An Optimized Ustilago maydis for Itaconic Acid Production at Maximal Theoretical Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Media and Culture Conditions
2.2. Analytical Methods
2.3. Plasmid Cloning and Strain Engineering
3. Results and Discussion
3.1. Prevention of Filamentous Growth by fuz7 Deletion and Its Influence on Itaconate Production
3.2. Overexpression of mttA from A. terreus and Its Impact on Itaconate Production
3.3. Correlation between Copy Number of PetefmttA and Impact on Itaconate Production
3.4. Evaluation of Itaconate Production with the Novel Engineered Strain K14 in a Bioreactor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okabe, M.; Lies, D.; Kanamasa, S.; Park, E.Y. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 2009, 84, 597–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willke, T.; Vorlop, K.D. Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol. 2001, 56, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Klement, T.; Milker, S.; Jäger, G.; Grande, P.M.; Domínguez de María, P.; Büchs, J. Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microbial. Cell Factories 2012, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- Steiger, M.G.; Wierckx, N.; Blank, L.M.; Mattanovich, D.; Sauer, M. Itaconic acid—An emerging building block. In Industrial Biotechnology, Products and Processes; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017. [Google Scholar]
- Werpy, T.; Petersen, G. Top Value Added Chemicals from Biomass: Volume i—Results of Screening for Potential Candidates from Sugars and Synthesis Gas; DOE/GO-102004-1992; TRN: US200427%%671 United States 10.2172/15008859 TRN: US200427%%671 NREL English; National Renewable Energy Lab.: Golden, CO, USA, 2004.
- Michelucci, A.; Cordes, T.; Ghelfi, J.; Pailot, A.; Reiling, N.; Goldmann, O.; Binz, T.; Wegner, A.; Tallam, A.; Rausell, A.; et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. USA 2013, 110, 7820–7825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, E.L.; Ryan, D.G.; Prag, H.A.; Dikovskaya, D.; Menon, D.; Zaslona, Z.; Jedrychowski, M.P.; Costa, A.S.H.; Higgins, M.; Hams, E.; et al. Itaconate is an anti-inflammatory metabolite that activates nrf2 via alkylation of keap1. Nature 2018, 556, 113–117. [Google Scholar] [CrossRef]
- Olagnier, D.; Farahani, E.; Thyrsted, J.; Blay-Cadanet, J.; Herengt, A.; Idorn, M.; Hait, A.; Hernaez, B.; Knudsen, A.; Iversen, M.B.; et al. Sars-cov2-mediated suppression of nrf2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat. Commun. 2020, 11, 4938. [Google Scholar] [CrossRef] [PubMed]
- Klement, T.; Büchs, J. Itaconic acid—A biotechnological process in change. Bioresour. Technol. 2013, 135, 422–431. [Google Scholar] [CrossRef]
- Hosseinpour Tehrani, H.; Becker, J.; Bator, I.; Saur, K.; Meyer, S.; Rodrigues Lóia, A.C.; Blank, L.M.; Wierckx, N. Integrated strain- and process design enable production of 220 g l−1 itaconic acid with Ustilago maydis. Biotechnol. Biofuels 2019, 12, 263. [Google Scholar] [CrossRef]
- Hevekerl, A.; Kuenz, A.; Vorlop, K.-D. Influence of the ph on the itaconic acid production with Aspergillus terreus. Appl. Microbiol. Biotechnol. 2014, 98, 10005–10012. [Google Scholar] [CrossRef]
