Aromatic Hydrocarbon Removal by Novel Extremotolerant Exophiala and Rhodotorula Spp. from an Oil Polluted Site in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Isolation
2.2. Identification of Isolated Strains
2.3. Tolerance to pH, Temperature, and Salinity
2.4. Determination of Hydrocarbon Removal by High Performance Liquid Chromatography (HPLC)
2.5. Evaluation of the Toxicity in Cucumber Seeds (Cucumis Sativus)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Strain Isolation and Selection
3.2. Identification of the Isolates
3.3. Growth in Different pH, Temperature, and Salinity Conditions
3.4. Aromatic Hydrocarbon Removal by Strains BMH1012 and BMH1013
3.5. Ecotoxicity of the Treated Media in the Germination of C. Sativus
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Villaseñor, J.L.; Maeda, P.; Rosell, J.A.; Ortiz, E. Plant Families as Predictors of Plant Biodiversity in Mexico: Plant Families as Predictors of Biodiversity. Divers. Distrib. 2007, 13, 871–876. [Google Scholar] [CrossRef]
- Hawksworth, D.L. (Ed.) Biodiversity: Measurement and Estimation; Chapman & Hall: London, UK, 1996. [Google Scholar]
- Nájar, A. Cómo Funciona el Robo de Gasolina Que ha Causado el Desabasto de Combustible en México. Available online: https://www.bbc.com/mundo/noticias-america-latina-46818927 (accessed on 13 August 2020).
- Risher, J.F.; Rhodes, S.W. Toxicological Profiles for Fuel Oils; US Department of Health and Human Services: Washington, DC, USA, 1995. Available online: https://www.atsdr.cdc.gov/ (accessed on 13 August 2020).
- Baniasadi, M.; Mousavi, S.M. A Comprehensive Review on the Bioremediation of Oil Spills. In Microbial Action on Hydrocarbons; Kumar, V., Kumar, M., Prasad, R., Eds.; Springer: Singapore, 2018; pp. 223–254. [Google Scholar] [CrossRef]
- Noman, E.; Al-Gheethi, A.; Mohamed, R.M.S.R.; Talip, B.A. Myco-Remediation of Xenobiotic Organic Compounds for a Sustainable Environment: A Critical Review. Top. Curr. Chem. (Z) 2019, 377, 17. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Dangi, A.K.; Shukla, P. Contemporary Enzyme Based Technologies for Bioremediation: A Review. J. Environ. Manag. 2018, 210, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Karigar, C.S.; Rao, S.S. Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review. Enzym. Res. 2011, 2011, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marican, A.; Durán-Lara, E.F. A Review on Pesticide Removal through Different Processes. Environ. Sci. Pollut. Res. 2018, 25, 2051–2064. [Google Scholar] [CrossRef]
- Godheja, J.; Sk, S.; Siddiqui, S.A.; Modi, D.R. Xenobiotic Compounds Present in Soil and Water: A Review on Remediation Strategies. J. Environ. Anal. Toxicol. 2016, 6. [Google Scholar] [CrossRef]
- Prasad, R.; Aranda, E. (Eds.) Approaches in Bioremediation: The New Era of Environmental Microbiology and Nanobiotechnology; Nanotechnology in the Life Sciences; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Martínková, L.; Kotik, M.; Marková, E.; Homolka, L. Biodegradation of Phenolic Compounds by Basidiomycota and Its Phenol Oxidases: A Review. Chemosphere 2016, 149, 373–382. [Google Scholar] [CrossRef]
