Antifungal Resistance in Dermatophytes: Genetic Considerations, Clinical Presentations and Alternative Therapies
Abstract
:1. Introduction
2. Focus on Terbinafine Resistance in Dermatophytes
2.1. First Reports of Terbinafine Resistant Associated Cases
2.2. The Indian Story
2.3. Emerging Reports from Europe
2.4. Emerging Reports from Asia
2.5. Reports from Other Continents
2.6. ABC Transporters in Terbinafine Resistance
2.7. Clinical Manifestations of Terbinafine Resistant Dermatophytes
2.7.1. T. rubrum Clinical Manifestations
Onychomycoses
Skin Dermatophytosis
2.7.2. T. mentagrophytes/interdigitale Clinical Manifestations
2.8. Summary of Alternative Therapies for Terbinafine Resistant Strains
3. Focus on Resistance to Azoles in Dermatophytes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukherjee, P.K.; Leidich, S.D.; Isham, N.; Leitner, I.; Ryder, N.S.; Ghannoum, M.A. Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrob. Agents Chemother. 2003, 47, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Favre, B.; Ghannoum, M.A.; Ryder, N.S. Biochemical characterization of terbinafine-resistant Trichophyton rubrum isolates. Med. Mycol. 2004, 42, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Osborne, C.S.; Leitner, I.; Favre, B.; Ryder, N.S. Amino acid substitution in Trichophyton rubrum squalene epoxidase associated with resistance to terbinafine. Antimicrob. Agents Chemother. 2005, 42, 525–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, C.S.; Leitner, I.; Hofbauer, B.; Fielding, C.A.; Favre, B.; Ryder, N.S. Biological, biochemical, and molecular characterization of a new clinical Trichophyton rubrum isolate resistant to terbinafine. Antimicrob. Agents Chemother. 2006, 50, 2234–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alipour, M.; Mozafari, N.A. Terbinafine susceptibility and genotypic heterogeneity in clinical isolates of Trichophyton mentagrophytes by random amplified polymorphic DNA (RAPD). J. Mycol. Med. 2015, 25, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Singh, A.; Singh, P.K.; Khurana, A.; Meis, J.F. Perspectives on misidentification of Trichophyton interdigitale/Trichophyton mentagrophytes using internal transcribed spacer region sequencing: Urgent need to update the sequence database. Mycoses 2019, 62, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Kabarriti, R.; Brodin, N.P.; Maron, M.I.; Tomé, W.A.; Halmos, B.; Guha, C.; Kalnicki, S.; Garg, M.K.; Ohri, N. Reply to Chowdhary et al. Adv. Radiat. Oncol. 2020, 5, 713–714. [Google Scholar] [CrossRef]
- Kano, R.; Kimura, U.; Kakurai, M.; Hiruma, J.; Kamata, H.; Suga, Y.; Harada, K. Trichophyton indotineae sp. nov.: A New Highly Terbinafine-Resistant Anthropophilic Dermatophyte Species. Mycopathologia 2020, 185, 947–958. [Google Scholar] [CrossRef]
- Tang, C.; Kong, X.; Ahmed, S.A.; Thakur, R.; Chowdhary, A.; Nenoff, P.; Uhrlass, S.; Verma, S.B.; Meis, J.F.; Kandemir, H.; et al. Taxonomy of the Trichophyton mentagrophytes/T. interdigitale Species Complex Harboring the Highly Virulent, Multiresistant Genotype T. indotineae. Mycopathologia 2021, 186, 315–326. [Google Scholar] [CrossRef]
