An Updated Global Species Diversity and Phylogeny in the Genus Wickerhamomyces with Addition of Two New Species from Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strain
2.2. Yeast Identification
2.2.1. Morphological Study
2.2.2. Biochemical and Physiological Studies
2.2.3. Molecular Study
3. Results
3.1. Phylogenetic Results
3.2. Taxonomic Description of New Species
3.2.1. Wickerhamomyces lannaensis S. Nundaeng, J. Kumla, N. Suwannarach and S. Lumyong, sp. nov. (Figure 4)
3.2.2. Wickerhamomyces nanensis J. Kumla, S. Nundaeng, N. Suwannarach and S. Lumyong, sp. nov. (Figure 5)
3.3. New Combination
3.4. Key to Species of Wickerhamomyces
- 1.
- a. Melibiose is assimilated………………...……………………..…..…..…………………2
- b. Melibiose is not assimilated………..……………………………..…..….…….….….…7
- 2.
- (1) a. Raffinose is assimilated………….…….…..…….….….….….……..………………3
- b. Raffinose is not assimilated………………….…………………...….W. kurtzmanii
- 3.
- (2) a. Citrate is assimilated………………………….……….………………….…………4
- b. Citrate is not assimilated…………………….…….……………......….W. orientalis
- 4.
- (3) a. Ribitol is assimilated………………...………….……………………………………5
- b. Ribitol is not assimilated………………...………………………..…W. spegazzinii
- 5.
- (4) a. Growth at 37 °C……………………………………………….….…….W. edaphicus
- b. Growth is absent at 37 °C…………………………...…………..…….……………6
- 6.
- (5) a. Ascospores observed on 5% MEA……………………………....…W. sydowiorum
- b. Ascospores not observed on 5% MEA…………….………..…….…W. arborarius
- 7.
- (1) a. Raffinose is assimilated…………………………….….……………………………8
- b. Raffinose is not assimilated………………………………..………..…………….19
- 8.
- (7) a. Nitrate is assimilated………………….……………………….………...………….9
- b. Nitrate is not assimilated…………………………………………………….……15
- 9.
- (8) a. L-Rhamnose is assimilated……………………………………………….……….10
- b. L-Rhamnose is not assimilated………………………….………………………..12
- 10.
- (9) a. L-Arabinose is assimilated…………………………..………………...….W. ciferrii
- b. L-Arabinose is not assimilated…………………………..………………….……11
- 11.
- (10) a. Sucrose is assimilated……………………………...……….W. psychrolipolyticus
- b. Sucrose is not assimilated…………………………….……...…...W. xylosivorus
- 12.
- (9) a. Growth in vitamin-free medium…………………………………………………13
- b. Growth is absent in vitamin-free medium……….…..………..W. subpelliculosus
- 13.
- (12) a. Soluble starch is assimilated…………………...……………………………….14
- b. Soluble starch is not assimilated………………………….………....W. lynferdii
- 14.
- (13) a. D-Arabinose is assimilated……………..……..….……………W. myanmarensis
- b. D-Arabinose is not assimilated…………………..…………………W. anomalus
- 15.
- (8) a. Ribitol is assimilated…………………………………………………………….16
- b. Ribitol is not assimilated…………………………………….…………….……17
- 16.
- (15) a. Galactose is assimilated……………………….....…………….W. strasburgensis
- b. Galactose is not assimilated……………………..………..………W. rabaulensis
- 17.
- (15) a. Growth in vitamin-free medium……….………....…………..…W. patagonicus
- b. Growth is absent in vitamin-free medium…………………….……………...18
- 18.
- (17) a. Citrate is assimilated……………………….…………...….….………W. onychis
- b. Citrate is not assimilated………………………..…………..………W. siamensis
- 19.
- (7) a. 2-Keto-D-gluconate is assimilated……………………………………….……….20
- b. 2-Keto-D-gluconate is not assimilated……………………………...……………21
- 20.
- (19) a. D-Glucitol is assimilated…………………………………….……….W. mucosus
- b. D-Glucitol is not assimilated……………………….……………….W. xylosicus
- 21.
- (19) a. D-Arabinose is assimilated………………………………..………………………22
- b. D-Arabinose is not assimilated…………………………..…………………….23
- 22.
- (21) a. Growth at 37 °C……….………………...………………………...…….W. sylviae
- b. Growth is absent at 37 °C……………….…………….………………….W. mori
- 23.
- (21) a. Galactose is assimilated……………………………………..…………...……..24
- b. Galactose is not assimilated………………...…………………....…………….27
- 24.
- (23) a. L-Arabinose is assimilated……………….……………………..…….W. silvicola
- b. L-Arabinose is not assimilated………………...…………………....…...…….25
- 25.
- (24) a. Sucrose is assimilated…………….………………….………….W. scolytoplatypi
- b. Sucrose is not assimilated…………………….………………..……….………26
- 26.
- (24) a. D-Mannitol is assimilated……………………..………….…….……W. nanensis
- b. D-Mannitol is not assimilated………………..….……….…....….W. chambardii
- 27.
- (23) a. L-Sorbose is assimilated………………….……...…..…………..……...W. pijperi
- b. L- Sorbose is not assimilated……………………….………….….……………28
- 28.
- (27) a. D-Xylose is assimilated……………………………………………...………….29
- b. D-Xylose is not assimilated……………….…………..….………….W. tratensis
- 29.
- (28) a. Sucrose is assimilated……………………………...……………………………30
- b. Sucrose is not assimilated……………………………...……………….………36
- 30.
- (29) a. Cellobiose is assimilated……………………………………..………………....31
- b. Cellobiose is not assimilated…………..…………………………….W. queroliae
- 31.
- (30) a. D-Glucitol is assimilated…………………………………………….………….32
- b. D-Glucitol is not assimilated…………………….…………….W. chaumierensis
- 32.
- (31) a. Growth at 37 °C………………………………….……………………………....33
- b. Growth is absent at 37 °C………………………………...…………….………34
- 33.
- (32) a. L-Arabinose is assimilated……………………….....………..………….W. bovis
- b. L-Arabinose is not assimilated……………..…………….……….W. canadensis
- 34.
- (32) a. Nitrate is assimilated……………………………………………...…………….35
- b. Nitrate is not assimilated…………………………..……...…...W. hampshirensis
- 35.
- (34) a. True hyphae are formed……………..……………………………….W. bisporus
- b. True hyphae are not formed…………………………………...…………W. alni
- 36.
- (29) a. Citrate is assimilated……………………………...……..………..W. menglaensis
- b. Citrate is not assimilated……………………………….………………………37
- 37.
- (36) a. Growth at 37 °C……………………..………..……..…..…………W. ochangensis
- b. Growth is absent at 37 °C………………..………...…..…….…….W. lannaensis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurtzman, C.P.; Robnett, C.J.; Basehoar-Powers, E. Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS. Yeast. Res. 2008, 8, 939–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtzman, C.P. Wickerhamomyces Kurtzman, Robnett & Basehoar-Powers. In The Yeasts; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 899–917. [Google Scholar]
- Yarrow, D. Methods for the isolation, maintenance and identification of yeasts. In The Yeasts; Kurtzman, C.P., Fell, J.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 77–100. [Google Scholar]
- Kobayashi, R.; Kanti, A.; Kawasaki, H. Three novel species of d-xylose-assimilating yeasts, Barnettozyma xylosiphila sp. nov., Barnettozyma xylosica sp. nov. and Wickerhamomyces xylosivorus f.a., sp. nov. Int. J. Syst. Evol. Microbiol. 2017, 67, 3971–3976. [Google Scholar] [CrossRef]
- Limtong, S.; Nitiyon, S.; Kaewwichian, R.; Jindamorakot, S.; Am-In, S.; Yongmanitchai, W. Wickerhamomyces xylosica sp. nov. and Candida phayaonensis sp. nov., two xylose-assimilating yeast species from soil. Int. J. Syst. Evol. Microbiol. 2012, 62, 2786–2792. [Google Scholar] [CrossRef]
- Zhou, Y.; Jia, B.S.; Han, P.J.; Wang, Q.M.; Li, A.H.; Zhou, Y.G. Wickerhamomyces kurtzmanii sp. nov. an ascomycetous yeast isolated from crater lake water, Da Hinggan Ling Mountain, China. Curr. Microbiol. 2019, 76, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Index Fungorum. Available online: http://www.indexfungorum.org (accessed on 25 July 2021).
- Arastehfar, A.; Bakhtiari, M.; Daneshnia, F.; Fang, W.; Sadati, S.K.; Al-Hatmi, A.M.; Groenewald, M.; Sharifi-Mehr, H.; Liao, W.; Pan, W.; et al. First fungemia case due to environmental yeast Wickerhamomyces myanmarensis: Detection by multiplex qPCR and antifungal susceptibility. Future Microbiol. 2019, 14, 267–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagatsuka, Y.; Kawasaki, H.; Seki, T. Pichia myanmarensis sp. nov., a novel cation-tolerant yeast isolated from palm sugar in Myanmar. Int. J. Syst. Evol. Microbiol. 2005, 55, 1379–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limtong, S.; Yongmanitchai, W.; Kawasaki, H.; Fujiyama, K. Wickerhamomyces edaphicus sp. nov. and Pichia jaroonii sp. nov., two ascomycetous yeast species isolated from forest soil in Thailand. FEMS Yeast Res. 2009, 9, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.S.; Bae, K.S.; Lee, K.H.; Park, D.S.; Kwon, G.S.; Lee, J.B. Wickerhamomyces ochangensis sp. nov., an ascomycetous yeast isolated from the soil of a potato field. Int. J. Syst. Evol. Microbiol. 2011, 61, 2543–2546. [Google Scholar] [CrossRef] [Green Version]
- Phaff, H.J.; Miller, M.W.; Miranda, M. Hansenula alni, a new heterothallic species of yeast from exudates of alder trees. Int. J. Syst. Evol. 1979, 29, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Hansen, E.C. Sur la germination des spores chez les Saccharomyces. Ann. Microgr. 1891, 3, 449–474. [Google Scholar]
- Sláviková, E.; Vadkertiová, R.; Vránová, D. Yeasts colonizing the leaf surfaces. J. Basic Microbiol. 2007, 47, 344–350. [Google Scholar] [CrossRef]
- Into, P.; Pontes, A.; Sampaio, J.P.; Limtong, S. Yeast diversity associated with the phylloplane of corn plants cultivated in Thailand. Microorganisms 2020, 8, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumla, J.; Nundaeng, S.; Suwannarach, N.; Lumyong, S. Evaluation of multifarious plant growth promoting trials of yeast isolated from the soil of Assam tea (Camellia sinensis var. assamica) plantations in Northern Thailand. Microorganisms 2020, 8, 1168. [Google Scholar] [CrossRef]
- Carrasco, M.; Rozas, J.M.; Barahona, S.; Alcaíno, J.; Cifuentes, V.; Baeza, M. Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol. 2012, 12, 251. [Google Scholar] [CrossRef] [Green Version]
- Kaewkrajay, C.; Chanmethakul, T.; Limtong, S. Assessment of diversity of culturable marine yeasts associated with corals and zoanthids in the gulf of Thailand, South China Sea. Microorganisms 2020, 8, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satianpakiranakorn, P.; Khunnamwong, P.; Limtong, S. Yeast communities of secondary peat swamp forests in Thailand and their antagonistic activities against fungal pathogens cause of plant and postharvest fruit diseases. PLoS ONE 2020, 15, e0230269. [Google Scholar] [CrossRef] [PubMed]
- Limtong, S.; Sintara, S.; Suwannarit, P.; Lotong, N. Yeast diversity in Thai traditional alcoholic starter. Kasetsart J. (Nat. Sci.) 2002, 36, 149–158. [Google Scholar]
- Hoondee, P.; Wattanagonniyom, T.; Weeraphan, T.; Tanasupawat, S.; Savarajara, A. Occurrence of oleaginous yeast from mangrove forest in Thailand. World J. Microbiol. Biotechnol. 2019, 35, 108. [Google Scholar] [CrossRef] [PubMed]
- Tepeeva, A.N.; Glushakova, A.M.; Kachalkin, A.V. Yeast communities of the Moscow city soils. Microbiology 2018, 87, 407–415. [Google Scholar] [CrossRef]
- Koricha, A.D.; Han, D.Y.; Bacha, K.; Bai, F.Y. Diversity and distribution of yeasts in indigenous fermented foods and beverages of Ethiopia. J. Sci. Food Agric. 2020, 100, 3630–3638. [Google Scholar] [CrossRef] [PubMed]
- Vadkertiová, R.; Molnárová, J.; Vránová, D.; Sláviková, E. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. Can. J. Microbiol. 2012, 58, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- PrasannaKumar, C.; Velmurugan, S.; Subramanian, K.; Pugazhvendan, S.R.; Nagaraj, D.S.; Khan, K.F.; Sadiappan, B.; Manokaran, S.; Hemalatha, K.R. DNA barcoding analysis of more than 1000 marine yeast isolates reveals previously unrecorded species. BioRxiv 2020, 1–39. [Google Scholar]
- Abu-Mejdad, N.M.J.A.; Al-Badran, A.I.; Al-Saadoon, A.H.; Minati, M.H. A new report on gene expression of three killer toxin genes with antimicrobial activity of two killer toxins in Iraq. Bull. Natl. Res. Cent. 2020, 44, 162. [Google Scholar] [CrossRef]
- Horváth, E.; Sipiczki, M.; Csoma, H.; Miklós, I. Assaying the effect of yeasts on growth of fungi associated with disease. BMC Microbiol. 2020, 20, 320. [Google Scholar] [CrossRef]
- Hamoudi-Belarbi, L.; Nouri, L.H.; Belkacemi, K. Effectiveness of convective drying to conserve indigenous yeasts with high volatile profile isolated from algerian fermented raw bovine milk (Rayeb). J. Food Sci. Technol. 2016, 36, 476–484. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Wang, S.; Zhou, R.; Hu, X.; Chu, Y.; Wang, T. Characteristics of yeast flora in Chinese strong-flavoured liquor fermentation in the Yibin region of China. J. Inst. Brew. 2016, 122, 517–523. [Google Scholar] [CrossRef]
- Borling Welin, J.; Lyberg, K.; Passoth, V.; Olstorpe, M. Combined moist airtight storage and feed fermentation of barley by the yeast Wickerhamomyces anomalus and a lactic acid bacteria consortium. Front. Plant. Sci. 2015, 6, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, J.F.; de Souza Cardoso, L.; Schwan, R.F.; Silva, C.F. Diversity of microbiota found in coffee processing wastewater treatment plant. World J. Microbiol. Biotechnol. 2017, 33, 211. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Ospina, J.; Triboletti, S.; Alessandria, V.; Serio, A.; Sergi, M.; Paparella, A.; Rantsiou, K.; Chaves-López, C. Functional biodiversity of yeasts isolated from Colombian fermented and dry cocoa beans. Microorganisms 2020, 8, 1086. [Google Scholar] [CrossRef] [PubMed]
- da Conceição, L.E.F.R.; Saraiva, M.A.F.; Diniz, R.H.S.; Oliveira, J.; Barbosa, G.D.; Alvarez, F.; Correa, L.F.; Mezadri, H.; Coutrim, M.X.; Afonso, R.J.; et al. Biotechnological potential of yeast isolates from cachaça: The Brazilian spirit. J. Ind. Microbiol. Biotechnol. 2015, 42, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha, A.C.; Gomes, L.S.; Godoy-Santos, F.; Faria-Oliveira, F.; Teixeira, J.A.; Sampaio, G.M.S.; Trópia, M.J.M.; Castro, I.M.; Lucas, C.; Brandão, R.L. High-affinity transport, cyanide-resistant respiration, and ethanol production under aerobiosis underlying efficient high glycerol consumption by Wickerhamomyces anomalus. J. Ind. Microbiol. Biotechnol. 2019, 46, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.C.; Santos, R.A.; Riaño-Pachon, D.M.; Squina, F.M.; Oliveira, J.V.; Goldman, G.H.; Souza, A.T.; Gomes, L.S.; Godoy-Santos, F.; Teixeira, J.A. Draft genome sequence of Wickerhamomyces anomalus LBCM1105, isolated from cachaça fermentation. Genet. Mol. Biol. 2020, 43, 1–5. [Google Scholar] [CrossRef] [PubMed]
