Co-Inoculation of an Endophytic and Arbuscular Mycorrhizal Fungus Improve Growth and Yield of Helianthus tuberosus L. under Field Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Endophytic Fungi Inoculum Preparation
2.2. In Vitro Effect of Endophytic Fungi on AMF Spore Germination
2.3. AMF Inoculum Preparation
2.4. Preparation of Sunchoke Seedlings and Fungal Inoculation
2.5. Soil Physicochemical Analysis
2.6. Experimental Design and Treatments
2.7. Determination of Plant Growth Parameters
2.8. Determination of Nutrient Uptake by Plants
2.9. Determination of Tuber Yield, Yield Components, and Harvest Index
2.10. AMF and EPF Colonization Assessment
2.11. Statistical Analysis
3. Results
3.1. In Vitro Effects of Endophytic Fungi on AMF Spore Germination and AMF Inoculum Preparation
3.2. Colonization of Endophytic Fungi and Arbuscular Mycorrhizal Fungi in Sunchoke
3.3. Effects of co-inoculation of EPF and AMF on Plant Growth Performance of Sunchoke
3.4. Effects of Co-Inoculation of EPF and AMF on Chlorophyll Contents
3.5. Effects of co-inoculation of EPF and AMF on the Yield of Sunchoke
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, L.; He, Q.S.; Corscadden, K.; Udenigwe, C.C. The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. Biotechnol. Rep. 2015, 5, 77–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Y.; Lei, P.; Zhang, Y.; Sha, Y.; Zhan, Y.; Xu, Z.; Li, S.; Xu, H.; Ouyang, P. Recent advances in bio-based multi-products of agricultural Jerusalem artichoke resources. Biotechnol. Biofuels 2018, 11, 151. [Google Scholar] [CrossRef] [PubMed]
- Sennoi, R.; Singkham, N.; Jogloy, S.; Boonlue, S.; Saksirirat, W.; Kesmala, T.; Patanothai, A. Biological control of southern stem rot caused by Sclerotium rolfsii using Trichoderma harzianum and arbuscular mycorrhizal fungi on Jerusalem artichoke (Helianthus tuberosus L.). Crop Prot. 2013, 54, 148–153. [Google Scholar] [CrossRef]
- Nacoon, S.; Jogloy, S.; Riddech, N.; Mongkolthanaruk, W.; Ekprasert, J.; Cooper, J.; Boonlue, S. Combination of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and production of Helianthus tuberosus under field condition. Sci. Rep. 2021, 11, 6501. [Google Scholar] [CrossRef]
- Khaekhum, S.; Lumyong, S.; Kuyper, T.; Boonlue, S. Species richness and composition of arbuscular mycorrhizal fungi occurring on eucalypt trees (Eucalyptus camaldulensis Dehnh.) in rainy and dry season. Curr. Res. Environ. Appl. Mycol. 2017, 7, 282–292. [Google Scholar] [CrossRef]
- Nacoon, S.; Ekprasert, J.; Riddech, N.; Mongkolthanaruk, W.; Jogloy, S.; Vorasoot, N.; Cooper, J.; Boonlue, S. Growth enhancement of sunchoke by arbuscular mycorrhizal fungi under drought condition. Rhizosphere 2021, 17, 100308. [Google Scholar] [CrossRef]
- Suebrasri, T.; Somteds, A.; Harada, H.; Kanokmedhakul, S.; Jogloy, S.; Ekprasert, J.; Lumyong, S.; Boonlue, S. Novel endophytic fungi with fungicidal metabolites suppress sclerotium disease. Rhizosphere 2020, 16, 100250. [Google Scholar] [CrossRef]
- Khaekhum, S.; Ekprasert, J.; Suebrasri, T.; Mongkolthanaruk, W.; Riddech, N.; Jogloy, S.; Boonlue, S. The first member of Exserohilum rostratum beneficial for promoting growth and yield of sunchoke (Helianthus tuberosus L.). Rhizosphere 2021, 19, 100379. [Google Scholar] [CrossRef]
- Suebrasri, T.; Harada, H.; Jogloy, S.; Ekprasert, J.; Boonlue, S. Auxin-producing fungal endophytes promote growth of sunchoke. Rhizosphere 2020, 16, 100271. [Google Scholar] [CrossRef]