- Verma, S.B.; Panda, S.; Nenoff, P.; Singal, A.; Rudramuruthy, S.M.; Uhrlass, S.; Das, A.; Bisherwal, K.; Shaw, D.; Vasani, R. The unprecedented epidemic-like scenario of dermatophytosis in India: I. Epidemiology, risk factors and clinical features. Indian J. Dermatol. Venereol. Leprol. 2021, 87, 154–175. [Google Scholar] [CrossRef]
- Singh, A.; Masih, A.; Khurana, A.; Singh, P.K.; Gupta, M.; Hagen, F.; Meis, J.F.; Chowdhary, A. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses 2018, 61, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Rudramurthy, S.M.; Shankarnarayan, S.A.; Dogra, S.; Shaw, D.; Mushtaq, K.; Paul, R.A.; Narang, T.; Chakrabarti, A. Mutation in the squalene epoxidase gene of trichophyton interdigitale and trichophyton rubrum associated with allylamine resistance. Antimicrob. Agents Chemother. 2018, 61, 477–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khurana, A.; Masih, A.; Chowdhary, A.; Sardana, K.; Borker, S.; Gupta, A.; Gautam, R.K.; Sharma, P.K.; Jain, D. Correlation of in vitro susceptibility based on MICs and squalene epoxidase mutations with clinical response to terbinafine in patients with TINEa corporis/cruris. Antimicrob. Agents Chemother. 2018, 62, e01038-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burmester, A.; Hipler, U.C.; Hensche, R.; Elsner, P.; Wiegand, C. Point mutations in the squalene epoxidase gene of Indian ITS genotype VIII T. mentagrophytes identified after DNA isolation from infected scales. Med. Mycol. Case Rep. 2019, 26, 23–24. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Masih, A.; Monroy-Nieto, J.; Singh, P.K.; Bowers, J.; Travis, J.; Khurana, A.; Engelthaler, D.M.; Meis, J.F.; Chowdhary, A. A unique multidrug-resistant clonal Trichophyton population distinct from Trichophyton mentagrophytes/Trichophyton interdigitale complex causing an ongoing alarming dermatophytosis outbreak in India: Genomic insights and resistance profile. Fungal Genet. Biol. 2019, 133, 103266. [Google Scholar] [CrossRef]
- Ebert, A.; Monod, M.; Salamin, K.; Burmester, A.; Uhrlaß, S.; Wiegand, C.; Hipler, U.C.; Krüger, C.; Koch, D.; Wittig, F.; et al. Alarming India-wide phenomenon of antifungal resistance in dermatophytes: A multicentre study. Mycoses 2020, 63, 717–728. [Google Scholar] [CrossRef]
- Hsieh, A.; Quenan, S.; Riat, A.; Toutous-Trellu, L.; Fontao, L. A new mutation in the SQLE gene of Trichophyton mentagrophytes associated to terbinafine resistance in a couple with disseminated tinea corporis. J. Mycol. Med. 2019, 29, 352–355. [Google Scholar] [CrossRef]
- Burmester, A.; Hipler, U.C.; Uhrlaß, S.; Nenoff, P.; Singal, A.; Verma, S.B.; Elsner, P.; Wiegand, C. Indian Trichophyton mentagrophytes squalene epoxidase erg1 double mutants show high proportion of combined fluconazole and terbinafine resistance. Mycoses 2020, 63, 1175–1180. [Google Scholar] [CrossRef]
- Shankarnarayan, S.A.; Shaw, D.; Sharma, A.; Chakrabarti, A.; Dogra, S.; Kumaran, M.S.; Kaur, H.; Ghosh, A.; Rudramurthy, S.M. Rapid detection of terbinafine resistance in Trichophyton species by Amplified refractory mutation system-polymerase chain reaction. Sci. Rep. 2020, 10, 1297. [Google Scholar] [CrossRef]
