Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fungal Isolations
2.3. Screening for the Biodegradation Efficacy of Crude Textile Wastewater
2.4. Molecular Identification of the Most Potent Fungal Isolates
2.5. Optimization Conditions of Biodecolorization Process Using the Most Potent Fungal Isolate
2.5.1. Effects of Different Incubation Periods, pH Values, and Inoculum Size on the Decolorization Percentages (%)
2.5.2. Effects of Different Carbon and Nitrogen Sources on the Dye Decolorization by Aspergillus flavus (Strains A2) and Fusarium oxysporium (Strain G2-1)
2.6. Analysis of Crude Textile Wastewater before and after Treatment
2.6.1. GC–MS Spectroscopy for Untreated/Treated Wastewater
2.6.2. Phytotoxicity Study
2.7. Statistical Analysis
3. Results and Discussion
3.1. Fungal Isolation and Identification
3.2. Effect of Different Incubation Periods and pH Values on Dye Decolorization Percentages
3.3. Effect of Different Inocula Sizes (Discs) on Decolorization Rate
3.4. Effect of Different Carbon and Nitrogen Sources on the Dye Decolorization
3.5. Assessment of the Decolorization Efficacy of Textile Wastewater by the Two Fungal Strains Separately or in Consortium under All the Optimized Factors
3.6. UV-Visible Spectrum for Textile Wastewater before and after Optimization
3.7. Physicochemical Characterization of Textile Effluents
3.8. GC–MS of Untreated and Treated Textile Effluent by a Consortium of Two Fungal Strains
3.9. Phytotoxicity Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saxena, G.; Bharagava, R. Organic and Inorganic Pollutants in Industrial Wastes, Their Ecotoxicological Effects, Health Hazards and Bioremediation Approaches. Environmental Pollutants and Their Bioremediation Approaches, 1st ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. 23–56. [Google Scholar]
- Pi, Y.; Li, X.; Xia, Q.; Wu, J.; Li, Y.; Xiao, J.; Li, Z. Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs). Chem. Eng. J. 2018, 337, 351–371. [Google Scholar] [CrossRef]
- Singh, P.; Sharma, K.; Hasija, V.; Sharma, V.; Sharma, S.; Raizadaab, P.; Singh, M.; Sainiad, A.K.; Bandegharaeief, A.; Thakur, V.; et al. Systematic review on applicability of magnetic iron oxides–integrated photocatalysts for degradation of organic pollutants in water. Mater. Today Chem. 2019, 14, 100186. [Google Scholar] [CrossRef]
- Jiang, X.; Lou, C.; Hua, F.; Deng, H.; Tian, X. Cellulose nanocrystals-based flocculants for high-speed and high-efficiency decolorization of colored effluents. J. Clean. Prod. 2020, 251, 119749. [Google Scholar] [CrossRef]
- Elfeky, A.S.; Salem, S.S.; Elzaref, A.S.; Owda, M.E.; ElAdawy, H.A.; Saeed, A.M.; Awad, M.A.; Abou-Zeid, R.E.; Fouda, A. Multifunctional cellulose nanocrystal /metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydr. Polym. 2020, 230, 115711. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Khilari, V.; Chaudhary, B.U.; Jogi, A.B.; Pandit, A.; Kale, R.D. Cotton based composite fabric reinforced with waste polyester fibers for improved mechanical properties. Waste Manag. 2020, 107, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Saratale, R.G.; Banu, J.R.; Shin, H.-S.; Bharagava, R.N.; Saratale, G.D. Textile Industry Wastewaters as Major Sources of Environmental Contamination: Bioremediation Approaches for Its Degradation and Detoxification. In Bioremediation of Industrial Waste for Environmental Safety: Volume I: Industrial Waste and Its Management; Saxena, G., Bharagava, R.N., Eds.; Springer International Publishing: New York, NY, USA, 2019; pp. 135–167. [Google Scholar]
- Fouda, A.; Hassan, S.E.-D.; Abdel-Rahman, M.A.; Farag, M.M.; Shehal-Deen, A.; Mohamed, A.A.; Alsharif, S.M.; Saied, E.; Moghanim, S.A.; Azab, M.S. Catalytic degradation of wastewater from the textile and tannery industries by green synthesized hematite (α-Fe2O3) and magnesium oxide (MgO) nanoparticles. Curr. Res. Biotechnol. 2021, 3, 29–41. [Google Scholar] [CrossRef]
- Ekanayake, E.; Manage, P.M. