Entomopathogenic Potential of Simplicillium lanosoniveum Native Strain in Suppressing Invasive Whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae), Infesting Coconut
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Cultures
2.2. Fungal Isolation
2.3. Identification of the Fungus
2.3.1. Morphological Identification
2.3.2. Genetic Identification
2.4. Virulence Bioassays
2.4.1. Conidial Preparation
2.4.2. Experimental Design
2.5. Field Virulence of S. lanosoniveum
2.6. Statistical Analysis
3. Results
3.1. Fungal Identification
3.1.1. Morphological Identification
3.1.2. Genetic Identification
3.2. Virulence Bioassay
3.3. Determination of the Lethal Concentration (LC50) and Lethal Time (LT50)
3.4. Field Virulence of Entomopathogenic Fungi
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sundararaj, R.; Selvaraj, K. Invasion of rugose spiralling whitefly, Aleurodicus rugioperculatus (Hemiptera: Aleyrodidae): A potential threat to coconut in India. Phytoparasitica 2017, 45, 71–74. [Google Scholar] [CrossRef]
- Martin, J.H. The whiteflies of Belize (Hemiptera: Aleyrodidae) Part 1—Introduction and account of the subfamily Aleurodicinae Quaintance and Baker. Zootaxa 2004, 681, 1–119. [Google Scholar] [CrossRef]
- Francis, A.W.; Stocks, I.C.; Smith, T.R.; Boughton, A.J.; Mannion, C.M.; Osborne, L.S. Host plants and natural enemies of rugose spiraling whitefly (Hemiptera: Aleyrodidae) in Florida. Fla. Entomol. 2016, 99, 150–153. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Mckenzie, C.L.; Mannion, C.; Stocks, I.; Smith, T.; Osborne, L.S. Rugose spiraling whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae). EENY578. University of Florida, IFAS Extension. Available online: https://entnemdept.ufl.edu/creatures/orn/Aleurodicus_rugioperculatus.htm (accessed on 5 January 2018).
- Stocks, I.C.; Hodges, G. The Rugose Spiralling Whitefly, Aleurodicus rugioperculatus Martin, a New Exotic Whitefly in South Florida (Hemiptera: Aleyrodidae); DACS-P-01745; Florida Department of Agriculture and Consumer Services, Division of Plant Industry: Tallahassee, FL, USA, 2012; pp. 1–6. [Google Scholar]
- Shanas, S.; Job, J.; Joseph, T.; Anjukrishnan, G. First report of invasive rugoase spiraling whitfely Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae) from the old world. Entomon 2016, 41, 365–368. [Google Scholar]
- Selvaraj, K.; Sundararaj, R.; Venkatesan, T.; Ballal, C.R.; Jalali, S.K.; Gupta, A.; Mrudula, H.K. Potential natural enemies of the invasive rugose spiraling whitefly, Aleurodicus rugioperculatus Martin in India. J. Biol. Control 2016, 30, 236–239. [Google Scholar] [CrossRef] [Green Version]
- Selvaraj, K.; Gupta, A.; Venkatesan, T.; Jalali, S.K.; Ballal, C.R.; Sundararaj, R. First record of invasive rugose spiraling whitefly Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae) along with parasitoids in Karnataka. J. Biol. Control 2017, 31, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Kepler, R.M.; Luangsa-Ard, J.J.; Hywel-Jones, N.L. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 2017, 8, 335–353. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Kobori, N.N.; Quintela, E.D.; Delalibera, I. The virulence of entomopathogenic fungi against Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) and their conidial production using solid substrate fermentation. Biol. Control 2013, 66, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Li, S.J.; Xue, X.; Ahmed, M.Z.; Ren, S.X.; Du, Y.Z.; Wu, J.H. Host plants and natural enemies of Bemisia tabaci (Hemiptera: Aleyrodidae) in China. Insect Sci. 2011, 18, 101–120. [Google Scholar] [CrossRef]
- Faria, M.; Wraight, S.P. Biological control of Bemisia tabaci with fungi. Crop Prot. 2001, 20, 767–778. [Google Scholar] [CrossRef]