- Gaurav, V.; Bhattacharya, S.N.; Sharma, N.; Datt, S.; Kumar, P.; Rai, G.; Singh, P.K.; Taneja, B.; Das, S. Terbinafine resistance in dermatophytes: Time to revisit alternate antifungal therapy. J. Med. Mycol. 2021, 31, 101087. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Maeda, M.; Alshahni, M.M.; Tanaka, R.; Yaguchi, T.; Bontems, O.; Salamin, K.; Fratti, M.; Monod, M. Terbinafine resistance of Trichophyton clinical isolates caused by specific point mutations in the squalene epoxidase gene. Antimicrob. Agents Chemother. 2017, 61, e00115-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wingfield Digby, S.S.; Hald, M.; Arendrup, M.C.; Hjorth, S.V.; Kofoed, K. Darier disease complicated by terbinafine-resistant Trichophyton rubrum: A case report. Acta Derm. Venereol. 2017, 97, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Schøsler, L.; Andersen, L.K.; Arendrup, M.C.; Sommerlund, M. Recurrent terbinafine resistant Trichophyton rubrum infection in a child with congenital ichthyosis. Pediatr. Dermatol. 2018, 35, 259–260. [Google Scholar] [CrossRef]
- Saunte, D.M.L.; Hare, R.K.; Jørgensen, K.M.; Jørgensen, R.; Deleuran, M.; Zachariae, C.O.; Thomsen, S.F.; Bjørnskov-Halkier, L.; Kofoed, K.; Arendrup, M.C. Emerging terbinafine resistance in Trichophyton: Clinical characteristics, squalene epoxidase gene mutations, and a reliable EUCAST method for detection. Antimicrob. Agents Chemother. 2019, 63, e01126-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Süß, A.; Uhrlaß, S.; Ludes, A.; Verma, S.B.; Monod, M.; Krüger, C.; Nenoff, P. Extensive tinea corporis due to a terbinafine-resistant Trichophyton mentagrophytes isolate of the Indian genotype in a young infant from Bahrain in Germany. Hautarzt 2019, 70, 888–896. [Google Scholar] [CrossRef]
- Nenoff, P.; Verma, S.B.; Ebert, A.; Süß, A.; Fischer, E.; Auerswald, E.; Dessoi, S.; Hofmann, W.; Schmidt, S.; Neubert, K.; et al. Spread of terbinafine-resistant trichophyton mentagrophytes type VIII (India) in Germany–“the tip of the iceberg?”. J. Fungi 2020, 6, 207. [Google Scholar] [CrossRef]
- Łagowski, D.; Gnat, S.; Nowakiewicz, A.; Osińska, M.; Dyląg, M. Intrinsic resistance to terbinafine among human and animal isolates of Trichophyton mentagrophytes related to amino acid substitution in the squalene epoxidase. Infection 2020, 48, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Sacheli, R.; Harag, S.; Dehavay, F.; Evrard, S.; Rousseaux, D.; Adjetey, A.; Seidel, L.; Laffineur, K.; Lagrou, K.; Hayette, M.P. Belgian national survey on tinea capitis: Epidemiological considerations and highlight of terbinafine-resistant T. mentagrophytes with a mutation on SQLE gene. J. Fungi 2020, 6, 195. [Google Scholar] [CrossRef]
- Siopi, M.; Efstathiou, I.; Theodoropoulos, K.; Pournaras, S.; Meletiadis, J. Molecular epidemiology and antifungal susceptibility of trichophyton isolates in greece: Emergence of terbinafine-resistant trichophyton mentagrophytes type viii locally and globally. J. Fungi 2021, 7, 419. [Google Scholar] [CrossRef]
- Suzuki, S.; Mano, Y.; Furuya, N.; Fujitani, K. Discovery of terbinafine low susceptibility trichophyton rubrum strain in Japan. Biocontrol Sci. 2018, 23, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Salehi, Z.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Antifungal drug susceptibility profile of clinically important dermatophytes and determination of point mutations in terbinafine-resistant isolates. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1841–1846. [Google Scholar] [CrossRef] [PubMed]