- Wężowicz, K.; Rozpądek, P.; Turnau, K. Interactions of arbuscular mycorrhizal and endophytic fungi improve seedling survival and growth in post-mining waste. Mycorrhiza 2017, 27, 499–511. [Google Scholar] [CrossRef] [Green Version]
- Bilal, L.; Asaf, S.; Hamayun, M.; Gul, H.; Iqbal, A.; Ullah, I.; Lee, I.-J.; Hussain, A. Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 2018, 76, 117–127. [Google Scholar] [CrossRef]
- Liu, H.; Wu, M.; Liu, J.; Qu, Y.; Gao, Y.; Ren, A. Tripartite interactions between endophytic fungi, arbuscular mycorrhizal fungi, and Leymus chinensis. Microb. Ecol. 2020, 79, 98–109. [Google Scholar] [CrossRef]
- Van der Heijden, M.G.; Martin, F.M.; Selosse, M.A.; Sanders, I.R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 2015, 205, 1406–1423. [Google Scholar] [CrossRef]
- Klinsukon, C.; Lumyong, S.; Kuyper, T.W.; Boonlue, S. Colonization by arbuscular mycorrhizal fungi improves salinity tolerance of eucalyptus (Eucalyptus camaldulensis) seedlings. Sci. Rep. 2021, 11, 4362. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.R.; Loushambam, S.; Srivastava, A.K. Arbuscular Mycorrhizal and Dark Septate Endophyte Fungal Associations in Two Dominant Ginger Species of Northeast India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 885–894. [Google Scholar] [CrossRef]
- Domka, A.M.; Rozpaądek, P.; Turnau, K. Are fungal endophytes merely mycorrhizal copycats? The role of fungal endophytes in the adaptation of plants to metal toxicity. Front. Microbiol. 2019, 10, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardoim, P.R.; Van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.-J.; Song, S.-L.; Ma, C.-Y.; Zhang, W.; Sun, K.; Tang, M.-J.; Xie, X.-G.; Fan, K.-K.; Dai, C.-C. Endophytic fungus improves peanut drought resistance by reassembling the root-dwelling community of arbuscular mycorrhizal fungi. Fungal Ecol. 2020, 48, 100993. [Google Scholar] [CrossRef]
- Sennoi, R.; Jogloy, S.; Saksirirat, W.; Patanothai, A. Pathogenicity test of Sclerotium rolfsii, a causal agent of Jerusalem Artichoke (Helianthus tuberosus L.) stem rot. Asian J. Plant Sci. 2010, 9, 281–284. [Google Scholar] [CrossRef]
- Hepper, C.M. Germination and growth of Glomus caledonius spores: The effects of inhibitors and nutrients. Soil Biol. Biochem. 1979, 11, 269–277. [Google Scholar] [CrossRef]
- Boonlue, S.; Surapat, W.; Pukahuta, C.; Suwanarit, P.; Suwanarit, A.; Morinaga, T. Diversity and efficiency of arbuscular mycorrhizal fungi in soils from organic chili (Capsicum frutescens) farms. Mycoscience 2012, 53, 10–16. [Google Scholar] [CrossRef]
- Trouvelot, A.; Kough, J.; Gianinazzi-Pearson, V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthode d’estimation ayant une signification fonctionnelle. In Physiological and Genetical Aspects of Mycorrhizae, Proceedings of the 1st European Symposium on Mycorrhizae, Dijon, France, 1–5 July 1985; Gianinazzi-Pearson, V., Gianinazzi, S., Eds.; INRA Edition: Paris, France, 1986; pp. 217–221. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Jackson, M. Soil Chemical Analysis Prentice; Prentice-Hall of India Pvt. Ltd.: New Delhi, India, 1967; Volume 1, 498p. [Google Scholar]
- Schuman, G.; Stanley, M.; Knudsen, D. Automated total nitrogen analysis of soil and plant samples. Soil Sci. Soc. Am. J. 1973, 37, 480–481. [Google Scholar] [CrossRef]