- James, S.A.; Barriga, E.J.C.; Barahona, P.P.; Harrington, T.C.; Lee, C.F.; Bond, C.J.; Roberts, I.N. Wickerhamomyces arborarius fa, sp. nov., an ascomycetous yeast species found in arboreal habitats on three different continents. Int. J. Syst. Evol. 2014, 64, 1057–1061. [Google Scholar] [CrossRef]
- Beck, O. Eine neue Endomyces-Art, Endomyces bisporus. Ann. Mycol. 1922, 20, 219–227. [Google Scholar]
- Linnakoski, R.; Lasarov, I.; Veteli, P.; Tikkanen, O.P.; Viiri, H.; Jyske, T.; Kasanen, R.; Duong, T.A.; Wingfield, M.J. Filamentous fungi and yeasts associated with mites phoretic on Ips typographus in eastern Finland. Forests 2021, 12, 743. [Google Scholar] [CrossRef]
- Dohet, L.; Gregoire, J.C.; Berasategui, A.; Kaltenpoth, M.; Biedermann, P.H. Bacterial and fungal symbionts of parasitic Dendroctonus bark beetles. FEMS Microbiol. Ecol. 2016, 92, fiw129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uden, V.N.; Carmo Souza, L.D. Yeast from the bovine caecum. J. Gen. Microbiol. 1957, 16, 385–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickerham, L.J. Taxonomy of Yeasts; U.S. Department of Agriculture: Washington, DC, USA, 1951; pp. 1–56. [Google Scholar]
- Ramirez, C. Note sur deux nouvelles espèces de levures isolées de divers milieux. Rev. Mycol. 1954, 19, 98–102. [Google Scholar]
- Groenewald, M.; Robert, V.; Smith, M.T. Five novel Wickerhamomyces-and Metschnikowia-related yeast species, Wickerhamomyces chaumierensis sp. nov., Candida pseudoflosculorum sp. nov., Candida danieliae sp. nov., Candida robnettiae sp. nov. and Candida eppingiae sp. nov., isolated from plants. Int. J. Syst. Evol. 2011, 61, 2015–2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodder, J. Über einige durch das “Centraalbureau voor Schimmelcultures” neuerworbene sporogene Hefearten. Zentralbl. Bakteriol. Parasitenkd. Abt. II 1932, 86, 227–253. [Google Scholar]
- Sitepu, I.R.; Enriquez, L.L.; Nguyen, V.; Doyle, C.; Simmons, B.A.; Singer, S.W.; Fry, R.; Simmons, C.W.; Boundy-Mills, K. Ethanol production in switchgrass hydrolysate by ionic liquid-tolerant yeasts. Bioresour. Technol. Rep. 2019, 7, 100275. [Google Scholar] [CrossRef]
- Limtong, S.; Kaewwichian, R. The diversity of culturable yeasts in the phylloplane of rice in Thailand. Ann. Microbiol. 2015, 65, 667–675. [Google Scholar] [CrossRef]
- Patel, K.; Patel, F.R. Optimization of culture conditions for biosurfactant production by Wickerhamomyces edaphicus isolated from mangrove region of Mundra, Kutch, Gujarat. Indian J. Sci. Technol. 2020, 13, 1935–1943. [Google Scholar] [CrossRef]
- Kurtzman, C.P. Two new species of Pichia from arboreal habitats. Mycologia 1987, 79, 410–417. [Google Scholar] [CrossRef]
- Suh, S.O.; Zhou, J. Yeasts associated with the curculionid beetle Xyloterinus politus: Candida xyloterini sp. nov., Candida palmyrensis sp. nov. and three common ambrosia yeasts. Int. J. Syst. Evol. Microbiol. 2010, 60, 1702–1708. [Google Scholar] [CrossRef]
- van der Walt, J.P.; Johannsen, E. Hansenula lynferdii sp. nov. Antonie Van Leeuwenhoek 1975, 41, 13–16. [Google Scholar] [CrossRef]
- Chai, C.Y.; Huang, L.N.; Cheng, H.; Liu, W.J.; Hui, F.L. Wickerhamomyces menglaensis fa, sp. nov., a yeast species isolated from rotten wood. Int. J. Syst. Evol. Microbiol. 2019, 69, 1509–1514. [Google Scholar] [CrossRef] [PubMed]
- Hui, F.L.; Chen, L.; Chu, X.Y.; Niu, Q.H.; Ke, T. Wickerhamomyces mori sp. nov., an anamorphic yeast species found in the guts of wood-boring insect larvae. Int. J. Syst. Evol. Microbiol. 2013, 63, 1174–1178. [Google Scholar] [CrossRef] [PubMed]
- Wlckerham, L.J.; Kurtzman, C.P. Two new saturn-spored species of Pichia. Mycologia 1971, 63, 1013–1018. [Google Scholar] [CrossRef]
- Yarrow, D. Pichia onychis sp. n. Antonie Van Leeuwenhoek. J. Microbiol. Serol. 1965, 31, 465–467. [Google Scholar]
- Cioch-Skoneczny, M.; Satora, P.; Skoneczny, S.; Skotniczny, M. Biodiversity of yeasts isolated during spontaneous fermentation of cool climate grape musts. Arch. Microbiol. 2021, 203, 153–162. [Google Scholar] [CrossRef]
- Abu-Mejdad, N.M.J.A.; Al-Badran, A.I.; Al-Saadoon, A.H. New record of ascomycetous yeasts strains from soil in Basrah, Iraq. Drug Invent. Today. 2019, 11, 3073–3080. [Google Scholar]
- Bah, A.; Ferjani, R.; Fhoula, I.; Gharbi, Y.; Najjari, A.; Boudabous, A.; Ouzari, H.I. Microbial community dynamic in tomato fruit during spontaneous fermentation and biotechnological characterization of indigenous lactic acid bacteria. Ann. Microbiol. 2019, 69, 41–49. [Google Scholar] [CrossRef]
- Ooi, T.S.; Sepiah, M.; Khairul Bariah, S. Diversity of yeast species identified during spontaneous shallow box fermentation of cocoa beans in Malaysia. Int. J. Eng. Innov. Technol. 2016, 3, 379–385. [Google Scholar]
- Maciel, N.O.; Johann, S.; Brandão, L.R.; Kucharíková, S.; Morais, C.G.; Oliveira, A.P.; Freitas, G.J.; Borelli, B.M.; Pellizzari, F.M.; Santos, D.A.; et al. Occurrence, antifungal susceptibility, and virulence factors of opportunistic yeasts isolated from Brazilian beaches. Mem. Inst. Oswaldo Cruz 2019, 114, 114. [Google Scholar] [CrossRef] [PubMed]
- Nasr, S.; Nguyen, H.D.; Soudi, M.R.; Fazeli, S.A.S.; Sipiczki, M. Wickerhamomyces orientalis fa, sp. nov.: An ascomycetous yeast species belonging to the Wickerhamomyces clade. Int. J. Syst. Evol. Microbiol. 2016, 66, 2534–2539. [Google Scholar] [CrossRef]
- de García, V.; Brizzio, S.; Libkind, D.; Rosa, C.A.; van Broock, M. Wickerhamomyces patagonicus sp. nov., an ascomycetous yeast species from Patagonia, Argentina. Int. J. Syst. Evol. Microbiol. 2010, 60, 1693–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Walt, J.P.; Tscheuschner, I.T. Three new yeasts. Antonie Van Leeuwenhoek 1957, 23, 184–190. [Google Scholar] [CrossRef]