- Hiruma, J.; Kitagawa, H.; Noguchi, H.; Kano, R.; Hiruma, M.; Kamata, H.; Harada, K. Terbinafine-resistant strain of Trichophyton interdigitale strain isolated from a tinea pedis patient. J. Dermatol. 2019, 46, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, H.; Matsumoto, T.; Hiruma, M.; Kimura, U.; Kano, R.; Yaguchi, T.; Fukushima, S.; Ihn, H. Tinea unguium caused by terbinafine-resistant Trichophyton rubrum successfully treated with fosravuconazole. J. Dermatol. 2019, 46, e446–e447. [Google Scholar] [CrossRef]
- Kakurai, M.; Harada, K.; Maeda, T.; Hiruma, J.; Kano, R.; Demitsu, T. Case of tinea corporis due to terbinafine-resistant Trichophyton interdigitale. J. Dermatol. 2020, 47, e104–e105. [Google Scholar] [CrossRef]
- Kimura, U.; Hiruma, M.; Kano, R.; Matsumoto, T.; Noguchi, H.; Takamori, K.; Suga, Y. Caution and warning: Arrival of terbinafine-resistant Trichophyton interdigitale of the Indian genotype, isolated from extensive dermatophytosis, in Japan. J. Dermatol. 2020, 47, e192–e193. [Google Scholar] [CrossRef]
- Hiruma, J.; Noguchi, H.; Hase, M.; Tokuhisa, Y.; Shimizu, T.; Ogawa, T.; Hiruma, M.; Harada, K.; Kano, R. Epidemiological study of terbinafine-resistant dermatophytes isolated from Japanese patients. J. Dermatol. 2021, 48, 564–567. [Google Scholar] [CrossRef]
- Taghipour, S.; Shamsizadeh, F.; Pchelin, I.M.; Rezaei-Matehhkolaei, A.; Mahmoudabadi, A.Z.; Valadan, R.; Ansari, S.; Katiraee, F.; Pakshir, K.; Zomorodian, K.; et al. Emergence of terbinafine resistant trichophyton mentagrophytes in iran, harboring mutations in the squalene epoxidase (Sqle) gene. Infect. Drug Resist. 2020, 13, 845. [Google Scholar] [CrossRef] [Green Version]
- Fattahi, A.; Shirvani, F.; Ayatollahi, A.; Rezaei-Matehkolaei, A.; Badali, H.; Lotfali, E.; Ghasemi, R.; Pourpak, Z.; Firooz, A. Multidrug-resistant Trichophyton mentagrophytes genotype VIII in an Iranian family with generalized dermatophytosis: Report of four cases and review of literature. Int. J. Dermatol. 2021, 60, 686–692. [Google Scholar] [CrossRef]
- Firooz, A.; Daneshpazhooh, M.; Lotfali, E.; Sharzad Kavkani, M.; Ghasemi, Z.; Khamesipoor, A.; Nassiri Kashani, M.; Miramin Mohammadi, A.; Skandari, S.E.; Ahmad Nasrollahi, S.; et al. Drug Sensitivity Profile of Fungi Isolated from Onychomycosis Patients and Evaluation of Squalene Epoxidase Mutation in One Terbinafine-Resistant Trichophyton mentagrophytes Species. Microb. Drug Resist. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Tang, C.; Singh, A.; Ahmed, S.A.; Al-Hatmi, A.M.S.; Chowdhary, A.; Nenoff, P.; Gräser, Y.; Hainsworth, S.; Zhan, P.; et al. Antifungal susceptibility and mutations in the squalene epoxidase gene in dermatophytes of the Trichophyton mentagrophytes species complex. Antimicrob. Agents Chemother. 2021, 65, AAC-00056. [Google Scholar] [CrossRef]
- Kano, R. Atp-binding cassette (Abc) transporter proteins in highly terbinafine-resistant strains of trichophyton indotineae (former species name: Trichophyton interdigitale). Med. Mycol. J. 2021, 62, 21–25. [Google Scholar] [CrossRef]
