Hex1, the Major Component of Woronin Bodies, Is Required for Normal Development, Pathogenicity, and Stress Response in the Plant Pathogenic Fungus Verticillium dahliae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains, Culture Conditions, and Fungal DNA Isolation and Manipulation
2.2. Agrobacterium tumefaciens-Mediated Transformation of V. dahliae
2.3. Protoplast Transformation of V. dahliae
2.4. Deletion, Complementation, and sGFP-Tagging of V. dahliae hex1
2.5. Cytoplasmic and Nuclear Fluorescent Labeling of V. dahliae
2.6. Morphological and Physiological Characterization of V. dahliae Strains
2.7. Plant Pathogenicity Assays
2.8. Stress Response Assays and Reactive Oxygen Species (ROS) Detection
2.9. Generation of Nit Mutants and Heterokaryon Compatibility Tests
2.10. Microscopy
2.11. Bioinformatic Analyses and Statistics
3. Results
3.1. Identification and Characterization of the VdHex1 Homolog
3.2. Deletion of Vdhex1 and Morphological and Physiological Characterization
3.3. Localization of VdHex1 at Septae
3.4. Vdhex1 Is Indispensable for Pathogenicity
3.5. VdHex1 Is Involved in the Fungal Response to Osmotic Stress and Cell Wall-/Plasma Membrane-Perturbating Agents
3.6. VdHex1 Is Required for Normal Response to Oxidative Stress and ROS Metabolism
3.7. VdHex1 Is Not Involved in Heterokaryon Incompatibility
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fiddy, C.; Trinci, A.P. Mitosis, septation, branching and the duplication cycle in Aspergillus nidulans. J. Gen. Microbiol. 1976, 97, 169–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stajich, J.E.; Berbee, M.L.; Blackwell, M.; Hibbett, D.S.; James, T.Y.; Spatafora, J.W.; Taylor, J.W. The Fungi. Curr. Biol. 2009, 19, R840–R845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberson, R.W.; Abril, M.; Blackwell, M.; Letcher, P.; McLaughlin, D.J.; Mouriño-Pérez, R.R.; Riquelme, M.; Uchida, M. Hyphal structure. In Cellular and Molecular Biology of Filamentous Fungi; Borkovich, K., Eboole, D., Eds.; ASM Press: Washington, DC, USA, 2010; pp. 8–27. [Google Scholar]
- Bartnicki-Garcia, S. Hyphal tip growth outstanding questions. In Molecular Biology of Fungal Development; Osiewacz, H., Ed.; Marcel Dekker Inc.: New York, NY, USA, 2002; pp. 29–58. [Google Scholar]
- Nuss, D.L. Hypovirulence: Mycoviruses at the fungal–plant interface. Nat. Rev. Microbiol. 2005, 3, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Van Diepeningen, A.D.; Debets, A.J.M.; Slakhorst, S.M.; Hoekstra, R.F. Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence. Biotechnol. J. 2008, 3, 791–802. [Google Scholar] [CrossRef]
- Gonçalves, A.P.; Heller, J.; Daskalov, A.; Videira, A.; Glass, N.L. Regulated Forms of Cell Death in Fungi. Front. Microbiol. 2017, 8, 1837. [Google Scholar] [CrossRef]
- Trinci, A.P.J.; Collinge, A.J. Structure and plugging of septa of wild type and spreading colonial mutants of Neurospora crassa. Archiv für Mikrobiologie 1973, 91, 355–364. [Google Scholar] [CrossRef]
- Markham, P.; Collinge, A.J. Woronin bodies of filamentous fungi. FEMS Microbiol. Lett. 1987, 46, 1–11. [Google Scholar] [CrossRef]
- Bleichrodt, R.-J.; van Veluw, G.J.; Recter, B.; Maruyama, J.; Kitamoto, K.; Wösten, H.A.B. Hyphal heterogeneity in Aspergillus oryzae is the result of dynamic closure of septa by Woronin bodies: Hyphal heterogeneity is maintained by septal closure. Mol. Microbiol. 2012, 86, 1334–1344. [Google Scholar] [CrossRef]