- Nielsen, D.S.; Teniola, O.D.; Ban-Koffi, L.; Owusu, M.; Andersson, T.S.; Holzapfel, W.H. The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 2007, 114, 168–186. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Sater, M.A.; Moubasher, A.H.; Zeinab, S.M. Diversity of yeasts and filamentous fungi in five fresh fruit juices in Egypt. Curr. Res. Environ. 2017, 7, 356–386. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.; Konno, Y.; Tomita, Y. Wickerhamomyces psychrolipolyticus fa, sp. nov., a novel yeast species producing two kinds of lipases with activity at different temperatures. Int. J. Syst. Evol. 2020, 70, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Rosa, C.A.; Morais, P.B.; Lachance, M.A.; Santos, R.O.; Melo, W.G.; Viana, R.H.; Bragança, M.A.; Pimenta, R.S. Wickerhamomyces queroliae sp. nov. and Candida jalapaonensis sp. nov., two yeast species isolated from Cerrado ecosystem in North Brazil. Int. J. Syst. Evol. Microbiol. 2009, 59, 1232–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soneda, M.; Uchida, S. A survey on the yeasts. Bull. Nat. Science Museum 1971, 14, 451–453. [Google Scholar]
- Junyapate, K.; Jindamorakot, S.; Limtong, S. Yamadazyma ubonensis fa, sp. nov., a novel xylitol-producing yeast species isolated in Thailand. Antonie Van Leeuwenhoek 2014, 105, 471–480. [Google Scholar] [CrossRef]
- Ninomiya, S.; Mikata, K.; Kajimura, H.; Kawasaki, H. Two novel ascomycetous yeast species, Wickerhamomyces scolytoplatypi sp. nov. and Cyberlindnera xylebori sp. nov., isolated from ambrosia beetle galleries. Int. J. Syst. Evol. Microbiol. 2013, 63, 2706–2711. [Google Scholar] [CrossRef] [PubMed]
- Kaewwichian, R.; Kawasaki, H.; Limtong, S. Wickerhamomyces siamensis sp. nov., a novel yeast species isolated from the phylloplane in Thailand. Int. J. Syst. Evol. Microbiol. 2013, 63, 1568–1573. [Google Scholar] [CrossRef] [PubMed]
- Bien, S.; Damm, U. Prunus trees in Germany—A hideout of unknown fungi? Mycol. Prog. 2020, 19, 667–690. [Google Scholar] [CrossRef]
- Hyun, S.H.; Min, J.H.; Lee, H.B.; Kim, H.K.; Lee, J.S. Characteristics of two unrecorded yeasts from wildflowers in Ulleungdo, Korea. Kor. J. Mycol. 2014, 42, 170–173. [Google Scholar] [CrossRef]
- Masiulionis, V.E.; Pagnocca, F.C. Wickerhamomyces spegazzinii sp. nov., an ascomycetous yeast isolated from the fungus garden of Acromyrmex lundii nest (Hymenoptera: Formicidae). Int. J. Syst. Evol. Microbiol. 2016, 66, 2141–2145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez, C.; Boidin, J. Saccharomyces chambardi, nouvelle espèce de levure isolée de liqueur tannante. De La Société Linnéenne De Lyon 1954, 23, 151–152. [Google Scholar] [CrossRef]
- Kurtzman, C.P. Synonomy of the yeast genera Hansenula and Pichia demonstrated through comparisons of deoxyribonucleic acid relatedness. Antonie Van Leeuwenhoek 1984, 50, 209–217. [Google Scholar] [CrossRef]
- Moubasher, A.H.; Abdel-Sater, M.A.; Soliman, Z. Yeasts and filamentous fungi inhabiting guts of three insect species in Assiut, Egypt. Mycosphere 2017, 8, 1297–1316. [Google Scholar] [CrossRef]
- Scott, D.B.; Van der Walt, J.P. Hansenula sydowiorum sp. n. Antonie Van Leeuwenhoek 1970, 36, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Boonmak, C.; Jindamorakot, S.; Kawasaki, H.; Yongmanitchai, W.; Suwanarit, P.; Nakase, T.; Limtong, S. Candida siamensis sp. nov., an anamorphic yeast species in the Saturnispora clade isolated in Thailand. FEMS Yeast Res. 2009, 9, 668–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samagaci, L.; Ouattara, H.; Niamké, S.; Lemaire, M. Pichia kudrazevii and Candida nitrativorans are the most well-adapted and relevant yeast species fermenting cocoa in Agneby-Tiassa, a local Ivorian cocoa producing region. Int. Food Res. J. 2016, 89, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Echeverrigaray, S.; Scariot, F.J.; Foresti, L.; Schwarz, L.V.; Rocha, R.K.M.; da Silva, G.P.; Moreira, J.P.; Delamare, A.P.L. Yeast biodiversity in honey produced by stingless bees raised in the highlands of southern Brazil. Int. J. Food Microbiol. 2021, 347, 109200. [Google Scholar] [CrossRef] [PubMed]
- Francesca, N.; Carvalho, C.; Almeida, P.M.; Sannino, C.; Settanni, L.; Sampaio, J.P.; Moschetti, G. Wickerhamomyces sylviae f.a., sp. nov., an ascomycetous yeast species isolated from migratory birds. Int. J. Syst. Evol. Microbiol. 2013, 63, 4824–4830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakase, T.; Jindamorakot, S.; Am-In, S.; Ninomiya, S.; Kawasaki, H. Wickerhamomyces tratensis sp. nov. and Candida namnaoensis sp. nov., two novel ascomycetous yeast species in the Wickerhamomyces clade found in Thailand. J. Gen. Appl. Microbiol. 2012, 58, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Ravasio, D.; Carlin, S.; Boekhout, T.; Groenewald, M.; Vrhovsek, U.; Walther, A.; Wendland, J. Adding flavor to beverages with non-conventional yeasts. Fermentation 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Xiangsong, C.; Xiang, X. Improvement of the aroma of lily rice wine by using aroma-producing yeast strain Wickerhamomyces anomalus HN006. AMB Express 2019, 9, 89. [Google Scholar] [CrossRef]
- Li, W.; Shi, C.; Guang, J.; Ge, F.; Yan, S. Development of Chinese chestnut whiskey: Yeast strains isolation, fermentation system optimization, and scale-up fermentation. AMB Express 2021, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Czarnecka, M.; Żarowska, B.; Połomska, X.; Restuccia, C.; Cirvilleri, G. Role of biocontrol yeasts Debaryomyces hansenii and Wickerhamomyces anomalus in plants’ defence mechanisms against Monilinia fructicola in apple fruits. Food Microbiol. 2019, 83, 1–8. [Google Scholar] [CrossRef]
- Limtong, S.; Into, P.; Attarat, P. Biocontrol of rice seedling rot disease caused by Curvularia lunata and Helminthosporium oryzae by epiphytic yeasts from plant leaves. Microorganisms 2020, 8, 647. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.R.; Gondim, D.M.F.; Oliveira, J.T.A.; Oliveira, F.S.A.; Gonçalves, L.R.B.; Viana, F.M.P. Use of killer yeast in the management of postharvest papaya anthracnose. Postharvest Biol. Technol. 2013, 83, 58–64. [Google Scholar] [CrossRef]
- Fernandez-San Millan, A.; Farran, I.; Larraya, L.; Ancin, M.; Arregui, L.M.; Veramendi, J. Plant growth-promoting traits of yeasts isolated from Spanish vineyards: Benefits for seedling development. Microbiol. Res. 2020, 237, 126480. [Google Scholar] [CrossRef]
- Walker, G.M. Pichia anomala: Cell physiology and biotechnology relative to other yeasts. Antonie Van Leeuwenhoek 2011, 99, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passoth, V.; Olstorpe, M.; Schnürer, J. Past, present and future research directions with Pichia anomala. Antonie Van Leeuwenhoek 2011, 99, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Golubev, W.I. Antifungal activity of Wickerhamomyces silvicola. Microbiology 2015, 84, 610–615. [Google Scholar] [CrossRef]