- Gu, D.; Hatch, M.; Ghannoum, M.; Elewski, B.E. Treatment-resistant dermatophytosis: A representative case highlighting an emerging public health threat. JAAD Case Reports 2020, 6, 1153–1155. [Google Scholar] [CrossRef]
- Fachin, A.L.; Ferreira-Nozawa, M.S.; Maccheroni, W.; Martinez-Rossi, N.M. Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J. Med. Microbiol. 2006, 55, 1093–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appelt, L.; Nenoff, P.; Uhrlaß, S.; Krüger, C.; Kühn, P.; Eichhorn, K.; Buder, S.; Beissert, S.; Abraham, S.; Aschoff, R.; et al. Terbinafin-resistente Dermatophytosen und Onychomykose durch Trichophyton rubrum. Hautarzt 2021, 72, 868–877. [Google Scholar] [CrossRef]
- Verma, S.; Madhu, R. The great Indian epidemic of superficial dermatophytosis: An appraisal. Indian J. Dermatol. 2017, 62, 227. [Google Scholar]
- Shenoy, M.; Jayaraman, J. Epidemic of difficult-to-treat tinea in India: Current scenario, culprits, and curbing strategies. Arch. Med. Heal. Sci. 2019, 7, 112. [Google Scholar] [CrossRef]
- Pathania, S.; Rudramurthy, S.M.; Narang, T.; Saikia, U.N.; Dogra, S. A prospective study of the epidemiological and clinical patterns of recurrent dermatophytosis at a tertiary care hospital in India. Indian J. Dermatol. Venereol. Leprol. 2018, 84. [Google Scholar] [CrossRef]
- Shen, J.J.; Arendrup, M.C.; Verma, S.; Saunte, D.M.L. The Emerging Terbinafine-Resistant Trichophyton Epidemic: What Is the Role of Antifungal Susceptibility Testing? Dermatology 2021. [Google Scholar] [CrossRef] [PubMed]
- Gawaz, A.; Nenoff, P.; Uhrlaß, S.; Schaller, M. Treatment of a terbinafine-resistant trichophyton mentagrophytes type VIII. Hautarzt 2021, 72, 900–904. [Google Scholar] [CrossRef]
- Cervelatti, E.P.; Fachin, A.L.; Ferreira-Nozawa, M.S.; Martinez-Rossi, N.M. Molecular cloning and characterization of a novel ABC transporter gene in the human pathogen Trichophyton rubrum. Med. Mycol. 2006, 44, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Monod, M.; Feuermann, M.; Salamin, K.; Fratti, M.; Makino, M.; Alshahni, M.M.; Makimura, K.; Yamada, T. Trichophyton rubrum azole resistance mediated by a new ABC transporter, TruMDR3. Antimicrob. Agents Chemother. 2019, 63, e00863-19. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.; Yaguchi, T.; Tamura, T.; Pich, C.; Salamin, K.; Feuermann, M.; Monod, M. Itraconazole resistance of Trichophyton rubrum mediated by the ABC transporter TruMDR2. Mycoses 2021, 64, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Yaguchi, T.; Salamin, K.; Guenova, E.; Feuermann, M.; Monod, M. Mfs1, a pleiotropic transporter in dermatophytes that plays a key role in their intrinsic resistance to chloramphenicol and fluconazole. J. Fungi 2021, 7, 542. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.P.; Franceschini, A.C.C.; Jacob, T.R.; Rossi, A.; Martinez-Rossi, N.M. Compensatory expression of multidrug-resistance genes encoding ABC transporters in dermatophytes. J. Med. Microbiol. 