- Upadhyay, P.; Shrivastava, R.; Agrawal, P.K. Bioprospecting and Biotechnological Applications of Fungal Laccase. 3 Biotech 2016, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhao, L.; Liu, J.; Wang, H.; Xiao, S. Effect of Potential Probiotic Rhodotorula benthica D30 on the Growth Performance, Digestive Enzyme Activity and Immunity in Juvenile Sea Cucumber Apostichopus japonicus. Fish Shellfish Immunol. 2015, 43, 330–336. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Liu, H.; Zhang, J. Enhanced Lipid Production with Undetoxified Corncob Hydrolysate by Rhodotorula glutinis Using a High Cell Density Culture Strategy. Bioresour. Technol. 2015, 180, 32–39. [Google Scholar] [CrossRef]
- Kot, A.M.; Błażejak, S.; Kurcz, A.; Gientka, I.; Kieliszek, M. Rhodotorula glutinis—Potential Source of Lipids, Carotenoids, and Enzymes for Use in Industries. Appl. Microbiol. Biotechnol. 2016, 100, 6103–6117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varjani, S.J. Microbial Degradation of Petroleum Hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Deligios, M.; Fraumene, C.; Abbondio, M.; Mannazzu, I.; Tanca, A.; Addis, M.F.; Uzzau, S. Draft Genome Sequence of Rhodotorula mucilaginosa, an Emergent Opportunistic Pathogen. Genome Announc. 2015, 3, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidara, R.; Trabelsi, H.; Neji, S.; Cheikhrouhou, F.; Sellami, H.; Makni, F.; Ayadi, A. Rhodotorula Fungemia: Report of Two Cases in Sfax (Tunisia). J. Mycol. Médicale 2016, 26, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Hashem, M.; Alamri, S.A.; Al-Zomyh, S.S.A.A.; Alrumman, S.A. Biodegradation and Detoxification of Aliphatic and Aromatic Hydrocarbons by New Yeast Strains. Ecotoxicol. Environ. Saf. 2018, 151, 28–34. [Google Scholar] [CrossRef]
- Kadri, T.; Cuprys, A.; Rouissi, T.; Brar, S.K. Microbial Degradation of Polyaromatic Hydrocarbons. In Environmental Contaminants: Ecological Implications and Management; Bharagava, R.N., Ed.; Microorganisms for Sustainability; Springer: Singapore, 2019; Volume 14, pp. 101–117. [Google Scholar] [CrossRef]
- Sughayer, M.; DeGirolami, P.C.; Khettry, U.; Korzeniowski, D.; Grumney, A.; Pasarell, L.; McGinnis, M.R. Human Infection Caused by Exophiala pisciphila: Case Report and Review. Clin. Infect. Dis. 1991, 13, 379–382. [Google Scholar] [CrossRef]
- Bates, S.T.; Reddy, G.S.N.; Garcia-Pichel, F. Exophiala Crusticola Anam. Nov. (Affinity Herpotrichiellaceae), a Novel Black Yeast from Biological Soil Crusts in the Western United States. Int. J. Syst. Evol. Microbiol. 2006, 56, 2697–2702. [Google Scholar] [CrossRef] [Green Version]
- Boyce, K.J.; Andrianopoulos, A. Fungal Dimorphism: The Switch from Hyphae to Yeast Is a Specialized Morphogenetic Adaptation Allowing Colonization of a Host. FEMS Microbiol. Rev. 2015, 39, 797–811. [Google Scholar] [CrossRef] [Green Version]
- Blasi, B.; Poyntner, C.; Rudavsky, T.; Prenafeta-Boldú, F.X.; de Hoog, S.; Tafer, H.; Sterflinger, K. Pathogenic Yet Environmentally Friendly? Black Fungal Candidates for Bioremediation of Pollutants. Geomicrobiol. J. 2016, 33, 308–317. [Google Scholar] [CrossRef]
- Prenafeta-Boldú, F.X.; de Hoog, G.; Summerbell, R.C. Biosystematics and Ecology of Hydrocarbon-Degrading Fungi from Air Biofilters. In Biotechniques for Air Pollution Control; Servizo de Publicacións: A Coruña, Spain, 2005. [Google Scholar]
- Seyedmousavi, S.; Badali, H.; Chlebicki, A.; Zhao, J.; Prenafeta-boldú, F.X.; De Hoog, G.S. Exophiala Sideris, a Novel Black Yeast Isolated from Environments Polluted with Toxic Alkyl Benzenes and Arsenic. Fungal Biol. 2011, 115, 1030–1037. [Google Scholar] [CrossRef]
