Bacterial Endophyte Community Dynamics in Apple (Malus domestica Borkh.) Germplasm and Their Evaluation for Scab Management Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Area
2.2. Sampling Methodology
2.3. Pathogenicity on Detached Leaves
2.4. Isolation, Morphological Characterization, and Preservation of Bacterial Endophytes
2.5. V. inaequalis Inhibition upon Co-Cultivation with Bacterial Endophytes
2.6. Diversity Quantification and Molecular Characterization with 16S rRNA and ARDRA Analysis
2.7. Plant Growth Promoting Activities
2.7.1. In Vitro 1-Aminocyclopropane-1-carboxylic Acid (ACC) Deaminase Activity of Bacterial Endophytes
2.7.2. Detection of acdS (ACC Deaminase Gene)
2.7.3. Biological Nitrogen Fixation Assay
2.7.4. Phosphate Solubilization
2.7.5. Indole-3-acetic Acid (IAA) Production
2.7.6. Production of Ammonia and Hydrocyanic Acid
2.7.7. Siderophore Estimation Using the Chrome-azurol-S (CAS) Liquid Assay Method
2.7.8. Formulation Development
2.8. In Vivo Studies
Effect of Isolated Cultures on the Disease Incidence and Severity on Leaves under Pot House Conditions
2.9. Biochemical Alterations Post Endophyte Inoculation
2.10. Data Analysis
3. Results
3.1. Identification and Diversity of Isolated Endophytic Microflora
3.2. Population Dynamics among the Collected Samples
3.3. Antagonist Activity against V. inaequalis
3.4. Assay for In Vitro Plant Growth Promotion of Indole-3-acetic Acid Production
3.5. ACC Deaminase Production
3.6. Biological Nitrogen Fixation
3.7. Phosphate Solubilization
3.8. Qualitative Estimation of Siderophore Production, Ammonia Secretion, and Hydrogen Cyanide Production
3.9. Effect of Isolated Cultures on the Disease Incidence and Severity on Leaves under Pot House Conditions
3.10. Biochemical Alterations Post Endophyte Inoculation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanke, M.-V.; Flachowsky, H.; Peil, A.; Emeriewen, O.F. Malus × Domestica Apple. In Biotechnology of Fruit and Nut Crops; CABI: Wallingford, UK, 2020; Volume 19.3, p. 440. [Google Scholar]
- Shah, I.A.; Songara, M. Production and Marketing Problems of Apple Fruit Growers in Jammu and Kashmir: A Critical Study. MANTHAN J. Commer. Manag. 2019, 6, 57–69. [Google Scholar] [CrossRef]
- Mansoor, S.; Ahmed, N.; Sharma, V.; Jan, S.; Nabi, S.U.; Mir, J.I.; Mir, M.A.; Masoodi, K.Z. Elucidating genetic variability and population structure in Venturia inaequalis associated with apple scab disease using SSR markers. PLoS ONE 2019, 14, e0224300. [Google Scholar]
- Beigh, M.A.; Peer, Q.J.A.; Sibat, F.; Mehraj, S. Resource management for apple scab and sanjose scale control of apple in Kashmir Valley of J&K State. J. Appl. Nat. Sci. 2015, 7, 447–451. [Google Scholar]
- Shafi, S.M.; Sheikh, M.A.; Nabi, S.U.; Mir, M.A.; Ahmad, N.; Mir, J.I.; Raja, W.H.; Rasool, R.; Masoodi, K.Z. An overview of apple scab, its cause and management strategies. EC Microbiol. 2019, 15, 1–4. [Google Scholar]
- Chatzidimopoulos, M.; Lioliopoulou, F.; Sotiropoulos, T.; Vellios, E. Efficient control of apple scab with targeted spray applications. Agronomy 2020, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Mansoor, S.; Sharma, V.; Mir, M.A.; Mir, J.I.; Nabi, S.; Ahmed, N.; Alkahtani, J.; Alwahibi, M.S.; Masoodi, K.Z. Quantification of polyphenolic compounds and relative gene expression studies of phenylpropanoid pathway in apple (Malus domestica Borkh) in response to Venturia inaequalis infection. Saudi J. Biol. Sci. 2020, 27, 3397–3404. [Google Scholar] [CrossRef]