2016, 65, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Kano, R.; Hsiao, Y.H.; Han, H.S.; Chen, C.; Hasegawa, A.; Kamata, H. Resistance Mechanism in a Terbinafine-Resistant Strain of Microsporum canis. Mycopathologia 2018, 183, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Salehi, Z.; Fatahi, N.; Taran, M.; Izadi, A.; Badali, H.; Hashemi, S.J.; Rezaie, S.; Daie Ghazvini, R.; Ghaffari, M.; Aala, F.; et al. Comparison of in vitro antifungal activity of novel triazoles with available antifungal agents against dermatophyte species caused tinea pedis. J. Mycol. Med. 2020, 30, 100935. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Kahlmeter, G.; Guinea, J.; Meletiadis, J.; Arendrup, M.C.; Meletiadis, J.; Guinea, J.; Kahlmeter, G.; Arikan-Akdagli, S.; Friberg, F.; et al. How to: Perform antifungal susceptibility testing of microconidia-forming dermatophytes following the new reference EUCAST method E.Def 11.0, exemplified by Trichophyton. Clin. Microbiol. Infect. 2021, 27, 55–60. [Google Scholar] [CrossRef]
Country of Isolation | Dermatophyte Species | Amino Acid Substitution in SE | Number of Strains with TER Resistance Confirmed by SE Amino Acid Substitution | MIC Terbinafine (µg/mL) | Reference |
---|---|---|---|---|---|
USA | T. rubrum | L393F (6) | 6 strains from the same patient | >4 | Mukherjee et al., 2003, Osborne et al., 2003 [1] |
Switzerland | T. rubrum | F397L | 1 strain | 64 | Osborne et al., 2006 [3] |
Switzerland | T. rubrum/T. interdigitale | In T. rubrum: L393F, L393S, F397L, F397I, F397V, F415I, F415S, F415V, and H440Y In T. interdigitale: F397L | T. rubrum: 16/1664 (1%) T. interdigitale: (1/412) (0.2%) | T. rubrum: 0.1–12.8 T. interdigitale: 3.2 | Yamada et al., 2017 [21] |
India | T. interdigitale | L393F (40%, 8 strains) F397L (60%, 12 strains) | 20 strains | 4 -> 32 | Singh et al., 2018 [11] |
India | T. rubrum/T. nterdigitale | F397L (6) | T. rubrum 2/35 (2.6%) T. interdigitale: 4/88 (4.5%) | >2 | Rudramurthy et al., 2018 [12] |
India | T. interdigitale | L393F (3 strains) F397L (10 strains) | 13/18 (72.4%) (among complete follow up data and characterised for SE mutation) | 0.5–32 | Khurana et al., 2018 [13] |
India | T. mentagrophytes | F397L | 1 strain | ND | Burmester et al., 2019 [14] |
India | Indian Trichophyton spp. | L393F (7 strains) F397L (39 strains) | 46 strains/61 (64%) | 4–32 | Singh et al., 2019 [15] |
India | T. mentagrophytes VIII | L393S (7), L393F (6), F397L (153) F397L/A448T (27) Q408L/A448T (2) H440T (2) S443P (3) L335F/A448T (1) S396P/A448T (1) | 202 strains | 0.125/8 | Ebert et al., 2020 [16] |
India | T. mentagrophytes | L393F (1 strain), F397L (6 strains) F397L/A448T (6 strains) Q408L/A448T (1 strain) | 14 strains | >=5 | Burmester et al., 2020 [18] |
India | T. mentagrophytes | F397L (15) | 15 strains/97 (15.4%) | >=2 | Shankarnarayan et al., 2020 [19] |
India | T. mentagrophytes | F397L (3) F397L/Y394N(1) | 4 strains | 2–8 | Gaurav et al., 2020 [20] |
Switzerland (from India) | T. mentagrophytes | Q408L | 1 strain | >0.2 | Hsieh et al., 2019 [17] |
Denmark | T. rubrum/T. interdigitale | T. interdigitale; F397L (1), L393F (1). T. rubrum: L393F (1), F397L(6), L393S(2), F415S(1), H440Y/F484Y (1) and I121M/V237I(1) | T. interdigitale: 2 strains T. rubrum: 12 strains | 0.125 -> 8 | Saunte et al., 2019 [24] |
