 2013, 57, 5778–5780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gummert, J.F.; Ikonen, T.; Morris, R.E. Newer immunosuppressive drugs: A review. J. Am. Soc. Nephrol. 1999, 10, 1366–1380. [Google Scholar]
- Choi, S.W.; Reddy, P. Current and emerging strategies for the prevention of graft-versus-host disease. Nat. Rev. Clin. Oncol. 2014, 11, 536–547. [Google Scholar] [CrossRef] [Green Version]
- Cruz, M.C.; Goldstein, A.L.; Blankenship, J.; Del Poeta, M.; Perfect, J.R.; McCusker, J.H.; Bennani, Y.L.; Cardenas, M.E.; Heitman, J. Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob. Agents Chemother. 2001, 45, 3162–3170. [Google Scholar] [CrossRef] [Green Version]
- Cruz, M.C.; Del Poeta, M.; Wang, P.; Wenger, R.; Zenke, G.; Quesniaux, V.F.; Movva, N.R.; Perfect, J.R.; Cardenas, M.E.; Heitman, J. Immunosuppressive and nonimmunosuppressive cyclosporine analogs are toxic to the opportunistic fungal pathogen Cryptococcus neoformans via cyclophilin-dependent inhibition of calcineurin. Antimicrob. Agents Chemother. 2000, 44, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Steinbach, W.J.; Singh, N.; Miller, J.L.; Benjamin, D.K., Jr.; Schell, W.A.; Heitman, J.; Perfect, J.R. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus isolates from transplant and nontransplant patients. Antimicrob. Agents Chemother. 2004, 48, 4922–4925. [Google Scholar] [CrossRef] [Green Version]
- Lewis, R.E.; Ben-Ami, R.; Best, L.; Albert, N.; Walsh, T.J.; Kontoyiannis, D.P. Tacrolimus enhances the potency of posaconazole against Rhizopus oryzae in vitro and in an experimental model of mucormycosis. J. Infect. Dis. 2013, 207, 834–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkland, T.N.; Fierer, J. Cyclosporin a inhibits Coccidioides immitis in vitro and in vivo. Antimicrob. Agents Chemother. 1983, 24, 921–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dannaoui, E.; Schwarz, P.; Lortholary, O. In vitro interactions between antifungals and immunosuppressive drugs against zygomycetes. Antimicrob. Agents Chemother. 2009, 53, 3549–3551. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, P.; Schwarz, P.V.; Felske-Zech, H.; Dannaoui, E. In vitro interactions between isavuconazole and tacrolimus, cyclosporin a or sirolimus against Mucorales. J. Antimicrob. Chemother. 2019, 74, 1921–1927. [Google Scholar] [CrossRef] [PubMed]
- Meletiadis, J.; Meis, J.F.; Mouton, J.W.; Verweij, P.E. Analysis of growth characteristics of filamentous fungi in different nutrient media. J. Clin. Microbiol. 2001, 39, 478–484. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, S.L.; Crabtree, G.R. The mechanism of action of cyclosporin a and FK506. Immunol. Today 1992, 13, 136–142. [Google Scholar] [CrossRef]
- Wiederrecht, G.; Lam, E.; Hung, S.; Martin, M.; Sigal, N. The mechanism of action of FK-506 and cyclosporin A. Ann. N. Y. Acad. Sci. 1993, 696, 9–19. [Google Scholar] [CrossRef]
- Dumont, F.J.; Su, Q. Mechanism of action of the immunosuppressant rapamycin. Life Sci 1996, 58, 373–395. [Google Scholar] [CrossRef]
- Del Poeta, M.; Cruz, M.C.; Cardenas, M.E.; Perfect, J.R.; Heitman, J. Synergistic antifungal activities of bafilomycin a1, fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrob. Agents Chemother. 2000, 44, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, S.; Guo, Q.; Ma, L.; Shi, C.; Su, L.; Li, H. In vitro interaction between azoles and cyclosporin A against clinical isolates of Candida albicans determined by the chequerboard method and time-kill curves. J. Antimicrob. Chemother. 2008, 61, 577–585. [Google Scholar] [CrossRef]
- Maesaki, S.; Marichal, P.; Hossain, M.A.; Sanglard, D.; Vanden Bossche, H.; Kohno, S. Synergic effects of tacrolimus and azole antifungal agents against azole-resistant Candida albicans strains. J. Antimicrob. Chemother. 1998, 42, 747–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchetti, O.; Moreillon, P.; Glauser, M.P.; Bille, J.; Sanglard, D. Potent synergism of the combination of fluconazole and cyclosporine in candida albicans. Antimicrob. Agents Chemother. 2000, 44, 2373–2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onyewu, C.; Blankenship, J.R.; Del Poeta, M.; Heitman, J. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob. Agents Chemother. 2003, 47, 956–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Alexander, B.D.; Lortholary, O.; Dromer, F.; Gupta, K.L.; John, G.T.; del Busto, R.; Klintmalm, G.B.; Somani, J.; Lyon, G.M.; et al. Cryptococcus neoformans in organ transplant recipients: Impact of calcineurin-inhibitor agents on mortality. J. Infect. Dis. 2007, 195, 756–764. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Li, Y.; Guo, Q.; Shi, C.; Yu, J.; Ma, L. In vitro interactions between tacrolimus and azoles against Candida albicans determined by different methods. Antimicrob. Agents Chemother. 2008, 52, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Narreddy, S.; Manavathu, E.; Chandrasekar, P.H.; Alangaden, G.J.; Revankar, S.G. In vitro interaction of posaconazole with calcineurin inhibitors and sirolimus against zygomycetes. J. Antimicrob. Chemother. 2010, 65, 701–703. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, P.; Cornely, O.A.; Dannaoui, E. Antifungal combinations in mucorales: A microbiological perspective. Mycoses 2019, 62, 746–760. [Google Scholar] [CrossRef]
- Gao, L.; Sun, Y. In vitro interactions of antifungal agents and tacrolimus against Aspergillus biofilms. Antimicrob. Agents Chemother. 2015, 59, 7097–7099. [Google Scholar] [CrossRef] [Green Version]
- Kontoyiannis, D.P.; Lewis, R.E.; Osherov, N.; Albert, N.D.; May, G.S. Combination of caspofungin with inhibitors of the calcineurin pathway attenuates growth in vitro in Aspergillus species. J. Antimicrob. Chemother. 2003, 51, 313–316. [Google Scholar] [CrossRef]
- Steinbach, W.J.; Schell, W.A.; Blankenship, J.R.; Onyewu, C.; Heitman, J.; Perfect, J.R. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. Antimicrob. Agents Chemother. 2004, 48, 1664–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamoth, F.; Alexander, B.D.; Juvvadi, P.R.; Steinbach, W.J. Antifungal activity of compounds targeting the Hsp90-calcineurin pathway against various mould species. J. Antimicrob. Chemother. 2015, 70, 1408–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, S.J.; Lass-Florl, C.; Cuenca-Estrella, M.; Gomez-Lopez, A.; Arendrup, M.C. Determination of isavuconazole susceptibility of Aspergillus and Candida species by the EUCAST method. Antimicrob. Agents Chemother. 2013, 57, 5426–5431. [Google Scholar] [CrossRef] [Green Version]
- Holmes, A.R.; Cardno, T.S.; Strouse, J.J.; Ivnitski-Steele, I.; Keniya, M.V.; Lackovic, K.; Monk, B.C.; Sklar, L.A.; Cannon, R.D. Targeting efflux pumps to overcome antifungal drug resistance. Future Med. Chem. 2016, 8, 1485–1501. [Google Scholar] [CrossRef] [Green Version]
- Juvvadi, P.R.; Fox, D., 3rd; Bobay, B.G.; Hoy, M.J.; Gobeil, S.M.C.; Venters, R.A.; Chang, Z.; Lin, J.J.; Averette, A.F.; Cole, D.C.; et al. Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents. Nat. Commun. 2019, 10, 4275. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Lee, K.T.; Lee, S.J.; Beom, J.Y.; Hwangbo, A.; Jung, J.A.; Song, M.C.; Yoo, Y.J.; Kang, S.H.; Averette, A.F.; et al. In vitro and in vivo assessment of FK506 analogs as novel antifungal drug candidates. Antimicrob. Agents Chemother. 2018, 62, e01627-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falck, P.; Vethe, N.T.; Asberg, A.; Midtvedt, K.; Bergan, S.; Reubsaet, J.L.; Holdaas, H. Cinacalcet’s effect on the pharmacokinetics of tacrolimus, cyclosporine and mycophenolate in renal transplant recipients. Nephrol. Dial. Transplant. 2008, 23, 1048–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahalati, K.; Kahan, B.D. Clinical pharmacokinetics of sirolimus. Clin. Pharmacokinet. 2001, 40, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Kontoyiannis, D.P.; Lewis, R.E.; Alexander, B.D.; Lortholary, O.; Dromer, F.; Gupta, K.L.; John, G.T.; Del Busto, R.; Klintmalm, G.B.; Somani, J.; et al. Calcineurin inhibitor agents interact synergistically with antifungal agents in vitro against Cryptococcus neoformans isolates: Correlation with outcome in solid organ transplant recipients with cryptococcosis. Antimicrob. Agents Chemother. 2008, 52, 735–738. [Google Scholar] [CrossRef] [Green Version]
Species | Collection Number | MIC (µg/mL) | MIC (µg/mL) | MIC (µg/mL) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IVZ | TAC d | IVZ/TAC | FICI | INTPN | IVZ | CYA d | IVZ/CYA | FICI | INTPN | IVZ | SLM d | IVZ/SLM | FICI | INTPN | ||
A. flavus | HEGP-6097 | 4 | 16 | 2/1 | 0.5625 | IND | 4 | 16 | 4/0.12 | 1.0078 | IND | 4 | 16 | 1/2 | 0.375 | SYN |
A. flavus | HEGP-5899 | 4 | 16 | 0.5/8 | 0.625 | IND | 4 | 16 | 4/0.12 | 1.0078 | IND | 4 | 16 | 2/0.25 | 0.5156 | IND |
A. flavus | HEGP-4536 | 2 | 16 | 0.06/4 | 0.2813 | SYN | 2 | 16 | 2/0.12 | 1.0078 | IND | 2 | 16 | 1/1 | 0.5625 | IND |
A. flavus | HEGP-4251 | 2 | 16 | 0.03/4 | 0.2656 | SYN | 4 | 16 | 2/0.12 | 0.5078 | IND | 2 | 16 | 0.5/1 | 0.3125 | SYN |
A. flavus | HEGP-4114 | 2 | 16 | 0.5/4 | 0.5 | SYN | 2 | 16 | 2/0.25 | 1.0156 | IND | 2 | 16 | 1/1 | 0.5625 | IND |
A. fumigatus | HEGP-5780 b | 16 | 16 | 8/1 | 0.5625 | IND | 8 | 16 | 16/0.12 | 2.0078 | IND | 16 | 16 | 8/2 | 0.625 | IND |
A. fumigatus | HEGP-4020 c | 1 | 16 | 0.5/2 | 0.625 | IND | 2 | 16 | 1/0.12 | 0.5078 | IND | 1 | 16 | 0.5/2 | 0.625 | IND |
A. fumigatus | HEGP-4083 b | 16 | 16 | 4/4 | 0.5 | SYN | 16 | 16 | 16/0.12 | 1.0078 | IND | 16 | 16 | 16/0.12 | 1.0078 | IND |
A. fumigatus | HEGP-2659 b | 16 | 16 | 4/2 | 0.375 | SYN | 8 | 16 | 16/0.12 | 2.0078 | IND | 16 | 16 | 8/8 | 1.0 | IND |
A. fumigatus | HEGP-2664 b | 8 | 16 | 2/4 | 0.5 | SYN | 8 | 16 | 8/0.12 | 1.0078 | IND | 16 | 16 | 8/0.12 | 0.5078 | IND |
A. fumigatus | HEGP-R117 | 1 | 16 | 0.25/2 | 0.375 | SYN | 1 | 16 | 1/0.12 | 1.0078 | IND | 1 | 16 | 1/0.12 | 1.0078 | IND |
A. fumigatus | HEGP-R279 | 1 | 16 | 0.5/4 | 0.75 | IND | 1 | 16 | 1/0.12 | 1.0078 | IND | 1 | 16 | 0.5/0.12 | 0.75 | IND |
A. fumigatus | HEGP-R285 | 1 | 16 | 0.5/1 | 0.5625 | IND | 1 | 16 | 1/0.12 | 1.0078 | IND | 1 | 16 | 1/0.12 | 1.0078 | IND |
A. fumigatus | HEGP-R290 | 2 | 16 | 1/0.5 | 0.5313 | IND | 1 | 16 | 1/8 | 1.5 | IND | 2 | 16 | 1/8 | 1.0 | IND |
A. fumigatus | HEGP-R291 | 1 | 16 | 0.5/2 | 0.625 | IND | 1 | 16 | 1/0.12 | 1.0078 | IND | 1 | 16 | 1/0.12 | 1.0078 | IND |
A. nidulans | HEGP-5711 | 0.25 | 16 | 0.12/4 | 0.75 | IND | 0.5 | 16 | 0.25/2 | 0.625 | IND | 0.5 | 16 | 0.5/0.12 | 1.0078 | IND |
A. nidulans | HEGP-6169 | 0.5 | 16 | 0.12/4 | 0.5 | SYN | 0.5 | 16 | 0.25/2 | 0.625 | IND | 0.5 | 16 | 0.5/0.12 | 1.0078 | IND |
A. nidulans | HEGP-5492 | 0.5 | 16 | 0.25/1 | 0.5625 | IND | 0.5 | 16 | 0.25/2 | 0.625 | IND | 0.5 | 16 | 0.5/0.12 | 1.0078 | IND |
A. nidulans | HEGP-5521 | 0.5 | 16 | 0.25/0.5 | 0.5313 | IND | 0.5 | 16 | 0.25/4 | 0.75 | IND | 0.5 | 16 | 0.5/0.12 | 1.0078 | IND |
A. nidulans | HEGP-5329 | 0.5 | 16 | 0.25/1 | 0.5625 | IND | 0.5 | 16 | 0.25/2 | 0.625 | IND | 0.5 | 16 | 0.5/0.12 | 1.0078 | IND |
A. niger | HEGP-6071 | 16 | 16 | 0.25/0.25 | 0.0313 | SYN | 16 | 16 | 0.25/2 | 0.1406 | SYN | 16 | 16 | 16/0.12 | 1.0078 | IND |
A. niger | HEGP-6217 | 8 | 16 | 0.06/0.25 | 0.0234 | SYN | 8 | 16 | 1/2 | 0.25 | SYN | 8 | 16 | 4/2 | 0.625 | IND |
A. niger | HEGP-6475 | 16 | 16 | 0.06/0.25 | 0.0195 | SYN | 16 | 16 | 0.12/2 | 0.1328 | SYN | 16 | 16 | 8/0.12 | 0.5078 | IND |
A. niger | HEGP-6562 | 16 | 16 | 0.12/0.12 | 0.0156 | SYN | 16 | 16 | 0.25/2 | 0.1406 | SYN | 16 | 16 | 8/0.12 | 0.5078 | IND |
A. niger | HEGP-6917 | 4 | 0.25 | 0.03/0.25 | 1.0078 | - a | 4 | 4 | 2/2 | 1.0 | IND | 8 | 16 | 4/0.12 | 0.5078 | IND |
A. terreus | HEGP-6625 | 0.5 | 0.25 | 0.12/0.12 | 0.75 | - a | 1 | 16 | 0.06/2 | 0.1875 | SYN | 1 | 16 | 0.5/0.12 | 0.5078 | IND |
A. terreus | HEGP-6055 | 1 | 16 | 0.25/2 | 0.375 | SYN | 1 | 16 | 0.25/4 | 0.5 | SYN | 1 | 16 | 0.5/8 | 1.0 | IND |
A. terreus | HEGP-5599 | 0.5 | 16 | 0.03/0.12 | 0.0703 | SYN | 0.5 | 1 | 0.25/0.5 | 1.0 | IND | 0.25 | 16 | 0.12/8 | 1.0 | IND |
A. terreus | HEGP-5169 | 0.5 | 16 | 0.12/0.5 | 0.2813 | SYN | 0.5 | 16 | 0.25/2 | 0.625 | IND | 0.5 | 16 | 0.25/0.5 | 0.5313 | IND |
A. terreus | HEGP-6398 | 0.5 | 0.25 | 0.03/0.12 | 0.5625 | - a | 0.5 | 1 | 0.06/0.5 | 0.625 | IND | 0.5 | 16 | 0.06/1 | 0.1875 | SYN |
Species (Number of Isolates) | % of Isolates with the Following Interaction a | ||||||||
---|---|---|---|---|---|---|---|---|---|
Synergy | No Interaction | Antagonism | |||||||
TAC | CYA | SLM | TAC | CYA | SLM | TAC | CYA | SLM | |
A. flavus (5) | 60 | 0 | 40 | 40 | 100 | 60 | 0 | 0 | 0 |
A. fumigatus (10) | 40 | 0 | 0 | 60 | 100 | 100 | 0 | 0 | 0 |
A. nidulans (5) | 20 | 0 | 0 | 80 | 100 | 100 | 0 | 0 | 0 |
A. niger (5) | 100 b | 80 | 0 | 0 | 20 | 100 | 0 | 0 | 0 |
A. terreus (5) | 100 b | 40 | 20 | 0 | 60 | 80 | 0 | 0 | 0 |
All (30) | 56 b | 20 | 10 | 44 b | 80 | 90 | 0 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwarz, P.; Dannaoui, E. In Vitro Interaction between Isavuconazole and Tacrolimus, Cyclosporin A, or Sirolimus against Aspergillus Species. J. Fungi 2020, 6, 103. https://doi.org/10.3390/jof6030103
Schwarz P, Dannaoui E. In Vitro Interaction between Isavuconazole and Tacrolimus, Cyclosporin A, or Sirolimus against Aspergillus Species. Journal of Fungi. 2020; 6(3):103. https://doi.org/10.3390/jof6030103
Chicago/Turabian StyleSchwarz, Patrick, and Eric Dannaoui. 2020. "In Vitro Interaction between Isavuconazole and Tacrolimus, Cyclosporin A, or Sirolimus against Aspergillus Species" Journal of Fungi 6, no. 3: 103. https://doi.org/10.3390/jof6030103
APA StyleSchwarz, P., & Dannaoui, E. (2020). In Vitro Interaction between Isavuconazole and Tacrolimus, Cyclosporin A, or Sirolimus against Aspergillus Species. Journal of Fungi, 6(3), 103. https://doi.org/10.3390/jof6030103