- Tabuchi, T.; Sugisawa, T.; Ishidori, T.; Nakahara, T.; Sugiyama, J. Itaconic acid fermentation by a yeast belonging to the genus candida. Agric. Biol. Chem. 1981, 45, 475–479. [Google Scholar] [CrossRef]
- Levinson, W.E.; Kurtzman, C.P.; Kuo, T.M. Production of itaconic acid by pseudozyma antarctica nrrl y-7808 under nitrogen-limited growth conditions. Enzym. Microb. Technol. 2006, 39, 824–827. [Google Scholar] [CrossRef]
- Krull, S.; Lünsmann, M.; Prüße, U.; Kuenz, A. Ustilago rabenhorstiana—An alternative natural itaconic acid producer. Fermentation 2020, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Wierckx, N.; Agrimi, G.; Lübeck, P.S.; Steiger, M.G.; Mira, N.P.; Punt, P.J. Metabolic specialization in itaconic acid production: A tale of two fungi. Curr. Opin. Biotechnol. 2020, 62, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Regestein, L.; Klement, T.; Grande, P.; Kreyenschulte, D.; Heyman, B.; Maßmann, T.; Eggert, A.; Sengpiel, R.; Wang, Y.; Wierckx, N.; et al. From beech wood to itaconic acid: Case study on biorefinery process integration. Biotechnol. Biofuels 2018, 11, 279. [Google Scholar] [CrossRef]
- Straathof, A.J.J.; Wahl, S.A.; Benjamin, K.R.; Takors, R.; Wierckx, N.; Noorman, H.J. Grand research challenges for sustainable industrial biotechnology. Trends Biotechnol. 2019, 37, 1042–1050. [Google Scholar] [CrossRef]
- Kämper, J.; Kahmann, R.; Bölker, M.; Ma, L.-J.; Brefort, T.; Saville, B.J.; Banuett, F.; Kronstad, J.W.; Gold, S.E.; Müller, O.; et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 2006, 444, 97–101. [Google Scholar] [CrossRef]
- Kahmann, R.; Steinberg, G.; Basse, C.; Feldbrügge, M.; Kämper, J. Ustilago maydis, the Causative Agent of Corn Smut Disease; Kronstad, J.W., Ed.; Fungal Pathology; Springer: Dordrecht, The Netherlands, 2000; pp. 347–371. [Google Scholar]
- Christensen, J.J. Corn smut caused by Ustilago maydis. Monogr. Am. Phytopathol. Soc. 1963, 2. [Google Scholar] [CrossRef]
- Kahmann, R.; Kämper, J. Ustilago maydis: How its biology relates to pathogenic development. New Phytol. 2004, 164, 31–42. [Google Scholar] [CrossRef]
- Brefort, T.; Doehlemann, G.; Mendoza-Mendoza, A.; Reissmann, S.; Djamei, A.; Kahmann, R. Ustilago maydis as a pathogen. Annu. Rev. Phytopathol. 2009, 47, 423–445. [Google Scholar] [CrossRef] [Green Version]
- Klose, J.; De Sá, M.M.; Kronstad, J.W. Lipid-induced filamentous growth in Ustilago maydis. Mol. Microbiol. 2004, 52, 823–835. [Google Scholar] [CrossRef]
- Lovely, C.B.; Aulakh, K.B.; Perlin, M.H. Role of hsl7 in morphology and pathogenicity and its interaction with other signaling components in the plant pathogen Ustilago maydis. Eukaryot. Cell 2011, 10, 869–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovely, C.B.; Perlin, M.H. Cla4, but not rac1, regulates the filamentous response of Ustilago maydis to low ammonium conditions. Commun. Integr. Biol. 2011, 4, 670–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseinpour Tehrani, H.; Tharmasothirajan, A.; Track, E.; Blank, L.M.; Wierckx, N. Engineering the morphology and metabolism of ph tolerant Ustilago cynodontis