- Cordero-Limon, L.; Shaw, M.W.; Passey, T.A.; Robinson, J.D.; Xu, X. Cross-resistance between myclobutanil and tebuconazole and the genetic basis of tebuconazole resistance in Venturia inaequalis. Pest Manag. Sci. 2021, 77, 844–850. [Google Scholar] [CrossRef]
- Lindsey, A.P.J.; Murugan, S.; Renitta, R.E. Microbial disease management in agriculture: Current status and future prospects. Biocatal. Agric. Biotechnol. 2020, 23, 101468. [Google Scholar] [CrossRef]
- Adeniyi, D.O.; Kunwar, D.; Dongo, L.N.; Animasaun, D.A.; Aravind, T. New-Generation Fungicides for Sustainable Production and Disease Suppression. In Emerging Trends in Plant Pathology; Springer: Singapore, 2021; pp. 249–256. [Google Scholar]
- Banerjee, R.; Sheoran, S.; Kumar, S.; Sanodiya, R.; Dhanya, V.G.; Samota, M.K. Participatory Rural Appraisal Techniques for Problem Identification and Formulation of Village Agricultural Development Plan of Chosla Village. Asian J. Agric. Ext. Econ. Sociol. 2020, 38, 80–99. [Google Scholar] [CrossRef]
- Papp, D.; Gao, L.; Thapa, R.; Olmstead, D.; Khan, A. Field apple scab susceptibility of a diverse Malus germplasm collection identifies potential sources of resistance for apple breeding. CABI Agric. Biosci. 2020, 1, 16. [Google Scholar] [CrossRef]
- Guerin, F.; Le Cam, B. Breakdown of the scab resistance gene Vf in apple leads to a founder effect in populations of the fungal pathogen Venturia inaequalis. Phytopathology 2004, 94, 364–369. [Google Scholar] [CrossRef] [Green Version]
- Köhl, J.; Scheer, C.; Holb, I.J.; Masny, S.; Molhoek, W.M.L. Toward an integrated use of biological control by Cladosporium cladosporioides H39 in apple scab (Venturia inaequalis) management. Plant Dis. 2015, 99, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Fiss, M.; Kucheryava, N.; Schönherr, J.; Kollar, A.; Arnold, G.; Auling, G. Isolation and characterization of epiphytic fungi from the phyllosphere of apple as potential biocontrol agents against apple scab (Venturia inaequalis). Z. Pflanzenkrankh. Pflanzenschutz 2000, 107, 1–11. [Google Scholar]
- MacHardy, W.E. Apple Scab: Biology, Epidemiology, and Management; APS Press: St. Paul, MN, USA, 1996. [Google Scholar]
- Mishra, S.; Bhattacharjee, A.; Sharma, S. An Ecological Insight into the Multifaceted World of Plant-Endophyte Association. Crit. Rev. Plant Sci. 2021, 42, 127–146. [Google Scholar]
- Kumar, A.; Singh, V.K.; Tripathi, V.; Singh, P.P.; Singh, A.K. Plant growth-promoting rhizobacteria (PGPR): Perspective in agriculture under biotic and abiotic stress. In Crop Improvement through Microbial Biotechnology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 333–342. [Google Scholar]
- Sutton, T.B.; Aldwinckle, H.S.; Agnello, A.M.; Walgenbach, J.F. Compendium of Apple and Pear Diseases and Pests; American Phytopath Society: St. Paul, MN, USA, 2014. [Google Scholar]
- Coombs, J.T.; Franco, C.M. Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol. 2003, 69, 5603–5608. [Google Scholar] [CrossRef] [Green Version]
- Lahlali, R.; Bajii, M.; Jijakli, M. Isolation and evaluation of bacteria and fungi as biological control agents against Rhizoctonia solani. Commun. Agric. Appl. Biol. Sci. 2007, 72, 973–982. [Google Scholar]
- Kucheryava, N.; Fiss, M.; Auling, G.; Kroppenstedt, R.M. Isolation and characterization of epiphytic bacteria from the phyllosphere of apple, antagonistic in vitro to Venturia inaequalis, the causal agent of apple scab. Syst. Appl. Microbiol. 1999, 22, 472–478. [Google Scholar] [CrossRef]