- Golubev, W.I. Taxonomic specificity of the sensitivity to the Wickerhamomyces bovis fungistatic mycocin. Microbiology 2016, 85, 444–448. [Google Scholar] [CrossRef]
- Silva, C.F.; Schwan, R.F.; Dias, Ë.S.; Wheals, A.E. Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil. Int. J. Food Microbiol. 2000, 60, 251–260. [Google Scholar] [CrossRef]
- Zhou, N.; Schifferdecker, A.J.; Gamero, A.; Compagno, C.; Boekhout, T.; Piškur, J.; Knecht, W. Kazachstania gamospora and Wickerhamomyces subpelliculosus: Two alternative baker’s yeasts in the modern bakery. Int. J. Food Microbiol. 2017, 250, 45–58. [Google Scholar] [CrossRef] [PubMed]
- Adelabu, B.; Kareem, S.; Oluwafemi, F.; Adeogun, A. Consolidated bioprocessing of ethanol from corn straw by Saccharomyces diastaticus and Wikerhamomyces chambardii. Food Appl. Biosci. J. 2018, 6, 1–17. [Google Scholar]
- Adelabu, B.; Kareem, S.O.; Adeogun, A.I.; Wakil, S.M. Optimization of cellulase enzyme from sorghum straw by yeasts isolated from plant feeding-termite Zonocerus variegatus. Food Appl. Biosci. J. 2019, 7, 81–101. [Google Scholar]
- Dejwatthanakomol, C.; Anuntagool, J.; Morikawa, M.; Thaniyavarn, J. Production of biosurfactant by Wickerhamomyces anomalus PY189 and its application in lemongrass oil encapsulation. Sci. Asia. 2016, 42, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, N.D.A.T.; de Souza, A.C.; Simoes, L.A.; Dos Reis, G.M.F.; Souza, K.T.; Schwan, R.F.; Dias, D.R. Eco-friendly biosurfactant from Wickerhamomyces anomalus CCMA 0358 as larvicidal and antimicrobial. Microbiol. Res. 2020, 241, 126571. [Google Scholar] [CrossRef]
- Samadlouie, H.R.; Nurmohamadi, S.; Moradpoor, F.; Gharanjik, S. Effect of low-cost substrate on the fatty acid profiles of Mortierella alpina CBS 754.68 and Wickerhamomyces siamensis SAKSG. Biotechnol. Biotechnol. Equip. 2018, 32, 1228–1235. [Google Scholar] [CrossRef] [Green Version]
- Palladino, F.; Rodrigues, R.C.; Cadete, R.M.; Barros, K.O.; Rosa, C.A. Novel potential yeast strains for the biotechnological production of xylitol from sugarcane bagasse. Biofuels Bioprod. Biorefining 2021, 15, 690–702. [Google Scholar] [CrossRef]
- Seymour, F.R.; Slodki, M.E.; Plattner, R.D.; Stodola, R.M. Methylation and acetolysis of extracellular D-mannans from yeast. Carbohydr. Res. 1976, 48, 225–237. [Google Scholar] [CrossRef]
- Dufour, J.P.; Verstrepen, K.; Derdelinckx, G. Brewing yeasts. In Yeasts in Food; Boekhout, T., Robert, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 347–388. [Google Scholar]
- Timke, M.; Wang-Lieu, N.Q.; Altendorf, K.; Lipski, A. Fatty acid analysis and spoilage potential of biofilms from two breweries. J. Appl. Microbiol. 2005, 99, 1108–1122. [Google Scholar] [CrossRef] [PubMed]
- Bonjean, B.; Guillaume, L.D. Yeasts in bread and baking products. In Yeasts in Food; Boekhout, T., Robert, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 289–307. [Google Scholar]
- Lanciotti, R.; Sinigaglia, M.; Gardini, F.; Guerzoni, M.E. Hansenula anomala as spoilage agent of cream-filled cakes. Microbiol. Res. 1998, 153, 145–148. [Google Scholar] [CrossRef]
- Paula, C.R.; Krebs, V.L.; Auler, M.E.; Ruiz, L.S.; Matsumoto, F.E.; Silva, E.H.; Diniz, E.M.; Vaz, F.A. Nosocomial infection in newborns by Pichia anomala in a Brazilian intensive care unit. Med. Mycol. 2006, 44, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Linton, C.J.; Borman, A.M.; Cheung, G.; Holmes, A.D.; Szekely, A.; Palmer, M.D.; Bridge, P.D.; Campbell, C.K.; Johnson, E.M. Molecular identification of unusual pathogenic yeast isolates by large ribosomal subunit gene sequencing: 2 years of experience at the United Kingdom Mycology Reference Laboratory. J. Clin. Microbiol. 2007, 45, 1152–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, V.K.P.; Ruiz, L.d.S.; Oliveira, N.A.J.; Moreira, D.; Hahn, R.C.; Melo, A.S.d.A.; Nishikaku, A.S.; Paula, C.R. Fungemia caused by Candida species in a children’s public hospital in the city of São Paulo, Brazil: Study in the period 2007–2010. Rev. Do Inst. De Med. Trop. De São Paulo 2014, 56, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Kamoshita, M.; Matsumoto, Y.; Nishimura, K.; Katono, Y.; Murata, M.; Ozawa, Y.; Shimmura, S.; Tsubota, K. Wickerhamomyces anomalus fungal keratitis responds to topical treatment with antifungal micafungin. J. Infect. Chemother. 2015, 21, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Dutra, V.R.; Silva, L.F.; Oliveira, A.N.M.; Beirigo, E.F.; Arthur, V.M.; da Silva, R.B.; Ferreira, T.B.; Andrade-Silva, L.; Silva, M.V.; Fonseca, F.M.; et al. Fatal case of fungemia by Wickerhamomyces anomalus in a pediatric patient diagnosed in a teaching hospital from Brazil. J. Fungi 2020, 6, 147. [Google Scholar] [CrossRef] [PubMed]
- De Hoog, G.S. Risk assessment of fungi reported from humans and animals. Mycoses 1996, 39, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Hyde, K.D.; Norphanphoun, C.; Chen, J.; Dissanayake, A.J.; Doilom, M.; Hongsanan, S.; Jayawardena, R.S.; Jeewon, R.; Perera, R.H.; Thongbai, B.; et al. Thailand’s amazing diversity: Up to 96% of fungi in northern Thailand may be novel. Fungal Divers. 2018, 93, 215–239. [Google Scholar] [CrossRef]
- Kumla, J.; Suwannarach, N.; Wannathes, W. Hymenagaricus saisamornae sp. nov. (Agaricales, Basidiomycota) from northern Thailand. Chiang Mai J. Sci. 2021, 48, 827–836. [Google Scholar]
- Nakase, T.; Suzuki, M. Bullera intermedia sp. nov. and Sporobolomyces oryzicola sp. nov. isolated from dead leaves of Oryza sativa. J. Gen. Appl. Microbiol. 1986, 32, 149–155. [Google Scholar] [CrossRef]
- Hagler, A.N.; Ahearn, D.G. Rapid diazonium blue B test to detect basidiomycetous yeasts. Int. J. Syst. Evol. 1981, 31, 204–208. [Google Scholar] [CrossRef] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Kurtzman, C.P. DNA relatedness among saturn-spored yeasts assigned to the genera Williopsis and Pichia. Antonie Van Leeuwenhoek 1991, 60, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 2004, 5, 113. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the cipres science gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing EnvironmentsWorkshop (GCE), New Orleans, LA, USA, 14 November 2010; IEEE: Manhattan, NY, USA; pp. 1–8. [Google Scholar]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods. 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A. FigTree Tree Figure Drawing Tool Version 131, Institute of Evolutionary 623 Biology, University of Edinburgh. Available online: http://treebioedacuk/software/figtree/ (accessed on 20 August 2021).