- Gao, T.; Wang, Z.; Huang, Y.; Keyhani, N.O.; Huang, Z. Lack of resistance development in Bemisia tabaci to Isaria fumosorosea after multiple generations of selection. Sci. Rep. 2017, 7, 42727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvaraj, K.; Venkatesan, T.; Sumalatha, B.V.; Kiran, C.M. Invasive rugose spiralling whitefly Aleurodicus rugioperculatus Martin, a serious pest of oil palm Elaeis guinnensis in India. J. Oil Palm Res. 2019, 31, 651–656. [Google Scholar]
- Humber, R.A. Identification of entomopathogenic fungi. In Manual of Techniques in Invertebrate Pathology; Lacey, L.A., Ed.; Academic Press: London, UK, 2012; pp. 151–187. [Google Scholar]
- Zare, R.; Gams, W. A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwig. 2001, 73, 1–50. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Wei, D.-P.; Wanasinghe, D.N.; Hyde, K.D.; Mortimer, P.E.; Xu, J.-C.; Xiao, Y.-P.; Bhunjun, C.S.; Toanun, C. The genus Simplicillium. MycoKeys 2019, 60, 69–92. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Abbott, W.S. A method for computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis; Cambridge University Press: Cambridge, UK, 1971; ISBN 052108041X. [Google Scholar]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, J.L.; Savin, N.E.; Russell, R.M.; Preisler, H.K. Bioassays with Arthropods; CRC Press: Boca Raton, FL, USA, 2007; ISBN 9780849323317. [Google Scholar]
- Pandi, P.G.G.; Chander, S.; Pal, M.; Soumia, P.S. Impact of elevated CO2 on Oryza sativa phenology and brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) population. Curr. Sci. 2018, 114, 1767–1777. [Google Scholar] [CrossRef]
- Vega, F.E.; Goettel, M.S.; Blackwell, M.; Chandler, D.; Jackson, M.A.; Keller, S.; Koike, M.; Maniania, N.K.; Monzón, A.; Ownley, B.H. Fungal entomopathogens: New insights on their ecology. Fungal Ecol. 2009, 2, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 2007, 17, 879–920. [Google Scholar] [CrossRef]
- Lacey, L.A.; Frutos, R.; Kaya, H.K.; Vail, P. Insect pathogens as biological control agents: Do they have a future? Biol. Control 2001, 21, 230–248. [Google Scholar] [CrossRef] [Green Version]
- Butt, T.M.; Jackson, C.; Magan, N. (Eds.) Introduction: Fungal biological control agents: Progress, problems and potential. In Fungi as Biological Control Agents: Progress, Problems and Potential; CABI Publishing: Wallingford, UK, 2001; pp. 1–8. [Google Scholar]
- Sun, J.Z.; Liu, X.Z.; McKenzie, E.H.; Jeewon, R.; Liu, K.J.; Zhang, X.L.; Zhao, Q.; Hyde, K.D. Fungicolous fungi: Terminology, diversity, distribution, evolution, and species checklist. Fungal Divers. 2019, 95, 337–430. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, X.Y.; Nong, X.H.; Wang, J.; Huang, Z.H.; Qi, S.H. Eight linear peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020. Tetrahedron 2016, 72, 3092–3097. [Google Scholar] [CrossRef]
- Dang, L.Q.; Shin, T.S.; Park, M.S.; Choi, Y.H.; Choi, G.J.; Jang, K.S.; Kim, I.S.; Kim, J.C. Antimicrobial Activities of Novel Mannosyl Lipids Isolated from the Biocontrol Fungus Simplicillium lamellicola BCP against Phytopathogenic Bacteria. J. Agric. Food Chem. 2014, 62, 3363–3370. [Google Scholar] [CrossRef]
- Liu, F.; Cai, L. Morphological and molecular characterization of a novel species of Simplicillium from China. Cryptogam. Mycol. 2012, 33, 137–144. [Google Scholar] [CrossRef]
- Chen, R.; Huang, C.; Li, J.; Tsay, J. Evaluation of characteristics of Simplicillium lanosoniveum on pathogenicity to aphids and in vitro antifungal potency against plant pathogenic fungi. Int. J. Environ. Agric. Res. 2017, 3. Available online: https://ijoear.com/Paper-January-2017/IJOEAR-JAN-2017-7.pdf (accessed on 5 January 2018).