- Hesse, P. A Textbook of Soil Chemical Analysis; Murray: London, UK, 1971. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 5, 39–46. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremner, J. Total nitrogen. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1965, 9, 1149–1178. [Google Scholar]
- Twine, J.; Williams, C. The determination of phosphorus in Kjeldahl digests of plant material by automatic analysis. Commun. Soil Sci. Plant Anal. 1971, 2, 485–489. [Google Scholar] [CrossRef]
- Saengkanuk, A.; Nuchadomrong, S.; Jogloy, S.; Patanothai, A.; Srijaranai, S. A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L.) tubers. Eur. Food Res. Technol. 2011, 233, 609–616. [Google Scholar] [CrossRef]
- Koske, R.; Gemma, J. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 1989, 92, 486–488. [Google Scholar] [CrossRef]
- Mehmood, A.; Hussain, A.; Irshad, M.; Hamayun, M.; Iqbal, A.; Khan, N. In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 2019, 77, 225–235. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Xue, F.; Nan, X.; Wang, H.; Hua, D.; Liu, J.; Yang, L.; Jiang, L.; Xiong, B. Nutritional value, bioactivity, and application potential of Jerusalem artichoke (Helianthus tuberosus L.) as a neotype feed resource. Anim. Nutr. 2020, 6, 429–437. [Google Scholar] [CrossRef]
- Rossini, F.; Provenzano, M.E.; Kuzmanović, L.; Ruggeri, R. Jerusalem artichoke (Helianthus tuberosus L.): A versatile and sustainable crop for renewable energy production in Europe. Agronomy 2019, 9, 528. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, A.; Siavash Moghaddam, S.; Ghiyasi, M.; Heydarzadeh, S.; Ghazizadeh, K.; Popović-Djordjević, J. The influence of chemical, organic and biological fertilizers on agrobiological and antioxidant properties of Syrian Cephalaria (Cephalaria syriaca L.). Agriculture 2019, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Copetta, A.; Todeschini, V.; Massa, N.; Bona, E.; Berta, G.; Lingua, G. Inoculation with arbuscular mycorrhizal fungi improves melon (Cucumis melo) fruit quality under field conditions and plant performance in both field and greenhouse. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2021, 155, 1063–1074. [Google Scholar] [CrossRef]
- Zhu, X.; Song, F.; Xu, H. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 2010, 20, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Wijesooriya, W.; Deshappriya, N. An inoculum of endophytic fungi for improved growth of a traditional rice variety in Sri Lanka. Trop. Plant Res. 2016, 3, 470–480. [Google Scholar] [CrossRef]
- Verbruggen, E.; van der Heijden, M.G.; Rillig, M.C.; Kiers, E.T. Mycorrhizal fungal establishment in agricultural soils: Factors determining inoculation success. New Phytol. 2013, 197, 1104–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, Y.A.; Jumpponen, A.; Rudgers, J.A. Divergence in diversity and composition of root-associated fungi between greenhouse and field studies in a semiarid grassland. Microb. Ecol. 2019, 78, 122–135. [Google Scholar] [CrossRef]
- Giovannini, L.; Palla, M.; Agnolucci, M.; Avio, L.; Sbrana, C.; Turrini, A.; Giovannetti, M. Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: Research strategies for the selection of the best performing inocula. Agronomy 2020, 10, 106. [Google Scholar] [CrossRef] [Green Version]
- Rosa, D.; Pogiatzis, A.; Bowen, P.; Kokkoris, V.; Richards, A.; Holland, T.; Hart, M. Performance and Establishment of a Commercial Mycorrhizal Inoculant in Viticulture. Agriculture 2020, 10, 539. [Google Scholar] [CrossRef]