- Liu, F.; Ng, S.K.; Lu, Y.; Low, W.; Lai, J.; Jedd, G. Making two organelles from one: Woronin body biogenesis by peroxisomal protein sorting. J. Cell Biol. 2008, 180, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.K.; Liu, F.; Lai, J.; Low, W.; Jedd, G. A Tether for Woronin Body Inheritance Is Associated with Evolutionary Variation in Organelle Positioning. PLoS Genet. 2009, 5, e1000521. [Google Scholar] [CrossRef] [Green Version]
- Beck, J.; Echtenacher, B.; Ebel, F. Woronin bodies, their impact on stress resistance and virulence of the pathogenic mould Aspergillus fumigatus and their anchoring at the septal pore of filamentous Ascomycota. Mol. Microbiol. 2013, 89, 857–871. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Koh, C.H.; Tjota, M.; Pieuchot, L.; Raman, V.; Chandrababu, K.B.; Yang, D.; Wong, L.; Jedd, G. Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity. Proc. Natl. Acad. Sci. USA 2012, 109, 15781–15786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jedd, G.; Chua, N.-H. A new self-assembled peroxisomal vesicle required for efficient resealing of the plasma membrane. Nat. Cell Biol. 2000, 2, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Jedd, G.; Kumaran, D.; Swaminathan, S.; Shio, H.; Hewitt, D.; Chua, N.-H.; Swaminathan, K. A HEX-1 crystal lattice required for Woronin body function in Neurospora crassa. Nat. Struct. Mol. Biol. 2003, 10, 264–270. [Google Scholar] [CrossRef]
- Tenney, K.; Hunt, I.; Sweigard, J.; Pounder, J.I.; McClain, C.; Bowman, E.J.; Bowman, B.J. hex-1, a Gene Unique to Filamentous Fungi, Encodes the Major Protein of the Woronin Body and Functions as a Plug for Septal Pores. Fungal Genet. Biol. 2000, 31, 205–217. [Google Scholar] [CrossRef]
- Soundararajan, S.; Jedd, G.; Li, X.; Ramos-Pamploña, M.; Chua, N.H.; Naqvi, N.I. Woronin Body Function in Magnaporthe grisea Is Essential for Efficient Pathogenesis and for Survival during Nitrogen Starvation Stress. Plant Cell 2004, 16, 1564–1574. [Google Scholar] [CrossRef] [Green Version]
- Curach, N.C.; Te’o, V.S.J.; Gibbs, M.D.; Bergquist, P.L.; Nevalainen, K.M.H. Isolation, characterization and expression of the hex1 gene from Trichoderma reesei. Gene 2004, 331, 133–140. [Google Scholar] [CrossRef]
- Maruyama, J.; Juvvadi, P.R.; Ishi, K.; Kitamoto, K. Three-dimensional image analysis of plugging at the septal pore by Woronin body during hypotonic shock inducing hyphal tip bursting in the filamentous fungus Aspergillus oryzae. Biochem. Biophys. Res. Commun. 2005, 331, 1081–1088. [Google Scholar] [CrossRef]
- Beck, J.; Ebel, F. Characterization of the major Woronin body protein HexA of the human pathogenic mold Aspergillus fumigatus. Int. J. Med. Microbiol. 2013, 303, 90–97. [Google Scholar] [CrossRef]
- Son, M.; Lee, K.-M.; Yu, J.; Kang, M.; Park, J.M.; Kwon, S.-J.; Kim, K.-H. The HEX1 Gene of Fusarium graminearum is Required for Fungal Asexual Reproduction and Pathogenesis and for Efficient Viral RNA Accumulation of Fusarium graminearum Virus 1. J. Virol. 2013, 87, 10356–10367. [Google Scholar] [CrossRef] [Green Version]