Germany (from Bahrain) | T. mentagrophytes VIII | F397L | 1 strain | ND | Suss et al., 2019 [25] |
Germany (from India) | T. mentagrophytes VIII | F397L | 1 strain | ND | Burmester et al., 2019 [14] |
Germany (some from India and other surroundings) | T. mentagrophytes VIII | F397L (10) L393F (1) F397L/A448T(2) | 14 strains/29 (37%) | 0.2–16 | Nenoff et al., 2020 [26] |
Poland | T. mentagrophytes | L393F(4) | 1 strain in human 3 in foxes | 16–32 | Lagowski et al., 2020 [27] |
Belgium | T. mentagrophytes | F397L | 1 strain/5 | 4 | Sacheli et al., 2020 [28] |
Greece | T. mentagrophytes type VIII | F397L (5) L393F (4) | 9 strains/24 (37.5%) | 0.25–8 | Siopi et al., 2021 [29] |
Japan | T. rubrum | L393F | 1 strain | >128 | Suzuki et al., 2018 [30] |
Iran | T. rubrum T. tonsurans | L393F(2) | 2% of resistant strains in total: T. rubrum (1), T. tonsurans (1) | >32 | Salehi et al., 2018 [31] |
Japan | T. rubrum | F397L (2) | 2 strains from the same patient | >=8 | Noguchi et al., 2020 [33] |
Japan | T. interdigitale | F397L | 1 strain | 32 | Kakurai et al., 2020 [34] |
Japan | T. interdigitale of Indian genotype | F397L | 1 strain | 32 | Kimura et al., 2020 [35] |
Japan | T. rubrum | L393F (5) | 5 strains/210 (2.4%) | >32 | Himura et al., 2020 [36] |
Iran | T.mentagrophytes VIII | F397L/A448T (4) L393S/A448T(1) | 5 strains/45 (11%) | >=32 | Taghipour et al., 2020 [37] |
Japan (from Nepal/india) | T. indotineae | F397L (2) | 2 strains | >32 | Kano et al., 2020 [41] |
Iran | T. mentagrophytes VIII | F397L | 4 strains from the same family | >=8 | Fattahi et al., 2021 [38] |
Iran | T. mentagrophytes | F397L | 1 strain/7 (14.2%) | >8 | Firooz et al., 2021 [39] |
India, China, Australia, Germany and the Netherland | T. indotineae | F397L (25), F397L/A448T (9) F415V (1) L393S (1) H440T (1) | 34 strains/64 (53%) | 0.125 -> 16 | Kong et al., 2021 [40] |
Dermatophyte Species | Clinical Presentation | Alternative Therapy | Reference |
---|---|---|---|
T. rubrum | Tinea unguium | Fosravuconazole (dose undetermined) | Noguchi et al., 2019 [33] |
T. rubrum | Tinea unguium + tinea palmaris | SUBA-itraconazole 50 mg/day for 1 week then 2 × 50 mg 1×/week + topical ciclopirox | Appelt et al., 2021 [44] |
T. rubrum | Tinea pedis | Itraconazole 100 mg/day for 3 weeks | Scholser et al., 2018 [23] |
T. rubrum | Tinea corporis | Itraconazole 100 mg/twice daily | Wingfield Digby et al., 2017 [22] |
T. rubrum | Tinea corporis, tinea pedis, tinea cruris | Itraconazole 200 mg daily for 3 months | Gu et al., 2020 [42] |
T rubrum | Tinea corporis, tinea faciei | Itraconazole 100 mg/day for 4 weeks, then 1×/week. | Appelt et al., 2021 [44] |
T rubrum | Tinea corporis, tinea cruris and tinea glutealis | 200 mg every two weeks +bifonazole and cicloprix 1×/day. | Appelt et al., 2021 [44] |
T rubrum | Tinea corporis | SUBA-itraconazole 2 × 50mg/day for 2 weeks then 1×/week 50 mg for 10 weeks | Appelt et al., 2021 [44] |
Dermatophyte Species | Clinical Presentation | Alternative Therapy | Reference |
---|---|---|---|
T.mentagrophytes | Disseminated tinea corporis | Itraconazole 200 mg/day for 2–3 weeks + topical eberconazole | Hsieh et al., 2019 [17] |
T.mentagrophytes | Tinea, corporis, tinea cruris | Itraconazole + ciclopirox | Burmester et al., 2019 [14] |