- Chen, W.H.; Liu, C.; Han, Y.F.; Liang, J.D.; Tian, W.Y.; Liang, Z.Q. Three novel insect-associated species of Simplicillium (Cordycipitaceae; Hypocreales) from Southwest China. MycoKeys 2019, 58, 83. [Google Scholar] [CrossRef]
- Skaptsov, M.; Smirnov, S.; Kutsev, M.; Uvarova, O.; Sinitsyna, T.; Shmakov, A.; Matsyura, A. Pathogenicity of Simplicillium lanosoniveum to Coccus hesperidum. Ukr. J. Ecol. 2017, 7, 689–691. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Xie, Y.; Fan, J. Pathogenicity of Simplicillium lanosoniveum TYL001 isolated from Pseudaulacaspis pentagona. Mycosystema 2016, 35, 559–568. [Google Scholar]
- Colmenarez, Y.; Moore, D.; Polar, P.; Vasquez, C. Population trends of the red palm mite, Raoiella indica hirst (Acari: Tenuipalpidae) and associated entomopathogenic fungi in Trinidad, Antigua, ST Kitts and Nevis and Dominica. Acarologia 2014, 54, 433–442. [Google Scholar] [CrossRef]
- Lim, S.Y.; Lee, S.; Kong, H.G.; Lee, J. Entomopathogenicity of Simplicillium lanosoniveum isolated in Korea. Mycobiology 2014, 42, 317–321. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Liu, B.; Li, L.Y.; Zhu, X.F.; Wang, Y.Y.; Wang, J.Q.; Duan, Y.X.; Chen, L.J. Simplicillium chinense: A biological control agent against plant parasitic nematodes. Biocontrol Sci. Technol. 2013, 23, 980–986. [Google Scholar] [CrossRef]
- Polar, P.; Kairo, M.T.K.; Moore, D.; Pegram, R.; John, S.; Peterkin, D. Assessment of fungal isolates for the development of a myco-acaricide for cattle tick control. Vector Borne Zoonotic Dis. 2005, 5, 276–284. [Google Scholar] [CrossRef]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.; Brahamanage, R.S.; Brooks, S. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.F.; Fang, S.T.; Li, W.Z.; Liu, S.J.; Wang, J.H.; Xia, C.H. A new minor diketopiperazine from the sponge-derived fungus Simplicillium sp. YZ-11. Nat. Prod. Res. 2015, 29, 2013–2017. [Google Scholar] [CrossRef] [PubMed]
- Takata, K.; Iwatsuki, M.; Yamamoto, T.; Shirahata, T.; Nonaka, K.; Masuma, R.; Hayakawa, Y.; Hanaki, H.; Kobayashi, Y.; Petersson, G.A.; et al. Aogacillins A and B produced by Simplicillium sp. FKI-5985: New circumventors of arbekacin resistance in MRSA. Org. Lett. 2013, 15, 4678–4681. [Google Scholar] [CrossRef]
- Chen, R.S.; Huang, C.C.; Li, J.C.; Tsay, G.J. First report of Simplicillium lanosoniveum causing brown spot on Salvinia auriculata and S. molesta in Taiwan. Plant Dis. 2008, 92, 1589. [Google Scholar] [CrossRef]
- Ward, N.; Schneider, R.W.; Aime, M.C. Colonization of soybean rust sori by Simplicillium lanosoniveum. Fungal Ecol. 2011, 4, 303–308. [Google Scholar] [CrossRef]
- Gauthier, N.W.; Maruthachalam, K.; Subbarao, K.V.; Brown, M.; Xiao, Y.; Robertson, C.L.; Schneider, R.W. Mycoparasitism of Phakopsora pachyrhizi, the soybean rust pathogen, by Simplicillium lanosoniveum. Biol. Control 2014, 76, 87–94. [Google Scholar] [CrossRef]
- Scopel, M.; de Santos, O.; Frasson, A.P.; Abraham, W.R.; Tasca, T.; Henriques, A.T.; Macedo, A.J. Anti-Trichomonas vaginalis activity of marine-associated fungi from the south Brazilian coast. Exp. Parasitol. 2013, 133, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Luyen, V.T. Identification of the entomopathogenic fungi sample DL0069 by combination of morphological and molecular phylogenetic analyses. Vietnam J. Sci. Technol. 2017, 55, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Shin, T.S.; Yu, N.H.; Lee, J.; Choi, G.J.; Kim, J.C.; Shin, C.S. Development of a biofungicide using a mycoparasitic fungus Simplicillium lamellicola BCP and its control efficacy against gray mold diseases of tomato and ginseng. Plant Pathol. J. 2017, 33, 337–344. [Google Scholar] [CrossRef]