- Zhang, C.; Sirijovski, N.; Adler, L.; Ferrari, B.C. Exophiala Macquariensis Sp. Nov., a Cold Adapted Black Yeast Species Recovered from a Hydrocarbon Contaminated Sub-Antarctic Soil. Fungal Biol. 2019, 123, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.S.; Sutton, D.A.; Fothergill, A.W.; Rinaldi, M.G.; Harrak, M.J.; de Hoog, G.S. Spectrum of Clinically Relevant Exophiala Species in the United States. J. Clin. Microbiol. 2007, 45, 3713–3720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badali, H.; Prenafeta-Boldu, F.X.; Guarro, J.; Klaassen, C.H.; Meis, J.F.; de Hoog, G.S. Cladophialophora psammophila, a Novel Species of Chaetothyriales with a Potential Use in the Bioremediation of Volatile Aromatic Hydrocarbons. Fungal Biol. 2011, 115, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Zajc, J.; Gostinčar, C.; Černoša, A.; Gunde-Cimerman, N. Stress-Tolerant Yeasts: Opportunistic Pathogenicity Versus Biocontrol Potential. Genes 2019, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Waksman, S.A. A Method of Counting the Number of Fungi in the Soil. J. Bacteriol. 1922, 7, 339–341. [Google Scholar] [CrossRef] [Green Version]
- Green, M.R.; Sambrook, J.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2012. [Google Scholar]
- Gascuel, O. BIONJ: An Improved Version of the NJ Algorithm Based on a Simple Model of Sequence Data. Mol. Biol. Evol. 1997, 14, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.A. Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Gouy, M.; Guindon, S.; Gascuel, O. SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Mol. Biol. Evol. 2010, 27, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Harold, J.B. Microbiological Applications: A Laboratory Manual in General Microbiology, 7th ed.; MacGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Batista-García, R.A.; Balcázar-López, E.; Miranda-Miranda, E.; Sánchez-Reyes, A.; Cuervo-Soto, L.; Aceves-Zamudio, D.; Atriztán-Hernández, K.; Morales-Herrera, C.; Rodríguez-Hernández, R.; Folch-Mallol, J. Characterization of Lignocellulolytic Activities from a Moderate Halophile Strain of Aspergillus caesiellus Isolated from a Sugarcane Bagasse Fermentation. PLoS ONE 2014, 9, e105893. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Ni, X.; Waigi, M.; Liu, J.; Sun, K.; Gao, Y. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria. Int. J. Environ. Res. Public Health 2016, 13, 805. [Google Scholar] [CrossRef] [Green Version]
- Sterflinger, K. Black Yeasts and Meristematic Fungi: Ecology, Diversity and Identification. In Biodiversity and Ecophysiology of Yeasts; Péter, G., Rosa, C., Eds.; The Yeast Handbook; Springer: Berlin/Heidelberg, Germany, 2006; pp. 501–514. [Google Scholar] [CrossRef]
- Silva, W.C.; Gonçalves, S.S.; Santos, D.W.C.L.; Padovan, A.C.B.; Bizerra, F.C.; Melo, A.S.A. Species Diversity, Antifungal Susceptibility and Phenotypic and Genotypic Characterisation of Exophiala Spp. Infecting Patients in Different Medical Centres in Brazil. Mycoses 2017, 60, 328–337. [Google Scholar] [CrossRef] [PubMed]
- DasSarma, P.; Antunes, A.; Simões, M.F.; DasSarma, S. Earth’s Stratosphere and Microbial Life. Curr. Issues Mol. Biol. 2020, 38, 197–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelaide University. Available online: https://mycology.adelaide.edu.au/descriptions/hyphomycetes/exophiala/ (accessed on 13 August 2020).
- Sav, H.; Ozakkas, F.; Altınbas, R.; Kiraz, N.; Tümgör, A.; Gümral, R.; Döğen, A.; Ilkit, M.; de Hoog, G.S. Virulence Markers of Opportunistic Black Yeast in Exophiala. Mycoses 2016, 59, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.K.; Nickerson, K.W. Nutritional Control of Dimorphism in Ceratocystis ulmi. Exp. Mycol. 1981, 5, 148–154. [Google Scholar] [CrossRef]
- Ruiz-Herrera, J.; Sentandreu, R. Different Effectors of Dimorphism in Yarrowia lipolytica. Arch. Microbiol. 2002, 178, 477–483. [Google Scholar] [CrossRef]
- Cervantes-Montelongo, J.A.; Aréchiga-Carvajal, E.T.; Ruiz-Herrera, J. Adaptation of Ustilago maydis to Extreme PH Values: A Transcriptomic Analysis: Adaptation of Ustilago Maydis to Extreme PH Values. J. Basic Microbiol. 2016, 56, 1222–1233. [Google Scholar] [CrossRef]
- Mehrabi, R.; Zwiers, L.-H.; de Waard, M.A.; Kema, G.H.J. MgHog1 Regulates Dimorphism and Pathogenicity in the Fungal Wheat Pathogen Mycosphaerella graminicola. MPMI 2006, 19, 1262–1269. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Zhong, Q.; Yin, Y.; Shen, L.; Li, Y.; Wang, Z. The High Osmotic Response and Cell Wall Integrity Pathways Cooperate to Regulate Morphology, Microsclerotia Development, and Virulence in Metarhizium rileyi. Sci. Rep. 2016, 6, 38765. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Soto, D.; Ruiz-Herrera, J. Functional Analysis of the MAPK Pathways in Fungi. Rev. Iberoam. Micol. 2017, 34, 192–202. [Google Scholar] [CrossRef]
- Cao, C.; Li, R.; Wan, Z.; Liu, W.; Wang, X.; Qiao, J.; Wang, D.; Bulmer, G.; Calderone, R. The Effects of Temperature, PH, and Salinity on the Growth and Dimorphism of Penicillium marneffei. Med. Mycol. 2007, 45, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Akbarzadeh, F.; Moghimi, H.; Abolmaali, S.; Hamedi, J. Crude Oil and Polycyclic Aromatic Hydrocarbons (PAHs) Biodegradation by Exophiala Sp. UTMC 5043. J. Microb. World 2018, 11, 188–198. [Google Scholar]
- Estévez, E.; Veiga, M.C.; Kennes, C. Biodegradation of Toluene by the New Fungal Isolates Paecilomyces variotii and Exophiala oligosperma. J. Ind. Microbiol. Biotechnol. 2005, 32, 33–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hesham, A.E.-L.; Alrumman, S.A.; ALQahtani, A.D.S. Degradation of Toluene Hydrocarbon by Isolated Yeast Strains: Molecular Genetic Approaches for Identification and Characterization. Russ. J. Genet. 2018, 54, 933–943. [Google Scholar] [CrossRef]
- Romero, M.C.; Cazau, M.C.; Giorgieri, S.; Arambarri, A.M. Phenanthrene Degradation by Microorganisms Isolated from a Contaminated Stream. Environ. Pollut. 1998, 101, 355–359. [Google Scholar] [CrossRef]
- Hussain, I.; ALOthman, Z.A.; Alwarthan, A.A.; Sanagi, M.M.; Ali, I. Chiral Xenobiotics Bioaccumulations and Environmental Health Prospectives. Environ. Monit. Assess. 2015, 187, 490. [Google Scholar] [CrossRef]
- Sivaram, A.K.; Logeshwaran, P.; Lockington, R.; Naidu, R.; Megharaj, M. Phytoremediation Efficacy Assessment of Polycyclic Aromatic Hydrocarbons Contaminated Soils Using Garden Pea (Pisum sativum) and Earthworms (Eisenia fetida). Chemosphere 2019, 229, 227–235. [Google Scholar] [CrossRef]
Strain | Max Score | Total Score | Query Cover | E Value | % Identity | Accession |
Rhodotorula mucilaginosa strain JYC2617 | 665 | 665 | 0.99 | 0.0 | 98.93% | MN648703.1 |