- Kubo, Y.; Fujihara, N.; Harata, K.; Neumann, U.; Robin, G.P.; O’Connell, R. Colletotrichum orbiculare FAM1 Encodes a Novel Woronin Body-Associated Pex22 Peroxin Required for Appressorium-Mediated Plant Infection. mBio 2015, 6, e01305-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, L.; Gao, H.; Li, J.; Liu, L.; Liu, Z.; Zhang, K.-Q. The Woronin body in the nematophagous fungus Arthrobotrys oligospora is essential for trap formation and efficient pathogenesis. Fungal Biol. 2017, 121, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Li, D.; Qin, L.; Shen, J.; Guo, X.; Tumukunde, E.; Li, M.; Wang, S. HexA is required for growth, aflatoxin biosynthesis and virulence in Aspergillus flavus. BMC Mol. Biol. 2019, 20, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, G.; Shang, Y.; Li, S.; Wang, C. MrHex1 is Required for Woronin Body Formation, Fungal Development and Virulence in Metarhizium robertsii. J. Fungi 2020, 6, 172. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, J.; Kitamoto, K. The Woronin Body: A Fungal Organelle Regulating Multicellularity. In Biology of the Fungal Cell; Hoffmeister, D., Gressler, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 8, pp. 3–14. [Google Scholar]
- Pegg, G.F.; Brady, B.L. Verticillium Wilts; CABI Pub.: Wallingford, UK, 2002. [Google Scholar]
- Klosterman, S.J.; Atallah, Z.K.; Vallad, G.E.; Subbarao, K.V. Diversity, Pathogenicity, and Management of Verticillium Species. Annu. Rev. Phytopathol. 2009, 47, 39–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Typas, M.A.; Heale, J.B. Transfer of a Cytoplasmic Factor by Micro-injection in Verticillium. J. Gen. Microbiol. 1979, 111, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Typas, M.A. Heterokaryon incompatibility and interspecific hybridization between Verticillium albo-atrum and Verticillium dahliae following protoplast fusion and microinjection. Microbiology 1983, 129, 3043–3056. [Google Scholar] [CrossRef] [Green Version]
- Typas, M.A.; Heale, J.B. Heterozygous diploid analyses via the parasexual cycle and a cytoplasmic pattern of inheritance in Verticillium spp. Genet. Res. 1978, 31, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M. Vegetative incompatibility in fungi: From recognition to cell death, whatever does the trick. Fungal Biol. Rev. 2016, 30, 152–162. [Google Scholar] [CrossRef]
- Papaioannou, I.A.; Ligoxigakis, E.K.; Vakalounakis, D.J.; Markakis, E.A.; Typas, M.A. Phytopathogenic, morphological, genetic and molecular characterization of a Verticillium dahliae population from Crete, Greece. Eur. J. Plant Pathol. 2013, 136, 577–596. [Google Scholar] [CrossRef]
- Papaioannou, I.A.; Dimopoulou, C.D.; Typas, M.A. Structural and phylogenetic analysis of the rDNA intergenic spacer region of Verticillium dahliae. FEMS Microbiol. Lett. 2013, 347, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holsters, M.; de Waele, D.; Depicker, A.; Messens, E.; van Montagu, M.; Schell, J. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet. 1978, 163, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Mullins, E.D.; Chen, X.; Romaine, P.; Raina, R.; Geiser, D.M.; Kang, S. Agrobacterium-Mediated Transformation of Fusarium oxysporum: An Efficient Tool for Insertional Mutagenesis and Gene Transfer. Phytopathology 2001, 91, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Markakis, E.A.; Ligoxigakis, E.K.; Avramidou, E.V.; Tzanidakis, N. Survival, Persistence, and Infection Efficiency of Verticillium dahliae Passed Through the Digestive System of Sheep. Plant Dis. 2014, 98, 1235–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markakis, E.A.; Fountoulakis, M.S.; Daskalakis, G.C.; Kokkinis, M.; Ligoxigakis, E.K. The suppressive effect of compost amendments on Fusarium oxysporum f.sp. radicis-cucumerinum in cucumber and Verticillium dahliae in eggplant. Crop Prot. 2016, 79, 70–79. [Google Scholar] [CrossRef]