- Barba, M.; Hadidi, A. An overview of plant pathology and application of next-generation sequencing technologies. CAB Rev. 2015, 10, 1–21. [Google Scholar] [CrossRef]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef] [Green Version]
- Hanrahan, K.; O’Neill, A.; Prencipe, M.; Bugler, J.; Murphy, L.; Fabre, A.; Puhr, M.; Culig, Z.; Murphy, K.; Watson, R.W. The role of epithelial–mesenchymal transition drivers ZEB1 and ZEB2 in mediating docetaxel-resistant prostate cancer. Mol. Oncol. 2017, 11, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Penrose, D.M.; Glick, B.R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 2003, 118, 10–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuklinsky-Sobral, J.; Araújo, W.L.; Mendes, R.; Geraldi, I.O.; Pizzirani-Kleiner, A.A.; Azevedo, J.L. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol. 2004, 6, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Pikovskaya, R. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 1948, 17, 362–370. [Google Scholar]
- Premono, M.E.; Moawad, A.; Vlek, P. Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indones. J. Crop Sci. 1996, 1113–1123. [Google Scholar]
- Narula, N.; Deubel, A.; Gans, W.; Behl, R.K.; Merbach, W.P. Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant Soil Environ. 2006, 52, 119. [Google Scholar] [CrossRef] [Green Version]
- Demutskaya, L.; Kalinichenko, I. Photometric determination of ammonium nitrogen with the Nessler reagent in drinking water after its chlorination. J. Water Chem. Technol. 2010, 32, 90–94. [Google Scholar] [CrossRef]
- Schippers, B. Biological control of pathogens with rhizobacteria. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1988, 318, 283–293. [Google Scholar]
- Holt, J.G. The Shorter Bergey’s Manual of Determinative Bacteriology, 9th ed.; Williams & Wilkins: Baltimore, MD, USA, 1994. [Google Scholar]
- Holb, I.; Heijne, B.; Jeger, M. Overwintering of conidia of Venturia inaequalis and the contribution to early epidemics of apple scab. Plant Dis. 2004, 88, 751–757. [Google Scholar] [CrossRef]
- Liu, X.; Li, R.; Dai, Y.; Chen, X.; Wang, X. Genome-wide identification and expression analysis of the B-box gene family in the Apple (Malus domestica Borkh.) genome. Mol. Genet. Genom. 2018, 293, 303–315. [Google Scholar] [CrossRef]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Radic, S.; Pevalek-Kozlina, B. Differential esterase activity in leaves and roots of Centaurea ragusina L. as a consequence of salinity. Period. Biol. 2010, 112, 253–258. [Google Scholar]
- Besford, R.; Syred, A. Effect of phosphorus nutrition on the cellular distribution of acid phosphatase in the leaves of Lycopersicon esculentum L. Ann. Bot. 1979, 43, 431–435. [Google Scholar] [CrossRef]
- Kunst-Wilson, W.R.; Zajonc, R.B. Affective discrimination of stimuli that cannot be recognized. Science 1980, 207, 557–558. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ridgway, H.J.; Jones, E.E. Apple endophyte community is shaped by tissue type, cultivar and site and has members with biocontrol potential against Neonectria ditissima. J. Appl. Microbiol. 2020, 128, 1735–1753. [Google Scholar] [CrossRef]
- Christakis, C.A.; Geaskalogiannis, G.; Chatzaki, A.; Markakis, M.A.; Mermigka, G.; Sagia, A.; Rizzo, G.F.; Catara, V.; Lagkouvardos, T.; Studholme, D.J. Endophytic Bacterial Isolates from Halophytes Demonstrate Phytopathogen Biocontrol and Plant Growth Promotion Under High Salinity. Front. Microbiol. 2021, 12, 1001. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Calzada, T.; Qian, M.; Strid, Å.; Neugart, S.; Schreiner, M.; Torres-Pacheco, I.; Guevara-González, R.G. Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiol. Biochem. 2019, 134, 94–102. [Google Scholar] [CrossRef]