- Aroca, R.; Ruiz-Lozano, J.M.; Zamarreño, Á.M.; Paz, J.A.; García-Mina, J.M.; Pozo, M.J.; López-Ráez, J.A. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 2013, 170, 47–55. [Google Scholar] [CrossRef]
- De Oliveira, J.; Rodrigues, C.; Vandenberghe, L.P.; Câmara, M.C.; Libardi, N.; Soccol, C.R. Gibberellic acid production by different fermentation systems using citric pulp as substrate/support. BioMed Res. Int. 2017, 2017, 5191046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibiang, S.R.; Sakamoto, K.; Kuwahara, N. Performance of tomato and lettuce to arbuscular mycorrhizal fungi and Penicillium pinophilum EU0013 inoculation varies with soil, culture media of inoculum, and fungal consortium composition. Rhizosphere 2020, 16, 100246. [Google Scholar] [CrossRef]
- Liu, Q.; Parsons, A.J.; Xue, H.; Fraser, K.; Ryan, G.D.; Newman, J.A.; Rasmussen, S. Competition between foliar Neotyphodium lolii endophytes and mycorrhizal Glomus spp. fungi in Lolium perenne depends on resource supply and host carbohydrate content. Funct. Ecol. 2011, 25, 910–920. [Google Scholar] [CrossRef] [Green Version]
- Roumeliotis, E.; Visser, R.G.; Bachem, C.W. A crosstalk of auxin and GA during tuber development. Plant Signal. Behav. 2012, 7, 1360–1363. [Google Scholar] [CrossRef] [Green Version]
- Javanmardi, J.; Rasuli, F. Potato yield and tuber quality as affected by gibberellic acid and zinc sulfate. Iran Agric. Res. 2017, 36, 7–12. [Google Scholar]
- Shuab, R.; Lone, R.; Naidu, J.; Sharma, V.; Imtiyaz, S.; Koul, K. Benefits of inoculation of arbuscular mycorrhizal fungi on growth and development of onion (Allium cepa) plant. Am.-Eurasian J. Agric. Environ. Sci. 2014, 14, 527–535. [Google Scholar]
Physical Properties | Texture Class | Chemical Properties | |||||||
---|---|---|---|---|---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | pH (1:1 H2O) | Organic Matter (%) | Total N (mg kg−1) | Total P (mg kg−1) | Total K (mg kg−1) | Available P (mg kg−1) | |
89.93 | 7.93 | 2.14 | Sand | 5.37 | 0.589 | 0.0188 | 150.50 | 171.64 | 44.13 |
Treatment | Plant Height (cm) | Stem Diameter (cm) | SPAD Values | Leaf Area Index | Plant Biomass (g/plant) | ||
---|---|---|---|---|---|---|---|
Leaf | Stem | Root | |||||
T1: Control (no inoculation) | 102.75 ± 8.51 c | 0.83 ± 0.13 d | 38.08 ± 1.52 c | 1599.70 ± 466.52 b | 53.93 ± 3.99 c | 54.03 ± 15.19 c | 27.06 ± 4.45 b |
T2: Full dose of chemical fertilizers | 125.90 ±8.98 a | 1.24 ± 0.09 a | 40.85 ± 0.61 a | 2817.90 ± 560.76 a | 94.24 ± 10.19 a | 94.34 ± 16.37 a | 41.94 ± 3.34 a |
T3: Half dose of chemical fertilizers | 109.15 ± 2.25 bc | 1.03 ± 0.05 c | 39.29 ± 0.72 b | 2088.60 ± 360.30 ab | 66.53 ± 12.44 bc | 62.27 ± 15.48 bc | 37.82 ± 7.47 ab |
T4: EPF inoculation | 113.12 ± 1.67 b | 1.11 ± 0.06 bc | 40.68 ± 0.14 a | 2 467.10 ± 521.52 ab | 74.36 ± 8.44 abc | 71.68 ± 8.43 abc | 40.83 ± 9.79 ab |
T5: AMF inoculation | 115.33 ± 5.59 b | 1.14 ± 0.05 abc | 40.80 ± 0.20 a | 2333.80 ± 778.98 ab | 73.08 ± 14.26 abc | 78.24 ± 16.73 abc | 41.13 ± 12.03 a |
T6: co-inoculation of EPF and AMF | 118.58 ± 4.34 ab | 1.18 ± 0.04 ab | 40.78 ± 0.25 a | 2581.60 ± 838.22 a | 83.47 ± 17.48 ab | 89.91 ± 15.46 ab | 42.36 ± 10.44 a |
CV | 5.65 | 7.33 | 1.91 | 26.02 | 16.60 | 19.77 | 23.75 |
F-test | * | * | * | * | ** | ** | * |
Treatment | Plant Root Growth | Nutrient Uptake (g kg−1) | |||||
---|---|---|---|---|---|---|---|
Length (cm) | Volume (cm3) | Diameter (mm) | Surface Area (cm2) | Nitrogen (N) | Phosphorus (P) | Potassium (K) | |