- Yu, Y.T.; He, S.H.; Zhao, Q.M. Isolation and identification of matrine-producing fungal endophytes from Sophora alopecuroides in Ningxia. Sci. Agric. Sin. 2013, 46, 2643–2654. [Google Scholar] [CrossRef]
- Fukuda, T.; Sudoh, Y.; Tsuchiya, Y.; Okuda, T.; Igarashi, Y. Isolation and biosynthesis of preus sin B, a pyrrolidine alkaloid from Simplicillium lanosoniveum. J. Nat. Prod. 2014, 77, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.Y.; Chen, J.Y.; Dong, Q.L.; Guan, R.J.; Yan, S.Y. Optimization and kinetics analyses of exopolysaccharide production by Simplicillium lanosoniveum. Sci. Technol. Food Ind. 2016, 37, 185–191. [Google Scholar] [CrossRef]
- Dong, Q.L.; Dong, R.Z.; Xing, X.Y.; Li, Y.K. A new antibiotic produced by the cyanobacterium-symbiotic fungus Simplicillium lanosoniveum. Nat. Prod. Res. 2018, 32, 1348–1352. [Google Scholar] [CrossRef]
- Liang, X.; Nong, X.H.; Huang, Z.H.; Qi, S.H. Antifungal and antiviral cyclic peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020. J. Agric. Food Chem. 2017, 65, 5114–5121. [Google Scholar] [CrossRef]
- Nagasi, A.; Paster, B.L.; Brownsbridge, M. Screening and bioassay of entomopathogenic fungi for the control of silver leaf whitefly, Bemisia argentifolia. Insect Sci. Appl. 1998, 18, 37–44. [Google Scholar]
- Scorsetti, A.C.; Humber, R.A.; De Gregorio, C.; Lastra, C.C.L. New records of entomopathogenic fungi infecting Bemisia tabaci and Trialeurodes vaporariorum, pests of horticultural crops in Argentina. Biocontrol 2008, 53, 787–796. [Google Scholar] [CrossRef]
- Wraight, S.P.; Carruthersb, R.I.; Bradley, C.A.; Jaronski, S.T.; Lacey, L.A.; Wood, P.; Galaini-Wraight, S. Pathogenicity of the entomopathogenic fungi Paecilomyces spp. and Beauveria bassiana against the silverleaf whitefly, Bemisia argentifolii. J. Invertebr. Pathol. 1998, 71, 217–226. [Google Scholar] [CrossRef]
- Eyal, J.; Mabud, M.A.; Fischbein, K.L.; Walter, J.F.; Osborne, L.S.; Landa, Z. Assessment of Beauveria bassiana Nov. EO-1 strain, which produces a red pigment for microbial control. Appl. Biochem. Biotechnol. 1994, 44, 65–80. [Google Scholar] [CrossRef]
- Boopathi, T.; Karuppuchamy, P.; Singh, B.S.; Kalyanasundaram, M.; Mohankumar, S.; Ravi, M. Microbial control of the invasive spiraling whitefly on cassava with entomopathogenic fungi. Braz. J. Microbiol. 2015, 46, 1077–1085. [Google Scholar] [CrossRef] [Green Version]
- Sumalatha, B.V.; Selvaraj, K.; Poornesha, B.; Ramanujam, B. Pathogenicity of entomopathogenic fungus Isaria fumosorosea on rugose spiralling whitefly Aleurodicus rugioperculatus and its effect on parasitoid Encarsia guadeloupae. Biocontrol Sci. Technol. 2020, 30, 1150–1161. [Google Scholar] [CrossRef]
- Kiewnick, S. Effect of temperature on growth, germination, germ-tube extension and survival of Paecilomyces lilacinus strain 251. Biocontrol Sci. Technol. 2006, 16, 535–546. [Google Scholar] [CrossRef]
- Bugeme, D.M.; Maniania, N.K.; Knapp, M.; Boga, H.I. Effect of temperature on virulence of Beauveria bassiana and Metarhizium anisopliae isolates to Tetranychus evansi. Exp. Appl. Acarol. 2008, 46, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Yeo, Y.; Pell, J.K.; Alderson, P.G.; Clark, S.J.; Pye, B.J. Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species. Pest Manag. Sci. 2003, 59, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Fargues, J.; Goettel, M.S.; Smith, N.; Ouedraogo, A.; Rougier, M. Effect of temperature on vegetative growth of Beauveria bassiana isolates from different origins. Mycologia 1997, 89, 383–392. [Google Scholar] [CrossRef]