- Li, H.Y.; Wei, D.; Shen, M.; Zhou, Z. Endophytes and their role in phytoremediation. Fungal Divers. 2012, 54, 11–18. [Google Scholar] [CrossRef]
- Gómez-Lama Cabanás, C.; Schilirò, E.; Valverde-Corredor, A.; Mercado-Blanco, J. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front. Microbiol. 2014, 5, 427. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, J.; Li, Y.; Wen, J.; Wang, R. Bacterial endophytes from Lycoris radiata promote the accumulation of Amaryllidaceae alkaloids. Microbiol. Res. 2020, 239, 126501. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Yang, J.; Zhang, R.; Gao, J.; Zhao, X.; Zhao, J.; Zhao, D.; Zhang, X. Insights into endophytic bacterial community structures of seeds among various Oryza sativa L. rice genotypes. J. Plant Growth Regul. 2019, 38, 93–102. [Google Scholar] [CrossRef]
- Szymańska, S.; Płociniczak, T.; Piotrowska-Seget, Z.; Złoch, M.; Ruppel, S.; Hrynkiewicz, K. Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L. Microbiol. Res. 2016, 182, 68–79. [Google Scholar] [CrossRef]
- Arnold, A.E.; Lutzoni, F. Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 2007, 88, 541–549. [Google Scholar] [CrossRef]
- Garcia, K.; Zimmermann, S.D. The role of mycorrhizal associations in plant potassium nutrition. Front. Plant Sci. 2014, 5, 337. [Google Scholar] [CrossRef] [Green Version]
- Zinniel, D.K.; Lambrecht, P.; Harris, N.B.; Feng, Z.; Kuczmarski, D.; Higley, P.; Ishimaru, C.A.; Arunakumari, A.; Barletta, R.G.; Vidaver, A.K. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 2002, 68, 2198–2208. [Google Scholar] [CrossRef] [Green Version]
- Papik, J.; Folkmanova, M.; Polivkova-Majorova, M.; Suman, J.; Uhlik, O. The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity. Biotechnol. Adv. 2020, 44, 107614. [Google Scholar] [CrossRef]
- Trivedi, P.; Mattupalli, C.; Eversole, K.; Leach, J.E. Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytol. 2021, 230, 2129–2147. [Google Scholar] [CrossRef]
- Khan, M.A.; Asaf, S.; Khan, A.L.; Adhikari, A.; Jan, R.; Ali, S.; Imran, M.; Kim, K.M.; Lee, I.J. Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants. Plant Biol. 2020, 22, 850–862. [Google Scholar] [CrossRef]
- De Souza, J.T.; Silva, A.C.; de Jesus Santos, A.F.; Santos, P.O.; Alves, P.S.; Cruz-Magalhães, V.; Marbach, P.A.; Loguercio, L.L. Endophytic bacteria isolated from both healthy and diseased Agave sisalana plants are able to control the bole rot disease. Biol. Control 2021, 157, 104575. [Google Scholar] [CrossRef]
- Kaspar, F.; Neubauer, P.; Gimpel, M. Bioactive secondary metabolites from Bacillus subtilis: A comprehensive review. J. Nat. Prod. 2019, 82, 2038–2053. [Google Scholar] [CrossRef] [PubMed]
- Gaby, J.C.; Buckley, D.H. A comprehensive aligned nifH gene database: A multipurpose tool for studies of nitrogen-fixing bacteria. Database 2014, bau001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afzal, I.; Shinwari, Z.K.; Sikandar, S.; Shahzad, S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 2019, 221, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Xu, W.; Zhang, M.; Qiu, C.; Liu, J.; Wisniewski, M.; Ou, T.; Zhou, Z.; Xiang, Z. The impact of the endophytic bacterial community on mulberry tree growth in the Three Gorges Reservoir ecosystem, China. Environ. Microbiol. 2021, 23, 1858–1875. [Google Scholar] [CrossRef] [PubMed]