for efficient itaconic acid production. Metab. Eng. 2019, 54, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Hosseinpour Tehrani, H.; Saur, K.; Tharmasothirajan, A.; Blank, L.M.; Wierckx, N. Process engineering of ph tolerant Ustilago cynodontis for efficient itaconic acid production. Microb. Cell Factories 2019, 18, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guevarra, E.D.; Tabuchi, T. Accumulation of itaconic, 2-hydroxyparaconic, itatartaric, and malic acids by strains of the genus ustilago. Agric. Biol. Chem. 1990, 54, 2353–2358. [Google Scholar] [CrossRef] [Green Version]
- Feldbrügge, M.; Kellner, R.; Schipper, K. The biotechnological use and potential of plant pathogenic smut fungi. Appl. Microbiol. Biotechnol. 2013, 97, 3253–3265. [Google Scholar] [CrossRef]
- Geiser, E.; Wiebach, V.; Wierckx, N.; Blank, L.M. Prospecting the biodiversity of the fungal family ustilaginaceae for the production of value-added chemicals. Fungal Biol. Biotechnol. 2014, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Bölker, M.; Basse, C.W.; Schirawski, J. Ustilago maydis secondary metabolism-from genomics to biochemistry. Fungal Genet. Biol. FG B 2008, 45 (Suppl. 1), S88–S93. [Google Scholar]
- Aguilar, L.R.; Pardo, J.P.; Lomelí, M.M.; Bocardo, O.I.L.; Juárez Oropeza, M.A.; Guerra Sánchez, G. Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation. Arch. Microbiol. 2017, 199, 1195–1209. [Google Scholar] [CrossRef]
- Moon, H.-J.; Jeya, M.; Kim, I.-W.; Lee, J.-K. Biotechnological production of erythritol and its applications. Appl. Microbiol. Biotechnol. 2010, 86, 1017–1025. [Google Scholar] [CrossRef]
- Zambanini, T.; Tehrani, H.H.; Geiser, E.; Sonntag, C.K.; Buescher, J.M.; Meurer, G.; Wierckx, N.; Blank, L.M. Metabolic engineering of Ustilago trichophora tz1 for improved malic acid production. Metab. Eng. Commun. 2017, 4, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.J.; Stachurski, S.; Stoffels, P.; Schipper, K.; Feldbrügge, M.; Büchs, J. Online evaluation of the metabolic activity of Ustilago maydis on (poly) galacturonic acid. J. Biol. Eng. 2018, 12, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Schlembach, I.; Tehrani, H.; Blank, L.M.; Büchs, J.; Wierckx, N.; Regestein, L.; Rosenbaum, M. Consolidated bioprocessing of cellulose to itaconic acid by a co-culture of Trichoderma reesei and Ustilago maydis. Biotechnol. Biofuels 2020, 13, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Geiser, E.; Reindl, M.; Blank, L.M.; Feldbrügge, M.; Wierckx, N.; Schipper, K. Activating intrinsic carbohydrate-active enzymes of the smut fungus Ustilago maydis for the degradation of plant cell wall components. Appl. Environ. Microbiol. 2016, 82, 5174–5185. [Google Scholar] [CrossRef] [Green Version]
- Stoffels, P.; Müller, M.J.; Stachurski, S.; Terfrüchte, M.; Schröder, S.; Ihling, N.; Wierckx, N.; Feldbrügge, M.; Schipper, K.; Büchs, J. Complementing the intrinsic repertoire of Ustilago maydis for degradation of the pectin backbone polygalacturonic acid. J. Biotechnol. 2020, 307, 148–163. [Google Scholar] [CrossRef]