- Papaioannou, I.A.; Typas, M.A. High-Throughput Assessment and Genetic Investigation of Vegetative Compatibility in Verticillium dahliae. J. Phytopathol. 2015, 163, 475–485. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Buchan, D.W.A.; Jones, D.T. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res. 2019, 47, W402–W407. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, L.; Stephens, A.; Nam, S.-Z.; Rau, D.; Kübler, J.; Lozajic, M.; Gabler, F.; Söding, J.; Lupas, A.N.; Alva, V. A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J. Mol. Biol. 2018, 430, 2237–2243. [Google Scholar] [CrossRef]
- Webb, B.; Sali, A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Protein Sci. 2016, 86, 2.9.1–2.9.37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inderbitzin, P.; Davis, R.M.; Bostock, R.M.; Subbarao, K.V. The Ascomycete Verticillium longisporum is a Hybrid and a Plant Pathogen with an Expanded Host Range. PLoS ONE 2011, 6, e18260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, S.J.; Keller, G.A.; Hosken, N.; Wilkinson, J.; Subramani, S. A conserved tripeptide sorts proteins to peroxisomes. J. Cell Biol. 1989, 108, 1657–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, C.; Dixon, R.A. The Oxidative Burst in Plant Disease Resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 251–275. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, A.; Talbot, N.J. Fungal pathogenesis: Combatting the oxidative burst. Nat. Microbiol. 2017, 2, 17095. [Google Scholar] [CrossRef]
- Corral-Ramos, C.; Roca, M.G.; Di Pietro, A.; Roncero, M.I.G.; Ruiz-Roldán, C. Autophagy contributes to regulation of nuclear dynamics during vegetative growth and hyphal fusion in Fusarium oxysporum. Autophagy 2015, 11, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Knoll, A.H. The Multiple Origins of Complex Multicellularity. Annu. Rev. Earth Planet. Sci. 2011, 39, 217–239. [Google Scholar] [CrossRef] [Green Version]
- Carlie, M.J.; Watkinson, S.C. The Fungi, 2nd ed.; Academic Press: London, UK, 2001. [Google Scholar]
- Simonin, A.; Palma-Guerrero, J.; Fricker, M.; Glass, N.L. Physiological Significance of Network Organization in Fungi. Eukaryot. Cell 2012, 11, 1345–1352. [Google Scholar] [CrossRef] [Green Version]
- Schmieder, S.S.; Stanley, C.E.; Rzepiela, A.; van Swaay, D.; Sabotič, J.; Nørrelykke, S.F.; deMello, A.J.; Aebi, M.; Künzler, M. Bidirectional Propagation of Signals and Nutrients in Fungal Networks via Specialized Hyphae. Curr. Biol. 2019, 29, 217–228.e4. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, G.; Harmer, N.J.; Schuster, M.; Kilaru, S. Woronin body-based sealing of septal pores. Fungal Genet. Biol. 2017, 109, 53–55. [Google Scholar] [CrossRef]
- Jin, L.; Li, G.; Yu, D.; Huang, W.; Cheng, C.; Liao, S.; Wu, Q.; Zhang, Y. Transcriptome analysis reveals the complexity of alternative splicing regulation in the fungus Verticillium dahliae. BMC Genom. 2017, 18, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tey, W.K.; North, A.J.; Reyes, J.L.; Lu, Y.F.; Jedd, G. Polarized Gene Expression Determines Woronin Body Formation at the Leading Edge of the Fungal Colony. Mol. Biol. Cell 2005, 16, 2651–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momany, M.; Richardson, E.A.; Van Sickle, C.; Jedd, G. Mapping Woronin Body Position in Aspergillus nidulans. Mycologia 2002, 94, 260. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, M.; Bredeweg, E.L.; Callejas-Negrete, O.; Roberson, R.W.; Ludwig, S.; Beltrán-Aguilar, A.; Seiler, S.; Novick, P.; Freitag, M. The Neurospora crassa exocyst complex tethers Spitzenkörper vesicles to the apical plasma membrane during polarized growth. Mol. Biol. Cell 2014, 25, 1312–1326. [Google Scholar] [CrossRef]