- Padder, S.A.; Dar, G.H.; Mohiddin, F.A.; Shah, M.D. Characterization and plant growth promoting aspects of a novel phosphate solubilizing brown sarson endophyte Pseudomonas fluorescens strain smppsap5 isolated from Northern Himalayas of India. J. Pure Appl. Microbiol. 2016, 10, 2003–2018. [Google Scholar]
- Biessy, A.; Novinscak, A.; Blom, J.; Léger, G.; Thomashow, L.S.; Cazorla, F.M.; Josic, D.; Filion, M. Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp. Environ. Microbiol. 2019, 21, 437–455. [Google Scholar]
- Rana, K.L.; Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Yadav, A.N. Bioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.). J. Appl. Biol. Biotechnol. 2021, 9, 41–50. [Google Scholar]
- Dubey, A.; Saiyam, D.; Kumar, A.; Hashem, A.; Allah, E.F.A.; Khan, M.L. Bacterial Root Endophytes: Characterization of Their Competence and Plant Growth Promotion in Soybean (Glycine max (L.) (Merr.) under Drought Stress. Int. J. Environ. Res. Public Health 2021, 18, 931. [Google Scholar] [CrossRef]
- Prasad, M.; Srinivasan, R.; Chaudhary, M.; Choudhary, M.; Jat, L.K. Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: Perspectives and challenges. In PGPR Amelioration in Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2019; pp. 129–157. [Google Scholar]
- Clifton, M.C.; Rupert, P.B.; Hoette, T.M.; Raymond, K.N.; Abergel, R.J.; Strong, R.K. Parsing the functional specificity of Siderocalin/Lipocalin 2/NGAL for siderophores and related small-molecule ligands. J. Struct. Biol. X 2019, 2, 100008. [Google Scholar] [CrossRef]
- Tilocca, B.; Cao, A.; Migheli, Q. Scent of a killer: Microbial volatilome and its role in the biological control of plant pathogens. Front. Microbiol. 2020, 11, 41. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Jain, L.; Jain, S.K.; Chaturvedi, S.; Kaushal, P. Bacterial endophytes of rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S. Afr. J. Bot. 2020, 134, 50–63. [Google Scholar] [CrossRef]
- Schneider, N.O.; Tassoulas, L.J.; Zeng, D.; Laseke, A.J.; Reiter, N.J.; Wackett, L.P.; Maurice, M.S. Solving the conundrum: Widespread proteins annotated for urea metabolism in bacteria are carboxyguanidine deiminases mediating nitrogen assimilation from guanidine. Biochemistry 2020, 59, 3258–3270. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.; Agarwal, T.; Kotamreddy, J.N.; Bhattacharya, R.; Mitra, A.; Maiti, T.K.; Maiti, M.K. Impact of seed-transmitted endophytic bacteria on intra-and inter-cultivar plant growth promotion modulated by certain sets of metabolites in rice crop. Microbiol. Res. 2020, 241, 126582. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Bardhan, S.; Jose, S.; Jenkins, M.A.; Webster, C.R.; Udawatta, R.P.; Stehn, S.E. Microbial community diversity and composition across a gradient of soil acidity in spruce–fir forests of the southern Appalachian Mountains. Appl. Soil Ecol. 2012, 61, 60–68. [Google Scholar] [CrossRef]
- Jimenez-Sanchez, C.; Hanlon, R.; Aho, K.A.; Powers, C.; Morris, C.E.; Schmale, D.G. Diversity and ice nucleation activity of microorganisms collected with a small unmanned aircraft system (sUAS) in France and the United States. Front. Microbiol. 2018, 9, 1667. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Ren, J.; Li, P.; Feng, S.; Dong, P.; Ren, M. Potential of microbial endophytes to enhance the resistance to postharvest diseases of fruit and vegetables. J. Sci. Food Agric. 2021, 101, 1744–1757. [Google Scholar] [CrossRef]