T. mentagrophytes VIII | Extended tinea corporis | Topical miconazole and later ciclopirox | Suss et al., 2019 [25] |
T. mentatgrophytes/interdigitale | Extensive tinea corporis | Itraconazole 100 mg/day and topical luliconazole | Kimura et al., 2020 [35] |
T. interdigitale | Extensive tinea corporis | Itraconazole 100 mg/day | Kakurai et al., 2020 [34] |
T. mentagrophytes VIII | 29 cases of tinea corporis | Recommended Itraconazole200 mg/day for 4–8 weeks | Nenoff et al., 2020 [26] |
T. mentagrophytes VIII | Extended tinea corporis from the groin | Voriconazole 200 mg/day | Fattahi et al., 2021 [38] |
T. mentagrophytes VIII | Tinea pedis | 2 successive itraconazole pulse therapy | Fattahi et al., 2021 [38] |
T. mentagrophytes VIII | Extended tinea corporis from the groin | Itraconazole 100 mg/day for 4 weeks | Fattahi et al., 2021 [38] |
T. mentagrophytes VIII | Extended tinea corporis from the groin | Voriconazole 200 mg/day | Fattahi et al., 2021 [38] |
Country of Isolation | Dermatophyte Species | Amino acid Substitution in SE | Number of Strains with Azoles Resistance Confirmed by SE Amino-acid Substitution | MIC Azoles or GM Values (µg/mL) | Reference |
---|---|---|---|---|---|
India, China, Australia, Germany and the Netherland | T. indotineae | F397L/A448T A448T F397L | ND | Itraconazole GM: F397L/A448T = 0.3 F397L = 0.139 A448T = 0.189 Fluconazole GM: F397L/A448T = 32 F397L = 22.32 A448T = 3.48 | Kong et al., 2021 [40] |
India | T. mentagrophytes | F397L/A448T (6) F397L (6) A448T (3) L393F (1) Q408L/A448T(1) | 17 strains | MIC fluconazole: >=160 | Burmester et al., 2020 [18] |
India | T. mentagrophytes VIII | F397L/A448T F397L A448T | ND | Itraconazole GM: F397L/A448T = 0.26 F397L = 0.10 A448T = 0.19 Voriconazole GM: F397L/A448T = 0.26 F397L = 0.05 A448T = 0.15 | Ebert et al., 2020 [16] |
India | T. mentagrophytes | F397L, Y394N (1) F397L (3) | 3 strains (fluconazole) 1 strain (fluconazole + itraconazole) | MIC fluconazole: 0.125–128 MIC itraconazole: 2 | Gaurav et al., 2020 [20] |
Germany (some from India and surroundings) | T. mentagrophytes VIII | A448T (3) F397L (1) | Itraconazole (3) Voriconazole (4) | MIC itraconazole: 0.5 MIC voriconazole: 0.25–0.5 | Nenoff et al., 2020 [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacheli, R.; Hayette, M.-P. Antifungal Resistance in Dermatophytes: Genetic Considerations, Clinical Presentations and Alternative Therapies. J. Fungi 2021, 7, 983. https://doi.org/10.3390/jof7110983
Sacheli R, Hayette M-P. Antifungal Resistance in Dermatophytes: Genetic Considerations, Clinical Presentations and Alternative Therapies. Journal of Fungi. 2021; 7(11):983. https://doi.org/10.3390/jof7110983
Chicago/Turabian StyleSacheli, Rosalie, and Marie-Pierre Hayette. 2021. "Antifungal Resistance in Dermatophytes: Genetic Considerations, Clinical Presentations and Alternative Therapies" Journal of Fungi 7, no. 11: 983. https://doi.org/10.3390/jof7110983
APA StyleSacheli, R., & Hayette, M. -P. (2021). Antifungal Resistance in Dermatophytes: Genetic Considerations, Clinical Presentations and Alternative Therapies. Journal of Fungi, 7(11), 983. https://doi.org/10.3390/jof7110983