- Heller, J.; Tudzynski, P. Reactive oxygen species in phytopathogenic fungi: Signaling, development, and disease. Annu. Rev. Phytopathol. 2011, 49, 369–390. [Google Scholar] [CrossRef]
- Kim, K.-H.; Willger, S.D.; Park, S.-W.; Puttikamonkul, S.; Grahl, N.; Cho, Y.; Mukhopadhyay, B.; Cramer, R.A.; Lawrence, C.B. TmpL, a Transmembrane Protein Required for Intracellular Redox Homeostasis and Virulence in a Plant and an Animal Fungal Pathogen. PLoS Pathog. 2009, 5, e1000653. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Li, X.; Guo, H.; Guo, N.; Cheng, H. VdPLP, A Patatin-Like Phospholipase in Verticillium dahliae, Is Involved in Cell Wall Integrity and Required for Pathogenicity. Genes 2018, 9, 162. [Google Scholar] [CrossRef] [Green Version]
- Fradin, E.F.; Thomma, B.P.H.J. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol. Plant Pathol. 2006, 7, 71–86. [Google Scholar] [CrossRef]
- Luo, X.; Mao, H.; Wei, Y.; Cai, J.; Xie, C.; Sui, A.; Yang, X.; Dong, J. The fungal-specific transcription factor Vdpf influences conidia production, melanized microsclerotia formation and pathogenicity in Verticillium dahliae. Mol. Plant Pathol. 2016, 17, 1364–1381. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, E.; Brown, S.; Tian, C.; Glass, N.L. Transcriptional profiling and functional analysis of heterokaryon incompatibility in Neurospora crassa reveals that reactive oxygen species, but not metacaspases, are associated with programmed cell death. Microbiology 2009, 155, 3957–3970. [Google Scholar] [CrossRef] [Green Version]
- Dementhon, K.; Paoletti, M.; Pinan-Lucarré, B.; Loubradou-Bourges, N.; Sabourin, M.; Saupe, S.J.; Clavé, C. Rapamycin Mimics the Incompatibility Reaction in the Fungus Podospora anserina. Eukaryot. Cell 2003, 2, 238–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vangalis, V.; Papaioannou, I.A.; Markakis, E.A.; Knop, M.; Typas, M.A. Hex1, the Major Component of Woronin Bodies, Is Required for Normal Development, Pathogenicity, and Stress Response in the Plant Pathogenic Fungus Verticillium dahliae. J. Fungi 2020, 6, 344. https://doi.org/10.3390/jof6040344
Vangalis V, Papaioannou IA, Markakis EA, Knop M, Typas MA. Hex1, the Major Component of Woronin Bodies, Is Required for Normal Development, Pathogenicity, and Stress Response in the Plant Pathogenic Fungus Verticillium dahliae. Journal of Fungi. 2020; 6(4):344. https://doi.org/10.3390/jof6040344
Chicago/Turabian StyleVangalis, Vasileios, Ioannis A. Papaioannou, Emmanouil A. Markakis, Michael Knop, and Milton A. Typas. 2020. "Hex1, the Major Component of Woronin Bodies, Is Required for Normal Development, Pathogenicity, and Stress Response in the Plant Pathogenic Fungus Verticillium dahliae" Journal of Fungi 6, no. 4: 344. https://doi.org/10.3390/jof6040344
APA StyleVangalis, V., Papaioannou, I. A., Markakis, E. A., Knop, M., & Typas, M. A. (2020). Hex1, the Major Component of Woronin Bodies, Is Required for Normal Development, Pathogenicity, and Stress Response in the Plant Pathogenic Fungus Verticillium dahliae. Journal of Fungi, 6(4), 344. https://doi.org/10.3390/jof6040344