- Vu, D.; Groenewald, M.; Szöke, S.; Cardinali, G.; Eberhardt, U.; Stielow, B.; de Vries, M.; Verkleij, G.J.M.; Crous, P.W.; Boekhout, T.; et al. DNA barcoding analysis of more than 9 000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud. Mycol. 2016, 85, 91–105. [Google Scholar] [CrossRef]
- Rivera, F.N.; Gómez, Z.; González, E.; López, N.; Rodríguez, C.H.H.; Zúñiga, G. Yeasts associated with bark beetles of the genus Dendroctonus erichson (Coleoptera: Curculionidae: Scolytinae): Molecular identification and biochemical characterization. In Proceedings of the Third Workshop on Genetics of Bark Beetles and Associated Microorganisms, Asheville, NC, USA, 20 May 2006; pp. 45–48. [Google Scholar]
- Sitepu, I.; Enriquez, L.; Nguyen, V.; Fry, R.; Simmons, B.; Singer, S.; Simmons, C.; Boundy-Mills, K.L. Ionic liquid tolerance of yeasts in family Dipodascaceae and genus Wickerhamomyces. Appl. Biochem. Biotechnol. 2020, 191, 1580–1593. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Robbertse, B.; Robert, V.; Vu, D.; Cardinali, G.; Irinyi, L.; Meyer, W.; Nilsson, R.H.; Hughes, K.; Miller, A.N.; et al. Finding needles in haystacks: Linking scientific names, reference specimens and molecular data for fungi. Database 2014, 2014, bau061. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P.; Robnett, C.J. Phylogenetic relationships among yeasts of the “Saccharomyces complex” determined from multigene sequence analyses. FEMS Yeast Res. 2003, 3, 417–432. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ren, Y.C.; Zhang, Z.T.; Ke, T.; Hui, F.L. Spathaspora allomyrinae sp. nov., a D-xylose-fermenting yeast species isolated from a scarabeid beetle Allomyrina dichotoma. Int. J. Syst. Evol. 2016, 66, 2008–2012. [Google Scholar] [CrossRef] [Green Version]
- Barnett, J.A. A history of research on yeasts 2: Louis Pasteur and his contemporaries, 1850–1880. Yeast 2000, 16, 755–771. [Google Scholar] [CrossRef]
- Cavicchioli, R.; Ripple, W.J.; Timmis, K.N.; Azam, F.; Bakken, L.R.; Baylis, M.; Behrenfeld, M.J.; Boetius, A.; Boyd, P.W.; Classen, A.T.; et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 2019, 17, 569–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, P.K.; Purkayastha, S.D.; De Mandal, S.; Passari, A.K.; Govindarajan, R.K. Effect of climate change on microbial diversity and its functional attributes. In Recent Advancements in Microbial Diversity; De Mandal, S., Bhatt, P., Eds.; Academic Press: San Diego, CA, USA, 2020; pp. 315–331. [Google Scholar]
- van der Putten, W.H. Climate change, aboveground-belowground interactions, and species’ range shifts. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 365–383. [Google Scholar] [CrossRef]
- Wookey, P.A.; Aerts, R.; Bardgett, R.D.; Baptist, F.; BraThen, K.A.; Cornelissen, J.H.C.; Shaver, G.R. Ecosystem feedbacks and cascade processes: Understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob. Change Biol. 2009, 15, 1153–1172. [Google Scholar] [CrossRef] [Green Version]
No. | Spices | Known Distribution | Isolation Source | Reference |
---|---|---|---|---|
1 | Wickerhamomyces alni (Phaff, M.W. Mill. and M. Miranda) Kurtzman, Robnett and Bas.-Powers | Canada | Exudate of Alnus rubra | [12] |
2 | Wickerhamomyces anomalus (E.C. Hansen) Kurtzman, Robnett and Bas.-Powers | Algeria, Brazil, China, Colombia, Ethiopia, India, Iraq, King George Island, Lao, Russia, Slovakia Sweden and Thailand | Process of beer and wine, phylloplane, soil, water, coral reefs, Thai traditional alcoholic starter, mangrove forest, fermented food, flowers, fruits, fermented grains, coffee processing, wastewater treatment plant, Colombian fermented beans and Brazilian spirit | [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] |
3 | Wickerhamomyces arborarius S.A. James, E.J. Carvajal, Barahona, T.C. Harr., C.F. Lee, C.J. Bond and I.N. Roberts | Ecuador | Flower | [36] |
4 | Wickerhamomyces bisporus (O. Beck) Kurtzman, Robnett and Bas.-Powers | Finland, France and USA | Platypus compositus, phoretic mites on Ips typographus and bark beetles (Dendroctonus) | [37,38,39] |
5 | Wickerhamomyces bovis (Uden and Carmo Souza) Kurtzman, Robnett and Bas.-Powers | Portugal | Caecum of feral cattle (Bos taurus) | [40] |
6 | Wickerhamomyces canadensis (Wick.) Kurtzman, Robnett and Bas.-Powers | Canada | Beetle frass from Pinus resinosa | [41] |
7 | Wickerhamomyces chambardii (C. Ramírez and Boidin) Kurtzman, Robnett and Bas.-Powers | France | Chestnut | [42] |
8 | Wickerhamomyces chaumierensis M. Groenew., V. Robert and M.T. Sm. | Guyana | Surface of flower | [43] |
9 | Wickerhamomyces ciferrii (Lodder) Kurtzman, Robnett and Bas.-Powers | Dominican Republic, USA and Thailand | Fruit of Dipteryx odorata and male olive fruit fly (Bactrocera oleae) | [44,45,46] |
10 | Wickerhamomyces edaphicus Limtong, Yongman., H. Kawas. and Fujiyama | India and Thailand | Forest and mangrove soils | [4,47] |
11 | Wickerhamomyces hampshirensis (Kurtzman) Kurtzman, Robnett and Bas.-Powers | USA | Frass of cut and dead of Quercus and beetle (Xyloterinus politus) | [48,49] |
12 | Wickerhamomyces kurtzmanii A.H. Li, Y.G. Zhou and Q.M. Wang | China | Crater lake water | [6] |
13 | Wickerhamomyces lynferdii (Van der Walt and Johannsen) Kurtzman, Robnett and Bas.-Powers | South Africa | Soil | [50] |
14 | Wickerhamomyces menglaensis F.L. Hui and L.N. Huang | China | Rotting wood | [51] |
15 | Wickerhamomyces mori F.L. Hui, Liang Chen, X.Y. Chu, Niu and T. Ke | China | Gut of larvae of wood-boring insect on trunk of Morus alba | [52] |
16 | Wickerhamomyces mucosus (Wick. and Kurtzman) Kurtzman, Robnett and Bas.-Powers | USA | Soil | [53] |
17 | Wickerhamomyces myanmarensis (Nagats., H. Kawas. and T. Seki) J. Kumla, N. Suwannarach and S. Lumyong | Iran and Myanmar | Palm sugar in rum distiller, and blood and central venous catheter of patients | [8,9] |
18 | Wickerhamomyces ochangensis K.S. Shin | South Korea | Soil of potato field | [11] |
19 | Wickerhamomyces onychis (Yarrow) Kurtzman, Robnett and Bas.-Powers | Brazil, Ethiopia, Iraq, Malaysia, Netherlands, Poland and Tunisia | Nail infection of Homo sapiens, fermented food, cocoa beans, grape and tomato during spontaneous fermentation, and soil | [23,54,55,56,57,58,59] |