T1: Control (no inoculation) | 2794.20 ± 873.21 c | 20.43 ± 9.36 b | 1.03 ± 0.56 b | 1355.90 ± 280.53 c | 1 0.83 ± 2.10 | 1.88 ± 0.43 b | 20.3 ± 1.53 b |
T2: Full dose of chemical fertilizers | 4899.20 ± 713.88 ab | 31.06 ± 1.05 ab | 1.50 ± 0.31 ab | 2292.60 ± 465.73 ab | 1 3.30 ± 0.86 | 2.65 ± 0.17 ab | 23.75 ± 4.61 ab |
T3: Half dose of chemical fertilizers | 3525.30 ± 1166.25 bc | 25.90 ± 4.53 ab | 1.51 ± 0.34 ab | 1647.80 ± 355.24 bc | 1 2.15 ± 1.77 | 2.38 ± 0.66 ab | 21.73 ± 3.20 ab |
T4: EPF inoculation | 4906.60 ± 962.55 ab | 33.10 ± 7.31 a | 1.81 ± 0.31 a | 2376.70 ± 572.39 ab | 1 1.45 ± 1.98 | 2.88 ± 0.48 a | 22.05 ± 1.86 ab |
T5: AMF inoculation | 5573.50 ± 454.77 a | 33.33 ± 6.54 a | 1.86 ± 0.66 a | 2501.00 ± 819.05 a | 1 2.63 ± 4.09 | 3.15 ± 0.58 a | 24.73 ± 3.71 a |
T6: co-inoculation of EPF and AMF | 5664.70 ± 1925.18 a | 35.25 ± 7.49 a | 2.03 ± 0.36 a | 2613.30 ± 391.91 a | 1 3.35 ± 2.32 | 3.05 ± 0.51 a | 23.33 ± 3.18 ab |
CV | 24.50 | 23.65 | 29.34 | 26.13 | 15.10 | 14.45 | 11.18 |
F-test | * | * | * | * | ns | ** | * |
Treatment | Yield Component | Weight of Tubers Per Plant (g) | Harvest Index (HI) | Inulin Contents (%) | |
---|---|---|---|---|---|
Number of Tubers Per Plant (Tuber) | Weight of Individual Tuber (g) | ||||
T1: Control (no inoculation) | 14.50 ± 1.73 c | 8.05 ± 1.45 c | 42.92 ± 6.28 c | 0.32 ± 0.11 c | 23.67 ± 2.16 c |
T2: Full dose of chemical fertilizers | 18.25 ± 2.50 bc | 11.80 ± 4.16 abc | 70.23 ± 10.72 abc | 0.54 ± 0.07 ab | 30.48 ± 1.14 bc |
T3: Half dose of chemical fertilizers | 18.00 ± 2.87 bc | 10.12 ± 0.87 bc | 65.72 ± 31.60 bc | 0.44 ± 0.06 bc | 33.27 ± 1.92 b |
T4: EPF inoculation | 21.75 ± 0.96 ab | 13.20 ± 2.01 ab | 80.28 ± 22.69 ab | 0.55 ± 0.20 ab | 43.35 ± 4.46 a |
T5: AMF inoculation | 22.75 ± 3.90 ab | 13.63 ± 1.52 ab | 87.64 ± 9.96 ab | 0.61 ± 0.19 ab | 46.30 ± 4.98 a |
T6: co-inoculation of EPF and AMF | 25.75 ± 6.51 a | 14.33 ± 1.41 a | 98.33 ± 16.84 a | 0.64 ± 0.04 a | 50.32 ± 8.28 a |
CV | 16.04 | 16.18 | 27.29 | 23.96 | 12.63 |
F-test | ** | ** | * | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khaekhum, S.; Ekprasert, J.; Suebrasri, T.; Seemakram, W.; Mongkolthanaruk, W.; Riddech, N.; Jogloy, S.; Boonlue, S. Co-Inoculation of an Endophytic and Arbuscular Mycorrhizal Fungus Improve Growth and Yield of Helianthus tuberosus L. under Field Condition. J. Fungi 2021, 7, 976. https://doi.org/10.3390/jof7110976
Khaekhum S, Ekprasert J, Suebrasri T, Seemakram W, Mongkolthanaruk W, Riddech N, Jogloy S, Boonlue S. Co-Inoculation of an Endophytic and Arbuscular Mycorrhizal Fungus Improve Growth and Yield of Helianthus tuberosus L. under Field Condition. Journal of Fungi. 2021; 7(11):976. https://doi.org/10.3390/jof7110976
Chicago/Turabian StyleKhaekhum, Saranya, Jindarat Ekprasert, Thanapat Suebrasri, Wasan Seemakram, Wiyada Mongkolthanaruk, Nuntavun Riddech, Sanun Jogloy, and Sophon Boonlue. 2021. "Co-Inoculation of an Endophytic and Arbuscular Mycorrhizal Fungus Improve Growth and Yield of Helianthus tuberosus L. under Field Condition" Journal of Fungi 7, no. 11: 976. https://doi.org/10.3390/jof7110976
APA StyleKhaekhum, S., Ekprasert, J., Suebrasri, T., Seemakram, W., Mongkolthanaruk, W., Riddech, N., Jogloy, S., & Boonlue, S. (2021). Co-Inoculation of an Endophytic and Arbuscular Mycorrhizal Fungus Improve Growth and Yield of Helianthus tuberosus L. under Field Condition. Journal of Fungi, 7(11), 976. https://doi.org/10.3390/jof7110976