- Delgado-Ramírez, C.S.; Hernández-Martínez, R.; Sepúlveda, E. Rhizobacteria Associated with a Native Solanaceae Promote Plant Growth and Decrease the Effects of Fusariumoxysporum in Tomato. Agronomy 2021, 11, 579. [Google Scholar] [CrossRef]
- Rajkumari, J.; Pandey, P. Genomic Insights and Comparative Genomics of Bacillus Species Having Diverse Mechanisms of Biocontrol against Fungal Phytopathogens. In Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol; Springer: Cham, Switzerland, 2019; pp. 217–237. [Google Scholar]
- Du, W.; Yao, Z.; Li, J.; Sun, C.; Xia, J.; Wang, B.; Shi, D.; Ren, L. Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the Yellow River Delta. PLoS ONE 2020, 15, e0229589. [Google Scholar] [CrossRef]
- Meena, M.; Swapnil, P.; Divyanshu, K.; Kumar, S.; Harish; Tripathi, Y.N.; Zehra, A.; Marwal, A.; Upadhyay, R.S. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J. Basic Microbiol. 2020, 60, 828–861. [Google Scholar]
- Dinesh, R.; Srinivasan, V.; Sheeja, T.E.; Anandaraj, M.; Srambikkal, H. Endophytic actinobacteria: Diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters. Crit. Rev. Microbiol. 2017, 43, 546–566. [Google Scholar] [CrossRef]
Strain | PGI (%) | IAA (µg/mL) | Phosphate Solubilization | ACC Deaminase (µM mg−1 h−1) | |
---|---|---|---|---|---|
QS (µg/mL) | S. I. | ||||
DST scab | 81.95 ± 0.03 (F) | 146.05 ± 0.53 (a) | 0.00 | 0.00 | 0.00 |
DST scab2 | 54.75 ± 0.12 (X) | 8.94 ± 0.10 (y) | 117.24 ± 0.05 (k) | 1.67 ± 0.07 (e) | 0.00 |
DST scab3 | 45.6 ± 0.01 (A6) | 93.13 ± 0.18 (g) | 0.00 | 0.00 | 0.00 |
DST scab4 | 82.55 ± 0.07 (E) | 0.00 | 143.50 ± 0.02 (i) | 2.30 ± 0.22 (b) | 19.31 ± 0.72 (b) |
DST scab5 | 67.4 ± 0.18 (O) | 11.75 ± 0.23 (w) | 0.00 | 0.00 | 0.00 |
DST scab6 | 45.20 ± 0.09 (A6) | 0.00 | 0.00 | 0.00 | 8.07 ± 0.12 (g) |
DST scab7 | 78.60 ± 0.61 (H) | 0.00 | 0.00 | 0.00 | 0.00 |
DST scab8 | 66.2 ± 0.83 (P) | 28.92 ± 0.10 (t) | 0.00 | 0.00 | 0.00 |
DST Scab9 | 67.45 ± 0.18 (O) | 31.76 ± 0.83 (r) | 0.00 | 0.00 | 13.31 ± 0.136 (e) |
DST10 | 50.10 ± 0.08 (A2) | 0.00 | 0.00 | 0.00 | 0.00 |
DST11 | 24.35 ± 0.45 (h) | 0.00 | 125.08 ± 0.58 (j) | 2.20 ± 0.09 (b) | 0.00 |
DST12 | 65.25 ± 0.05 (Q) | 0.00 | 0.00 | 0.00 | 0.00 |
DST13 | 63.05 ± 0.19 (R) | 49.03 ± 0.63 (n) | 0.00 | 0.00 | 0.00 |
DST14 | 77.55 ± 0.92 (I) | 0.00 | 218.04 ± 0.06 (b) | 2.04. ± 0.53 (c) | 0.00 |
DST15 | 85.7 ± 0.28 (C) | 15.82 ± 0.13 (v) | 0.00 | 0.00 | 14.42 ± 0.06 (d) |
DST16 | 58.01 ± 0.13 (U) | 71.15 ± 0.59 (l) | 0.00 | 0.00 | 0.00 |
DST17 | 66.07 ± 0.01 (P) | 0.00 | 0.00 | 0.00 | 0.00 |
DST18 | 58.40 ± 0.07 (U) | 1.16 ± 0.23 (a1) | 156.43 ± 0.23 (g) | 2.18 ± 0.03 (b) | 0.00 |
DST19 | 32.10 ± 0.017 (f) | 44.18 ± 0.39 (p) | 0.00 | 0.00 | 0.00 |
DST20 | 45.35 ± 0.10 (A6) | 0.00 | 0.00 | 0.00 | 0.00 |
DST21 | 54.75 ± 0.01 (y) | 29.98 ± 0.17 (s) | 188.82 ± 0.14 (e) | 2.52 ± 0.09 (a) | 0.00 |
DST22 | 48.15 ± 0.79 (A3) | 41.29 ± 0.05 (q) | 225.51 ± 0.01 (a) | 1.93 ± 0.15 (d) | 0.00 |
DST23 | 15.01 ± 0.04 (k) | 0.00 | 0.00 | 0.00 | 0.00 |
DST24 | 71.85 ± 0.13 (M) | 0.00 | 0.00 | 0.00 | 6.41 ± 1.02 (h) |
DST25 | 23.80 ± 0.43 (i) | 0.00 | 0.00 | 0.00 | 0.00 |
DST26 | 38.04 ± 0.23 (b) | 77.52 ± 0.04 (j) | 191.04 ± 0.15 (d) | 2.15 ± 0.19 (b) | 0.00 |
DST27 | 52.01 ± 0.02 (A1) | 0.00 | 0.00 | 0.00 | 0.00 |
DST28 | 96.35 ± 0.03 (A) | 48.25 ± 0.19 (o) | 0.00 | 0.00 | 18.21 ± 0.00 (c) |
DST29 | 91.25 ± 0.11 (B) | 31.65 ± 0.83 (r) | 151.13 ± 0.09 (h) | 2.53 ± 0.01 (a) | 0.00 |
DST30 | 50.25 ± 0.40 (A2) | 0.00 | 0.00 | 0.00 | 0.00 |
DST31 | 13.05 ± 0.19 (l) | 101.29 ± 0.87 (f) | 0.00 | 0.00 | 0.00 |
DST32 | 75.19 ± 0.00 (K) | 87.05 ± 0.65 (h) | 162.54 ± 0.03 (f) | 2.52 ± 0.19 (a) | 0.00 |