- Maassen, N.; Panakova, M.; Wierckx, N.; Geiser, E.; Zimmermann, M.; Bölker, M.; Klinner, U.; Blank, L.M. Influence of carbon and nitrogen concentration on itaconic acid production by the smut fungus Ustilago maydis. Eng. Life Sci. 2014, 14, 129–134. [Google Scholar] [CrossRef]
- Olicón-Hernández, D.R.; Araiza-Villanueva, M.G.; Pardo, J.P.; Aranda, E.; Guerra-Sánchez, G. New insights of Ustilago maydis as yeast model for genetic and biotechnological research: A review. Curr. Microbiol. 2019, 76, 1–10. [Google Scholar] [CrossRef]
- Becker, J.; Hosseinpour Tehrani, H.; Gauert, M.; Mampel, J.; Blank, L.M.; Wierckx, N. An Ustilago maydis chassis for itaconic acid production without by-products. Microb. Biotechnol. 2020, 13, 350–362. [Google Scholar] [CrossRef] [Green Version]
- Karaffa, L.; Kubicek, C.P. Citric acid and itaconic acid accumulation: Variations of the same story? Appl. Microbiol. Biotechnol. 2019, 103, 2889–2902. [Google Scholar] [CrossRef] [Green Version]
- Kuenz, A.; Krull, S. Biotechnological production of itaconic acid—Things you have to know. Appl. Microbiol. Biotechnol. 2018, 102, 3901–3914. [Google Scholar] [CrossRef]
- Geiser, E.; Przybilla, S.K.; Engel, M.; Kleineberg, W.; Büttner, L.; Sarikaya, E.; Hartog, T.D.; Klankermayer, J.; Leitner, W.; Bölker, M.; et al. Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production. Metab. Eng. 2016, 38, 427–435. [Google Scholar] [CrossRef]
- Zambanini, T.; Hosseinpour Tehrani, H.; Geiser, E.; Merker, D.; Schleese, S.; Krabbe, J.; Buescher, J.M.; Meurer, G.; Wierckx, N.; Blank, L.M. Efficient itaconic acid production from glycerol with Ustilago vetiveriae tz1. Biotechnol. Biofuels 2017, 10, 131. [Google Scholar] [CrossRef]
- Duetz, W.A.; Rüedi, L.; Hermann, R.; O’Connor, K.; Büchs, J.; Witholt, B. Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl. Environ. Microbiol. 2000, 66, 2641–2646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewald, S.; Josephs, K.; Bölker, M. Genetic analysis of biosurfactant production in Ustilago maydis. Appl. Environ. Microbiol. 2005, 71, 3033–3040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseinpour Tehrani, H.; Geiser, E.; Engel, M.; Hartmann, S.K.; Hossain, A.H.; Punt, P.J.; Blank, L.M.; Wierckx, N. The interplay between transport and metabolism in fungal itaconic acid production. Fungal Genet. Biol. FG B 2019, 125, 45–52. [Google Scholar] [CrossRef]
- Zambanini, T.; Sarikaya, E.; Kleineberg, W.; Buescher, J.M.; Meurer, G.; Wierckx, N.; Blank, L.M. Efficient malic acid production from glycerol with Ustilago trichophora tz1. Biotechnol. Biofuels 2016, 9, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, D.G.; Young, L.; Chuang, R.Y.; Venter, J.C.; Hutchison, C.A., 3rd; Smith, H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 2009, 6, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Russell, D.W. Preparation and transformation of competent e. coli using calcium chloride. CSH Protoc. 2006, 2006. [Google Scholar] [CrossRef]
- Brachmann, A.; König, J.; Julius, C.; Feldbrügge, M. A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol. Genet. Genom. 2004, 272, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, C.S.; Winston, F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformaion of Escherichia coli. Gene 1987, 57, 267–272. [Google Scholar] [CrossRef]