20 | Wickerhamomyces orientalis Sipiczki, S. Nasr, H.D.T. Nguyen and Soudi | Iran and Sri Lanka | Fruits and rhizosphere soil | [27,60] |
21 | Wickerhamomyces patagonicus V. de García, Brizzio, C.A. Rosa, Libkind and Van Broock | Argentina | Sap exudate on cut branches of Nothofagus dombeyi and glacier meltwater river | [61] |
22 | Wickerhamomyces pijperi (Van der Walt & Tscheuschner) Kurtzman, Robnett and Bas.-Powers | Egypt, Ghana and South Africa | Buttermilk, cocoa fermentation and orange juice | [62,63,64] |
23 | Wickerhamomyces psychrolipolyticus Y. Shimizu and K. Konno | Japan | Soil | [65] |
24 | Wickerhamomyces queroliae C.A. Rosa, P.B. Morais, Lachance and Pimenta | Brazil | Larva of Anastrepha mucronata from fruit of Peritassa campestris | [66] |
25 | Wickerhamomyces rabaulensis (Soneda and S. Uchida) Kurtzman, Robnett and Bas.-Powers | Ethiopia, Papua New Guinea and Thailand | Excreta of snail, soils, decaying agricultural residues, decaying leaves and tree bark, and fermented food | [23,67,68] |
26 | Wickerhamomyces scolytoplatypi Ninomiya | Japan | Gallery of beetles (Scolytoplatypus shogun) in Fagus crenata | [69] |
27 | Wickerhamomyces siamensis Kaewwich., Yongman., H. Kawas. and Limtong | Thailand | Phylloplane of Saccharum officinarum | [70] |
28 | Wickerhamomyces silvicola (Wick.) Kurtzman, Robnett and Bas.-Powers | Germany, South Korea and USA | Flowers, gum of Prunus serotina and Prunus wood | [41,71,72] |
29 | Wickerhamomyces spegazzinii Masiulionis and Pagnocca | Argentina | The fungus garden of an attine ant nest (Acromyrmex lundii) | [73] |
30 | Wickerhamomyces strasburgensis (C. Ramírez and Boidin) Kurtzman, Robnett and Bas.-Powers | France | On leather tanned by vegetable means | [74] |
31 | Wickerhamomyces subpelliculosus (Kurtzman) Kurtzman, Robnett and Bas.-Powers | Egypt and USA | Fermenting cucumber brines, gut of honey bee and molasses | [75,76] |
32 | Wickerhamomyces sydowiorum (D.B. Scott and Van der Walt) Kurtzman, Robnett and Bas.-Powers | Brazil, Ivory Coast, South Africa and Thailand | Frass of Sinoxylon ruficorne in dead Combretum apiculatum, decayed plant leaf, fermented cocoa, honey, sand and water | [59,77,78,79,80] |
33 | Wickerhamomyces sylviae Moschetti and J.P. Samp. | Italy | Cloaca of migratory birds (Sylvia communis) | [81] |
34 | Wickerhamomyces tratensis Nakase, Jindam., Am-In, Ninomiya and H. Kawas. | Thailand | Flower of mangrove apple (Sonneratia caseolaris) | [82] |
35 | Wickerhamomyces xylosicus Limtong, Nitiyon, Kaewwich., Jindam., Am-In and Yongman | Thailand | Soil | [5] |
36 | Wickerhamomyces xylosivorus R. Kobay., A. Kanti and H. Kawas. | Indonesia | Decayed wood | [4] |
Yeast Species | Strain | GenBank Acession Number | Reference | |
---|---|---|---|---|
ITS | D1/D2 | |||
Wickerhamomyces alni | NRRL Y-11625T | ‒ | EF550294 | [1] |
CBS 6986 | NR154966 | KY110065 | [124] | |
Wickerhamomyces anomalus | NRRL Y-366T | ‒ | EF550341 | [1] |
H1Wh | JQ857021 | JQ856997 | [17] | |
Wickerhamomyces arborarius | Bq 164T | NR_55000 | FN908198 | [36] |
Wickerhamomyces bisporus | NRRL Y-1482T | ‒ | EF550296 | [1] |
Wickerhamomyces bovis | NRRL YB-4184T | ‒ | EF550298 | [1] |
CBS 2616 | NR154968 | KY110109 | [124] | |
Wickerhamomyces canadensis | NRRL Y-1888T | ‒ | EF550300 | [1] |
GoToruMP327 | EF093299 | EF016107 | [125] | |
Wickerhamomyces chambardii | NRRL Y-2378T | ‒ | EF550344 | [1] |
CBS 1900 | NR154969 | KY110114 | [124] | |
Wickerhamomyces chaumierensis | CBS 8565T | HM156503 | HM156533 | [43] |
Wickerhamomyces ciferrii | NRRL Y-1031T | ‒ | EF550339 | [1] |
UCDFST 83-22 | MH153583 | MH130275 | [126] | |
Wickerhamomyces edaphicus | S-29T | AB436771 | AB436763 | [10] |
CBS 10408 | KY105904 | KY110120 | [124] | |
Wickerhamomyces hampshirensis | NRRL YB-4128T | ‒ | EF550334 | [1] |
Wickerhamomyces kurtzmanii | TF5-16-2T | MK573939 | MK573939 | [6] |
Wickerhamomyces lannaensis | SDBR-CMU-S3-15T | OK135750 | MT639220 | This study, [16] |
SDBR-CMU-S2-02 | OK135752 | MT623569 | This study, [16] | |
SDBR-CMU-S2-06 | OK135753 | MT613722 | This study, [16] | |
Wickerhamomyces lynferdii | NRRL Y-7723T | EF550342 | EF550342 | [1] |
BCRC 22676 | NR111798 | ‒ | [127] | |
Wickerhamomyces menglaensis | NYNU 1673T | KY213818 | KY213812 | [51] |
Wickerhamomyces mori | NYNU 1216T | JX204288 | JX204287 | [52] |
NYNU 1204 | JX292100 | JX292099 | [52] | |
Wickerhamomyces mucosus | NRRL YB-1344T | ‒ | EF550337 | [1] |
CBS 6341 | Z93877 | KY110124 | [124] | |
Wickerhamomyces myanmarensis | CBS 9786T | ‒ | AB126678 | [9] |
SU-263 | MH236221 | MH236219 | [8] | |
Wickerhamomyces nanensis | SDBR-CMU-S2-17T | OK143510 | MT613875 | This study, [16] |
SDBR-CMU-S2-14 | OK143511 | MT623571 | This study, [16] | |
Wickerhamomyces ochangensis | N7a-Y2T | NR154971 | HM485464 | [11] |
CBS 11843 | KY105909 | ‒ | [124] | |
Wickerhamomyces onychis | NRRL Y-7123T | ‒ | EF550279 | [1] |
CBS 5587 | KY105910 | KY110125 | [124] | |
Wickerhamomyces orientalis | KH-D1T | KF938677 | KF938676 | [60] |
12-101 | KU253704 | KU253703 | [60] | |
Wickerhamomyces patagonicus | CRUB 1724T | FJ793131 | FJ666399 | [61] |
CBS 11398 | NG057185 | KY110126 | [124] | |
Wickerhamomyces pijperi | NRRL YB-4309T | ‒ | EF550335 | [1] |
CBS 2887 | HM156502 | KY110127 | [124] | |
Wickerhamomyces psychrolipolyticus | Y08-202-2T | ‒ | LC333101 | [65] |
Y08-202-2 | ‒ | LC333102 | [65] | |
Wickerhamomyces queroliae | UFMG-T05-200T | EU580140 | EU580140 | [66] |
Wickerhamomyces rabaulensis | NRRL Y-7945T | ‒ | EF550303 | [1] |
CBS 6797 | KY105914 | KY110128 | [124] | |
Wickerhamomyces scolytoplatypi | NBRC 11029T | ‒ | AB534166 | [69] |
CBS 12186 | KY105915 | KY110130 | [124] | |
Wickerhamomyces siamensis | DMKU-RK359T | NR111029 | AB714248 | [70] |
CBS 12570 | KY105916 | KY110131 | [124] | |
Wickerhamomyces silvicola | NRRL Y-1678T | ‒ | EF550302 | [1] |
GLMC 1708 | MT156140 | MT156324 | [71] | |
Wickerhamomyces spegazzinii | JLU025T | KJ832072 | KJ832071 | [73] |
Wickerhamomyces strasburgensis | NRRL Y-2383T | ‒ | EF550333 | [1] |
Wickerhamomyces subpelliculosus | NRRL Y-1683T | NR111336 | EF550340 | [1,127] |