Rhodotorula sp. strain SM03UFAM2 | 665 | 665 | 0.99 | 0.0 | 98.93% | MN268779.1 |
Rhodotorula mucilaginosa strain JYC529 | 665 | 665 | 0.99 | 0.0 | 98.93% | MN244371.1 |
Rhodotorula mucilaginosa YE-171 | 665 | 665 | 0.99 | 0.0 | 98.93% | LC486532.1 |
Rhodotorula mucilaginosa strain WUT167 | 665 | 665 | 0.99 | 0.0 | 98.93% | MN006818.1 |
Rhodotorula sp. strain DAMB1 | 665 | 665 | 0.99 | 0.0 | 98.93% | MK968443.1 |
Rhodotorula mucilaginosa strain IMUFRJ | 665 | 665 | 0.99 | 0.0 | 98.93% | MK263185.1 |
Rhodotorula mucilaginosa JYC2513 | 665 | 665 | 099 | 0.0 | 98.93% | MK044010.1 |
Strain | Max Score | Total Score | Query Cover | E Value | Per. Ident | Accession |
Exophiala heteromorpha strain IFRC 762 | 640 | 640 | 0.99 | 2 × 10−179 | 99.43% | KP959253.1 |
Exophiala sp. DAOM 216,391 | 640 | 640 | 0.99 | 2 × 10−179 | 99.43% | AF050267.1 |
Exophiala heteromorpha strain CBS 137222 | 634 | 634 | 0.99 | 8 × 10−178 | 99.15% | KJ522800.1 |
Exophiala sp. strain TC201 | 630 | 630 | 0.99 | 1 × 10−176 | 98.87% | MK465183.1 |
Exophiala heteromorpha isolate 21 | 630 | 630 | 0.99 | 1 × 10−176 | 99.15% | KC349856.1 |
Exophiala heteromorpha strain IFRC 686 | 623 | 623 | 0.99 | 2 × 10−174 | 98.58% | KP959252.1 |
Exophiala heteromorpha strain IFRC 761 | 617 | 617 | 0.98 | 8 × 10−173 | 98.57% | KP959251.1 |
Exophiala heteromorpha strain IFRC 813 | 612 | 612 | 0.95 | 4 × 10−171 | 99.41% | KP959255.1 |
Exophiala heteromorpha strain CBS 137223 | 612 | 612 | 0.99 | 4 × 10−171 | 98.02% | KJ522801.1 |
Strain | Without NaCl | 1M NaCl | 2M NaCl |
---|---|---|---|
BMH1012 | 1.9 ± 0.3 cm | 0.5 ± 0.1 cm | 0 cm |
BMH1013 | 1.7 ± 0.2 cm | 0.5 ± 0.1 cm | 0 cm |
Ctr | 1.2 ± 0.1 cm | 0 cm | 0 cm |
Strains | Treatment | Germination (%) |
---|---|---|
Controls | (−) | 100 ± 0.58 |
Hexane | 92.3 ± 0.0 | |
AHm | 61.5 ± 0.58 | |
BMH1012 | D6 | 84.6 ± 0.58 |
D15 | 0.0 ± 0.0 | |
D21 | 0.0 ± 0.0 | |
BMH1013 | D6 | 92.3 ± 0.0 |
D15 | 92.3 ± 0.0 | |
D21 | 76.09 ± 0.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ide-Pérez, M.R.; Fernández-López, M.G.; Sánchez-Reyes, A.; Leija, A.; Batista-García, R.A.; Folch-Mallol, J.L.; Sánchez-Carbente, M.d.R. Aromatic Hydrocarbon Removal by Novel Extremotolerant Exophiala and Rhodotorula Spp. from an Oil Polluted Site in Mexico. J. Fungi 2020, 6, 135. https://doi.org/10.3390/jof6030135
Ide-Pérez MR, Fernández-López MG, Sánchez-Reyes A, Leija A, Batista-García RA, Folch-Mallol JL, Sánchez-Carbente MdR. Aromatic Hydrocarbon Removal by Novel Extremotolerant Exophiala and Rhodotorula Spp. from an Oil Polluted Site in Mexico. Journal of Fungi. 2020; 6(3):135. https://doi.org/10.3390/jof6030135
Chicago/Turabian StyleIde-Pérez, Martín R., Maikel Gilberto Fernández-López, Ayixon Sánchez-Reyes, Alfonso Leija, Ramón Alberto Batista-García, Jorge Luis Folch-Mallol, and María del Rayo Sánchez-Carbente. 2020. "Aromatic Hydrocarbon Removal by Novel Extremotolerant Exophiala and Rhodotorula Spp. from an Oil Polluted Site in Mexico" Journal of Fungi 6, no. 3: 135. https://doi.org/10.3390/jof6030135
APA StyleIde-Pérez, M. R., Fernández-López, M. G., Sánchez-Reyes, A., Leija, A., Batista-García, R. A., Folch-Mallol, J. L., & Sánchez-Carbente, M. d. R. (2020). Aromatic Hydrocarbon Removal by Novel Extremotolerant Exophiala and Rhodotorula Spp. from an Oil Polluted Site in Mexico. Journal of Fungi, 6(3), 135. https://doi.org/10.3390/jof6030135