- Khrunyk, Y.; Münch, K.; Schipper, K.; Lupas, A.N.; Kahmann, R. The use of flp-mediated recombination for the functional analysis of an effector gene family in the biotrophic smut fungus Ustilago maydis. New Phytol. 2010, 187, 957–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time rt-pcr. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Geiser, E.; Przybilla, S.K.; Friedrich, A.; Buckel, W.; Wierckx, N.; Blank, L.M.; Bölker, M. Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microb. Biotechnol. 2016, 9, 116–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiser, E.; Hosseinpour Tehrani, H.; Meyer, S.; Blank, L.M.; Wierckx, N. Evolutionary freedom in the regulation of the conserved itaconate cluster by ria1 in related ustilaginaceae. Fungal Biol. Biotechnol. 2018, 5, 14. [Google Scholar] [CrossRef]
- Zambanini, T.; Hartmann, S.K.; Schmitz, L.M.; Büttner, L.; Hosseinpour Tehrani, H.; Geiser, E.; Beudels, M.; Venc, D.; Wandrey, G.; Büchs, J.; et al. Promoters from the itaconate cluster of Ustilago maydis are induced by nitrogen depletion. Fungal Biol. Biotechnol. 2017, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Salmerón-Santiago, K.G.; Pardo, J.P.; Flores-Herrera, O.; Mendoza-Hernández, G.; Miranda-Arango, M.; Guerra-Sánchez, G. Response to osmotic stress and temperature of the fungus Ustilago maydis. Arch. Microbiol. 2011, 193, 701–709. [Google Scholar] [CrossRef]
- Cervantes-Chávez, J.A.; Valdés-Santiago, L.; Bakkeren, G.; Hurtado-Santiago, E.; León-Ramírez, C.G.; Esquivel-Naranjo, E.U.; Landeros-Jaime, F.; Rodríguez-Aza, Y.; Ruiz-Herrera, J. Trehalose is required for stress resistance and virulence of the basidiomycota plant pathogen Ustilago maydis. Microbiology 2016, 162, 1009–1022. [Google Scholar] [CrossRef]
Strain Designation | Resistance | Reference |
---|---|---|
U. maydis MB215 | [47] | |
U. maydis MB215 ∆cyp3 ∆Pria1::Petef | [10] | |
U. maydis MB215 ∆UMAG_05079 PetefmttA | hygR, cbxR | [48] |
U. maydis MB215 ∆cyp3 ∆fuz7 ∆Pria1::Petef PetefmttA_K14 | hygR, cbxR | [10] |
U. maydis MB215 ∆cyp3 ∆MEL ∆UA ∆dgat ∆Pria1::Petef (=ITA chassis) | [41] | |
U. maydis MB215 ∆cyp3 ∆MEL ∆UA ∆dgat ∆Pria1::Petef ∆fuz7 | this study | |
U. maydis MB215 ∆cyp3 ∆MEL ∆UA ∆dgat ∆Pria1::Petef ∆fuz7 PetefmttA_K3 | cbxR | this study |
U. maydis MB215 ∆cyp3 ∆MEL ∆UA ∆dgat ∆Pria1::Petef ∆fuz7 PetefmttA_K8 | cbxR | this study |
U. maydis MB215 ∆cyp3 ∆MEL ∆UA ∆dgat ∆Pria1::Petef ∆fuz7 PetefmttA_K9 | cbxR | this study |
U. maydis MB215 ∆cyp3 ∆MEL ∆UA ∆dgat ∆Pria1::Petef ∆fuz7 PetefmttA_K10 | cbxR | this study |
U. maydis MB215 ∆cyp3 ∆MEL ∆UA ∆dgat ∆Pria1::Petef ∆fuz7 PetefmttA_K14 (=K14 strain) | cbxR | this study |
Plasmid | Description | Reference |
---|---|---|
pJET1.2/blunt | Ori ColE1; AmpR | Thermo Scientific, Germany |
pFLPexpC | Pcrg1 promoter; synthetic FLP recombinase gene; CbxR; ARS; AmpR | Prof. M. Feldbrügge, Heinrich-Heine University Düsseldorf, Germany |
pUMa1523 | FRTm1-HygR-FRTm1 cassette; GentR | Dr. K. Schipper, Heinrich-Heine University Düsseldorf, Germany |