DST33 | 83.05 ± 0.42 (D) | 0.00 | 0.00 | 0.00 | 0.00 |
DST34 | 54.25 ± 0.02 (X) | 71.96 ± 0.69 (k) | 0.00 | 0.00 | 0.00 |
DST35 | 43.75 ± 0.21(a) | 0.00 | 0.00 | 0.00 | 0.00 |
DST36 | 80.85 ± 0.49 (G) | 51.09 ± 0.12 (m) | 124.23 ± 0.09 (j) | 1.85 ± 0.07 (d) | 0.00 |
DST37 | 66.25 ± 0.00 (P) | 0.00 | 0.00 | 0.00 | 0.00 |
DST338 | 46.06 ± 0.36 (A5) | 81.65 ± 0.03 (i) | 0.00 | 0.00 | 0.00 |
DST39 | 77.15 ± 1.91 (I) | 0.00 | 0.00 | 0.00 | 0.00 |
DST40 | 68.08 ± 0.17 (N) | 0.00 | 0.00 | 0.00 | 0.00 |
DST41 | 67.34 ± 0.22 (O) | 123.07 ± 0.14 (b) | 0.00 | 0.00 | 0.00 |
DST42 | 47.75 ± 0.02 (A4) | 21.08 ± 0.00 (u) | 0.00 | 0.00 | 0.00 |
DST43 | 23.75 ± 0.09 (i) | 0.00 | 0.00 | 0.00 | 0.00 |
DST44 | 68.65 ± 0.14 (N) | 0.00 | 0.00 | 0.00 | |
DST45 | 52.75 ± 0.32 (Z) | 0.00 | 203.08 ± 0.02 (c) | 1.93 ± 0.06 (d) | 0.00 |
DST46 | 76.25 ± 1.11 (J) | 11.16 ± 0.27 (x) | 0.00 | 0.00 | 0.00 |
DST47 | 68.48 ± 0.06 (N) | 117.17 ± 1.30 (c) | 0.00 | 0.00 | 0.00 |
DST48 | 57.75 ± 0.88 (V) | 0.00 | 0.00 | 0.00 | 0.00 |
DST49 | 67.75 ± 0.02 (O) | 0.00 | 0.00 | 0.00 | 0.00 |
DST50 | 57.04 ± 0.11 (V) | 0.00 | 0.00 | 0.00 | 22.61 ± 0.72 (a) |
DST51 | 37.45 ± 0.09 (c) | 0.00 | 0.00 | 0.00 | 0.00 |
DST52 | 45.16 ± 0.52 (A6) | 2.25 ± 0.06 (z) | 0.00 | 0.00 | 0.00 |
DST53 | 55.75 ± 0.28 (W) | 0.00 | 0.00 | 0.00 | 0.00 |
DST54 | 45.25 ± 0.66 (A6) | 0.00 | 0.00 | 0.00 | 0.00 |
DST55 | 47.15 ± 0.06 (A4) | 110.05 ± 1.13 (e) | 0.00 | 0.00 | 0.00 |
DST56 | 67.25 ± 0.26 (O) | 1.19 ± 0.01 (a1) | 0.00 | 0.00 | 0.00 |
DST57 | 18.95 ± 0.07 (j) | 81.54 ± 0.73 (i) | 0.00 | 0.00 | 0.00 |
DST58 | 36.13 ± 0.08 (d) | 0.00 | 0.00 | 0.00 | 0.00 |
DST59 | 11.25 ± 0.08 (l) | 0.00 | 0.00 | 0.00 | 0.00 |
DST60 | 73.5 ± 0.09 (L) | 0.00 | 0.00 | 0.00 | 11.91 ± 0.36 (f) |
DST61 | 59.17 ± 0.02 (T) | 71.59 ± 1.12 (kl) | 102.16 ± 0.05 (m) | 2.19 ± 0.07 (b) | 0.00 |
DST62 | 46.15 ± 0.05 (A5) | 0.00 | 0.00 | 0.00 | 0.00 |
DST63 | 18.25 ± 0.16 (j) | 0.00 | 0.00 | 0.00 | 0.00 |
DST64 | 58.05 ± 0.37 (U) | 0.00 | 115.65 ± 0.01 (l) | 1.34 ± 0.18 (f) | 0.00 |
DST65 | 38.25 ± 0.14 (b) | 0.00 | 0.00 | 0.00 | 0.00 |
DST66 | 30.25 ± 0.33 (g) | 0.00 | 0.00 | 0.00 | 0.00 |
ST67 | 62.22 ± 0.18 (S) | 115.75 ± 0.93 (d) | 0.00 | 0.00 | 0.00 |
DST68 | 53.75 ± 0.02 (Y) | 0.00 | 0.00 | 0.00 | 0.00 |
DST69 | 33.75 ± 0.16 (e) | 8.75 ± 0.05 (y) | 0.00 | 0.00 | 0.00 |
DST70 | 63.19 ± 0.07 (R) | 0.00 | 0.00 | 0.00 | 7.94 ± 0.26 (g) |
DST71 | 47.25 ± 0.81 (A4) | 0.00 | 0.00 | 0.00 | 0.00 |
Bacterial Strains | CL | N | AN | CN | S |
---|---|---|---|---|---|
NWHA-18, NWHA-65 | A | 0 | 0 | 1 | 0 |
NWHA-4, NWHA-24, NWHA-39 | B | 0 | 0 | 1 | 1 |
NWHA-7, NWHA-1 | C | 1 | 1 | 1 | 1 |
NWHA-28, NWHA-29 | D | 1 | 0 | 1 | 1 |
NWHA-8, NWHA-2, NWHA-3, NWHA-11, NWHA-12, NWHA-13, NWHA-15, NWHA-17, NWHA-19, NWHA-20, NWHA-25, NWHA-37, NWHA-38, NWHA-40, NWHA-41, NWHA-43, NWHA-44, NWHA-45, NWHA-50, NWHA-51, NWHA-52, NWHA-54, NWHA-55, NWHA-56, NWHA-57, NWHA-58, NWHA-59, NWHA-61, NWHA-62, NWHA-63, NWHA-66, NWHA-68, NWHA-69 | E | 0 | 0 | 0 | 0 |
NWHA-32, NWHA-42 | F | 1 | 1 | 0 | 0 |
NWHA-14, NWHA-34 | G | 0 | 1 | 1 | 0 |
NWHA-30, NWHA-5, NWHA-22, NWHA-23, NWHA-27, NWHA-35, NWHA-46, NWHA-48, NWHA-49, NWHA-67 | H | 0 | 1 | 0 | 0 |
NWHA-10, NWHA-33, NWHA-36 | I | 1 | 0 | 0 | 1 |
NWHA-9, NWHA-21, NWHA-26, NWHA-31, NWHA-64, NWHA-70, | J | 1 | 0 | 0 | 0 |
NWHA-53, NWHA-71, | K | 0 | 0 | 0 | 1 |
NWHA-6, NWHA-16, NWHA-47, NWHA-60 | L | 0 | 1 | 0 | 1 |
Attribute | a | b | c | d | e | f | g | h | i | j |
---|---|---|---|---|---|---|---|---|---|---|
1. | - | - | - | - | - | - | - | - | - | - |