Wickerhamomyces sydowiorum | NRRL Y-7130T | NR138219 | EF550343 | [1,36] |
NRRL Y-10996 | FR690145 | FR690073 | [36] | |
Wickerhamomyces sylviae | PYCC6345T | ‒ | KF240728 | [81] |
U92A1 | ‒ | KF240729 | [81] | |
Wickerhamomyces tratensis | NBRC 107799T | AB607029 | AB607028 | [82] |
CBS 12176 | KY105935 | KY110150 | [124] | |
Wickerhamomyces xylosica | CBS 12320T | NR160310 | AB557867 | [5] |
NT31 | AB704715 | NG064304 | [5] | |
Wickerhamomyces xylosivorus | NBRC 111553T | NR155013 | LC202858 | [4] |
14Y125 | ‒ | NG057186 | [4] | |
Saccharomyces cerevisiae | NRRL Y-12632T | AY046146 | JQ689017 | [128] |
Spathaspora allomyrinae | CBS 13924T | KP054268 | KP054267 | [129] |
Species | Growth in/at * | Ascospores on 5% MEA | True Hyphae | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ga | Sor | DXy | LAr | DAr | Rh | Su | Cel | Mlb | Raf | St | Rbl | DGlu | Man | Glt | 2-ket | Cit | NO3 | ‒V | 37 °C | |||
W. alni | ‒ | ‒ | + | ‒ | ‒ | + | + | + | ‒ | ‒ | ‒ | v | + | + | ‒ | ‒ | + | + | ‒ | ‒ | + | ‒ |
W. anomalus | v | ‒ | v | v | ‒ | ‒ | + | + | ‒ | + | + | v | + | + | ‒ | ‒ | + | + | + | v | + | ‒ |
W. arborarius | + | l/‒ | + | v | v | l/+ | + | v | + | + | + | + | + | + | ‒ | n | + | + | n | ‒ | ‒ | ‒ |
W. bisporus | ‒ | ‒ | + | w/‒ | ‒ | + | + | + | ‒ | ‒ | ‒ | v | w/+ | v | ‒ | ‒ | + | + | ‒ | ‒ | n | + |
W. bovis | ‒ | ‒ | + | + | ‒ | v | + | + | ‒ | ‒ | v | ‒ | + | + | ‒ | ‒ | + | ‒ | ‒ | + | + | ‒ |
W. canadensis | ‒ | ‒ | + | ‒ | ‒ | w/+ | + | + | ‒ | ‒ | ‒ | v | + | w/+ | ‒ | ‒ | + | v | ‒ | + | + | v |
W. chambardii | + | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | + | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | w | ‒ | ‒ | ‒ | + | ‒ |
W. chaumierensis | ‒ | ‒ | + | ‒ | n | ‒ | + | + | ‒ | ‒ | n | n | ‒ | ‒ | n | ‒ | n | ‒ | n | ‒ | n | ‒ |
W. ciferrii | + | ‒ | w/+ | w/+ | ‒ | w/+ | + | w/+ | ‒ | + | + | + | + | + | ‒ | ‒ | + | + | + | w/‒ | + | v |
W. edaphicus | + | ‒ | + | w/‒ | ‒ | + | + | + | + | + | + | + | + | + | l/‒ | ‒ | + | + | + | w | n | ‒ |
W. hampshirensis | ‒ | ‒ | + | ‒ | ‒ | s | + | + | ‒ | ‒ | ‒ | w/+ | + | v | ‒ | ‒ | s | ‒ | ‒ | ‒ | + | ‒ |
W. kurtzmanii | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | + | ‒ | w | ‒ | ‒ | ‒ | ‒ | w | ‒ | n | ‒ | + | ‒ | ‒ | ‒ | ‒ |
W. lynferdii | + | ‒ | ‒ | ‒ | ‒ | ‒ | + | + | ‒ | + | ‒ | + | + | + | ‒ | ‒ | + | + | + | ‒ | + | ‒ |
W. menglaensis | ‒ | ‒ | w | w | ‒ | w | ‒ | + | ‒ | ‒ | w | ‒ | + | + | ‒ | ‒ | + | + | + | n | ‒ | ‒ |
W. mori | ‒ | + | ‒ | ‒ | w | ‒ | + | ‒ | ‒ | ‒ | ‒ | ‒ | n | + | ‒ | ‒ | w | ‒ | + | ‒ | ‒ | ‒ |
W. mucosus | ‒ | + | + | ‒ | v | ‒ | + | + | ‒ | ‒ | + | ‒ | + | w/+ | ‒ | + | ‒ | ‒ | ‒ | ‒ | + | ‒ |
W. myanmarensis | + | ‒ | s | w | s | ‒ | + | s | ‒ | s | + | + | + | + | ‒ | n | + | + | + | + | + | ‒ |
W. ochangensis | ‒ | ‒ | + | ‒ | ‒ | + | ‒ | + | ‒ | ‒ | ‒ | ‒ | + | + | ‒ | ‒ | ‒ | + | n | + | n | ‒ |
W. onychis | ‒ | ‒ | + | v | v | ‒ | + | + | ‒ | + | ‒ | ‒ | + | + | ‒ | ‒ | + | ‒ | ‒ | + | + | ‒ |
W. orientalis | + | n | w | w | w | w/‒ | + | + | w | w | ‒ | w | n | w | n | n | ‒ | ‒ | ‒ | + | ‒ | + |
W. patagonicus | w | ‒ | + | ‒ | ‒ | + | n | w | ‒ | w | w | ‒ | w | ‒ | ‒ | n | ‒ | ‒ | + | ‒ | n | ‒ |
W. pijperi | ‒ | + | + | ‒ | ‒ | ‒ | ‒ | + | ‒ | ‒ | ‒ | ‒ | + | + | ‒ | ‒ | v | ‒ | ‒ | ‒ | + | ‒ |
W. psychrolipolyticus | ‒ | ‒ | + | ‒ | + | + | + | + | ‒ | + | + | ‒ | + | + | n | n | + | + | n | ‒ | ‒ | ‒ |
W. queroliae | ‒ | ‒ | + | + | ‒ | + | + | ‒ | ‒ | ‒ | ‒ | + | + | + | ‒ | ‒ | w/s | + | ‒ | + | ‒ | ‒ |
W. rabaulensis | ‒ | ‒ | + | + | ‒ | v | + | + | ‒ | + | ‒ | + | + | + | ‒ | ‒ | + | ‒ | ‒ | + | + | ‒ |
W. scolytoplatypi | + | ‒ | s | ‒ | ‒ | s | + | + | ‒ | ‒ | + | s | + | + | ‒ | ‒ | ‒ | + | ‒ | ‒ | + | ‒ |
W. siamensis | s | ‒ | s | ‒ | ‒ | ‒ | + | w | ‒ | w | w | ‒ | w | w | ‒ | ‒ | ‒ | ‒ | ‒ | + | + | - |
W. silvicola | + | v | + | + | ‒ | + | v | + | ‒ | ‒ | ‒ | + | + | v | ‒ | ‒ | v | + | ‒ | v | + | v |
W. spegazzinii | + | ‒ | + | ‒ | ‒ | + | + | + | + | + | s | ‒ | + | + | ‒ | ‒ | w | + | + | + | + | ‒ |
W. strasburgensis | + | ‒ | + | + | ‒ | + | + | + | ‒ | + | ‒ | + | + | + | ‒ | ‒ | + | ‒ | ‒ | v | + | ‒ |
W. subpelliculosus | v | ‒ | v | v | v | ‒ | + | v | ‒ | + | v | v | + | + | ‒ | ‒ | + | + | ‒ | v | + | v |
W. sydowiorum | + | ‒ | v | + | ‒ | + | + | + | + | + | v | + | + | + | ‒ | ‒ | + | + | + | ‒ | + | ‒ |
W. sylviae | v | ‒ | s/‒ | + | + | +,‒ | w/‒ | s/‒ | ‒ | ‒ | w/+ | s/‒ | ‒ | ‒ | ‒ | ‒ | ‒ | v | + | + | ‒ | ‒ |
W. tratensis | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | v | ‒ | ‒ | ‒ | ‒ | v | v | ‒ | ‒ | ‒ | n | n | + | n | ‒ |
W. xylosicus | ‒ | + | + | ‒ | ‒ | ‒ | + | + | ‒ | ‒ | ‒ | ‒ | ‒ | + | ‒ | w | ‒ | ‒ | n | ‒ | + | ‒ |
W. xylosivorus | w/‒ | ‒ | + | ‒ | ‒ | + | ‒ | + | ‒ | w | ‒ | ‒ | + | ‒ | n | ‒ | ‒ | + | + | n | ‒ | ‒ |
W. lannaensis | ‒ | ‒ | + | ‒ | ‒ | + | ‒ | + | ‒ | ‒ | ‒ | ‒ | + | + | ‒ | ‒ | ‒ | + | w | ‒ | ‒ | ‒ |
W. nanensis | + | ‒ | ‒ | ‒ | ‒ | ‒ | ‒ | + | ‒ | ‒ | ‒ | ‒ | ‒ | + | ‒ | ‒ | + | w | w | ‒ | ‒ | ‒ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nundaeng, S.; Suwannarach, N.; Limtong, S.; Khuna, S.; Kumla, J.; Lumyong, S. An Updated Global Species Diversity and Phylogeny in the Genus Wickerhamomyces with Addition of Two New Species from Thailand. J. Fungi 2021, 7, 957. https://doi.org/10.3390/jof7110957
Nundaeng S, Suwannarach N, Limtong S, Khuna S, Kumla J, Lumyong S. An Updated Global Species Diversity and Phylogeny in the Genus Wickerhamomyces with Addition of Two New Species from Thailand. Journal of Fungi. 2021; 7(11):957. https://doi.org/10.3390/jof7110957
Chicago/Turabian StyleNundaeng, Supakorn, Nakarin Suwannarach, Savitree Limtong, Surapong Khuna, Jaturong Kumla, and Saisamorn Lumyong. 2021. "An Updated Global Species Diversity and Phylogeny in the Genus Wickerhamomyces with Addition of Two New Species from Thailand" Journal of Fungi 7, no. 11: 957. https://doi.org/10.3390/jof7110957
APA StyleNundaeng, S., Suwannarach, N., Limtong, S., Khuna, S., Kumla, J., & Lumyong, S. (2021). An Updated Global Species Diversity and Phylogeny in the Genus Wickerhamomyces with Addition of Two New Species from Thailand. Journal of Fungi, 7(11), 957. https://doi.org/10.3390/jof7110957