pJET1.2-fuz7 5′-UTR flank -FRTm1-HygR-FRTm1-fuz7 3′-UTR flank | pJET1.2 with 5′- and 3′-UTR flank of UMAG_01514 as deletion construct; HygR; FRT m1 recombination sites | this study |
Petef -Cbx-AT_mttA | constitutive Petef promoter, dicodon-optimized version of A. terreus ATEG_09970 (mttA), cbxR, ampR | [48] |
Conditions. | Symbol | Strain Modification | ITA Titermax (g L−1) | qP a (g L−1 h−1) | qP,max b (g L−1 h−1) | yP/S c (gITA gglu−1) |
---|---|---|---|---|---|---|
100 mM MES, 50 g L−1 glucose | ▲ | control | 19.4 ± 0.3 | 0.25 ± 0.01 | 0.35 ± 0.02 | 0.36 ± 0.02 |
● | ∆fuz7 | 24.4 ± 0.5 | 0.28 ± 0.01 | 0.44 ± 0.03 | 0.45 ± 0.01 | |
■ | PetefmttA_K3 | 23.5 ± 0.6 | 0.20 ± 0.00 | 0.46 ± 0.02 | 0.53 ± 0.01 | |
■ | PetefmttA_K8 | 29.1 ± 0.1 | 0.35 ± 0.01 | 0.49 ± 0.03 | 0.54 ± 0.01 | |
■ | PetefmttA_K9 | 28.9 ± 0.3 | 0.24 ± 0.00 | 0.44 ± 0.01 | 0.57 ± 0.01 | |
■ | PetefmttA_K10 | 32.3 ± 0.8 | 0.37 ± 0.00 | 0.54 ± 0.01 | 0.60 ± 0.02 | |
■ | PetefmttA_K14 | 29.9 ± 0.7 | 0.25 ± 0.00 | 0.44 ± 0.01 | 0.64 ± 0.03 | |
66 g L−1 CaCO3, 100 g L−1 glucose | ○ | ∆fuz7 | 48.8 ± 1.3 | 0.42 ± 0.01 | 0.70 ± 0.07 | 0.47 ± 0.01 |
□ | PetefmttA_K3 | 33.8 ± 0.5 | 0.29 ± 0.00 | 0.43 ± 0.06 | 0.58 ± 0.04 | |
□ | PetefmttA_K8 | 56.5 ± 1.7 | 0.48 ± 0.01 | 0.74 ± 0.09 | 0.51 ± 0.02 | |
□ | PetefmttA_K9 | 48.1 ± 2.9 | 0.41 ± 0.02 | 0.52 ± 0.02 | 0.56 ± 0.03 | |
□ | PetefmttA_K10 | 49.0 ± 3.8 | 0.42 ± 0.03 | 0.64 ± 0.07 | 0.44 ± 0.03 | |
□ | PetefmttA_K14 | 54.4 ± 0.2 | 0.46 ± 0.00 | 0.82 ± 0.01 | 0.57 ± 0.00 |
U. maydis Strain | Ct Value UMAG_ 02595 | Ct Value UMAG_ 03726 | Ct Value mttA | Ratio mttA to UMAG_ 02595 | Ratio mttA to UMAG_ 03726 | Rounded Mean |
---|---|---|---|---|---|---|
wildtype | 27.6 ± 0.10 | 27.9 ± 0.29 | 35.9 ± 1.20 | 0.0 | 0.0 | 0 |
∆UMAG_05079::PetefmttA | 25.7 ± 0.14 | 25.8 ± 0.24 | 25.7 ± 0.32 | 1.0 | 1.0 | 1 |
PetefmttA_K3 | 28.3 ± 0.12 | 28.4 ± 0.31 | 26.7 ± 0.36 | 3.2 | 3.1 | 3 |
PetefmttA_K8 | 27.8 ± 0.10 | 27.9 ± 0.11 | 28.5 ± 0.21 | 0.7 | 0.6 | 1 |
PetefmttA_K9 | 28.2 ± 0.27 | 28.5 ± 0.16 | 26.4 ± 0.18 | 3.7 | 3.9 | 4 |
PetefmttA_K10 | 26.8 ± 0.17 | 26.6 ± 0.35 | 26.6 ± 0.10 | 1.2 | 0.9 | 1 |
PetefmttA_K14 | 26.6 ± 0.03 | 27.0 ± 0.13 | 25.2 ± 0.13 | 2.8 | 3.3 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, J.; Hosseinpour Tehrani, H.; Ernst, P.; Blank, L.M.; Wierckx, N. An Optimized Ustilago maydis for Itaconic Acid Production at Maximal Theoretical Yield. J. Fungi 2021, 7, 20. https://doi.org/10.3390/jof7010020
Becker J, Hosseinpour Tehrani H, Ernst P, Blank LM, Wierckx N. An Optimized Ustilago maydis for Itaconic Acid Production at Maximal Theoretical Yield. Journal of Fungi. 2021; 7(1):20. https://doi.org/10.3390/jof7010020
Chicago/Turabian StyleBecker, Johanna, Hamed Hosseinpour Tehrani, Philipp Ernst, Lars Mathias Blank, and Nick Wierckx. 2021. "An Optimized Ustilago maydis for Itaconic Acid Production at Maximal Theoretical Yield" Journal of Fungi 7, no. 1: 20. https://doi.org/10.3390/jof7010020
APA StyleBecker, J., Hosseinpour Tehrani, H., Ernst, P., Blank, L. M., & Wierckx, N. (2021). An Optimized Ustilago maydis for Itaconic Acid Production at Maximal Theoretical Yield. Journal of Fungi, 7(1), 20. https://doi.org/10.3390/jof7010020