2. | + | + | + | - | - | + | - | - | - | |
3. | Rods | Rods | Rods | Rods | Rods | Rods | Rods | Rods | Rods | Rods |
4. | C | C | C | - | - | - | - | - | - | T |
5. | - | - | - | - | + | - | + | + | + | - |
6. | - | - | - | - | + | - | - | - | + | - |
7. | - | - | - | - | + | - | + | - | - | - |
8. | + | + | + | + | - | + | + | - | - | + |
9. | + | + | + | + | + | - | + | - | + | |
10. | + | + | + | + | + | + | + | + | + | + |
11. | + | + | + | - | - | - | - | - | - | + |
12. | + | + | + | + | + | - | + | + | + | - |
13. | - | + | + | - | - | + | - | - | - | - |
14. | + | - | - | - | + | + | + | - | + | + |
15. | + | - | - | - | + | + | + | + | + | + |
16. | + | + | + | + | + | + | + | + | + | + |
17. | - | + | + | - | + | + | + | + | + | - |
18. | - | + | + | - | + | + | + | + | + | + |
19. | + | + | + | - | - | + | - | - | - | + |
20. | + | - | - | - | - | + | - | - | - | + |
21. | + | - | - | - | + | + | + | - | + | + |
22. | + | + | + | - | - | + | - | - | - | - |
23. | - | - | - | - | + | - | + | - | + | - |
24. | - | + | - | - | - | - | - | - | - | - |
25. | + | + | + | + | + | + | + | + | + | + |
26. | - | + | - | - | - | + | - | - | - | + |
27. | - | - | + | - | + | - | + | - | + | + |
28. | - | - | - | + | + | - | + | + | + | - |
29. | + | + | - | - | - | + | - | - | - | - |
30. | + | - | + | + | - | + | - | + | - | + |
31. | - | - | - | - | - | + | - | - | - | - |
Strain | Distance Tree Results | Graphics | |||
---|---|---|---|---|---|
Similarity (%) | E Value | Acc. Len | Max. Score | Total Score | |
DST scab | 99.61 | 0.00 | 1533 | 2832 | 2832 |
DST scab4 | 100.0 | 0.00 | 1553 | 2868 | 2868 |
DST scab7 | 99.00 | 0.00 | 1560 | 2881 | 2881 |
DST scab14 | 99.14 | 0.00 | 1516 | 2819 | 2819 |
DST scab15 | 99.13 | 0.00 | 1505 | 2780 | 2780 |
DST scab28 | 99.15 | 0.00 | 1537 | 2839 | 2839 |
DST scab29 | 99.52 | 0.00 | 1462 | 2693 | 2693 |
DST scab33 | 99.87 | 0.00 | 1522 | 2811 | 2811 |
DST scab36 | 99.87 | 0.00 | 1498 | 2767 | 2767 |
DST scab39 | 9.93 | 0.00 | 1449 | 2676 | 2676 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padder, S.A.; Mansoor, S.; Bhat, S.A.; Baba, T.R.; Rather, R.A.; Wani, S.M.; Popescu, S.M.; Sofi, S.; Aziz, M.A.; Hefft, D.I.; et al. Bacterial Endophyte Community Dynamics in Apple (Malus domestica Borkh.) Germplasm and Their Evaluation for Scab Management Strategies. J. Fungi 2021, 7, 923. https://doi.org/10.3390/jof7110923
Padder SA, Mansoor S, Bhat SA, Baba TR, Rather RA, Wani SM, Popescu SM, Sofi S, Aziz MA, Hefft DI, et al. Bacterial Endophyte Community Dynamics in Apple (Malus domestica Borkh.) Germplasm and Their Evaluation for Scab Management Strategies. Journal of Fungi. 2021; 7(11):923. https://doi.org/10.3390/jof7110923
Chicago/Turabian StylePadder, Shahid A., Sheikh Mansoor, Sajad A. Bhat, Tawseef Rehman Baba, Rauoof Ahmad Rather, Saima M. Wani, Simona Mariana Popescu, Shakeela Sofi, Malik Asif Aziz, Daniel Ingo Hefft, and et al. 2021. "Bacterial Endophyte Community Dynamics in Apple (Malus domestica Borkh.) Germplasm and Their Evaluation for Scab Management Strategies" Journal of Fungi 7, no. 11: 923. https://doi.org/10.3390/jof7110923
APA StylePadder, S. A., Mansoor, S., Bhat, S. A., Baba, T. R., Rather, R. A., Wani, S. M., Popescu, S. M., Sofi, S., Aziz, M. A., Hefft, D. I., Alzahrani, O. M., Noureldeen, A., & Darwish, H. (2021). Bacterial Endophyte Community Dynamics in Apple (Malus domestica Borkh.) Germplasm and Their Evaluation for Scab Management Strategies. Journal of Fungi, 7(11), 923. https://doi.org/10.3390/jof7110923