- Devi, K.U.; Sridevi, V.; Mohan, C.M.; Padmavathi, J. Effect of high temperature and water stress on in vitro germination and growth in isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin. J. Invertebr. Pathol. 2005, 88, 181–189. [Google Scholar] [CrossRef]
- Senthil Kumar, C.M.; Jacob, T.K.; Devasahayam, S.; D’Silva, S.; Kumar, N.K.K. Isolation and characterization of a Lecanicillium psalliotae isolate infecting cardamom thrips (Sciothrips cardamomi) in India. BioControl 2015, 60, 363–373. [Google Scholar] [CrossRef]
Developmental Stages of RSW | n † | X2 (DF) ‡ | Slope | LC50 * | LC50 Confidence Interval | LC90 | LC90 Confidence Interval | ||
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | Lower | Upper | ||||||
Egg | 958 | 11.20 (3) | 6.14 ± 0.49 | 4.723 × 104 a | 3.799 × 103 | 4.313 × 105 | 7.706 × 107 a | 6.864 × 106 | 9.560 × 109 |
First instar | 387 | 03.55 (3) | 4.56 ± 0.69 | 4.946 × 104 ab | 4.270 × 104 | 5.434 × 105 | 10.122 × 107 a | 8.345 × 106 | 15.99 × 109 |
Second-third instar | 247 | 09.89 (3) | 5.03 ± 0.55 | 5.109 × 105 ab | 4.653 × 104 | 6.350 × 106 | 9.536 × 108 a | 7.571 × 106 | 15.221 × 1010 |
Fourth instar/pupae | 204 | 00.26 (3) | 4.07 ± 0.76 | 5.920 × 105 b | 5.232 × 105 | 6.700 × 106 | 11.383 × 108 a | 9.099 × 107 | 19.937 × 1010 |
Developmental Stages of RSW | n † | X2 (DF) ‡ | Slope | LT50 * | LT50 Confidence Interval | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Egg | 165 | 1.523 (4) | 5.54 ± 0.38 | 4.27 a | 4.09 | 4.45 |
First instar | 43 | 0.565 (4) | 7.67 ± 0.91 | 4.86 b | 4.57 | 5.16 |
Second-third instar | 63 | 2.406 (4) | 5.16 ± 0.59 | 4.56 ab | 4.23 | 4.88 |
Fourth instar/pupae | 35 | 2.680 (4) | 10.4 ± 1.29 | 5.89 c | 5.59 | 6.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sujithra, M.; Prathibha, H.V.; Rajkumar, M.; Guru-Pirasanna-Pandi, G.; Senthil-Nathan, S.; Hegde, V. Entomopathogenic Potential of Simplicillium lanosoniveum Native Strain in Suppressing Invasive Whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae), Infesting Coconut. J. Fungi 2021, 7, 964. https://doi.org/10.3390/jof7110964
Sujithra M, Prathibha HV, Rajkumar M, Guru-Pirasanna-Pandi G, Senthil-Nathan S, Hegde V. Entomopathogenic Potential of Simplicillium lanosoniveum Native Strain in Suppressing Invasive Whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae), Infesting Coconut. Journal of Fungi. 2021; 7(11):964. https://doi.org/10.3390/jof7110964
Chicago/Turabian StyleSujithra, Maruthakasi, Hanumanthappa Veerappa Prathibha, Manikappa Rajkumar, Govindharaj Guru-Pirasanna-Pandi, Sengottayan Senthil-Nathan, and Vinayaka Hegde. 2021. "Entomopathogenic Potential of Simplicillium lanosoniveum Native Strain in Suppressing Invasive Whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae), Infesting Coconut" Journal of Fungi 7, no. 11: 964. https://doi.org/10.3390/jof7110964
APA StyleSujithra, M., Prathibha, H. V., Rajkumar, M., Guru-Pirasanna-Pandi, G., Senthil-Nathan, S., & Hegde, V. (2021). Entomopathogenic Potential of Simplicillium lanosoniveum Native Strain in Suppressing Invasive Whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae), Infesting Coconut. Journal of Fungi, 7(11), 964. https://doi.org/10.3390/jof7110964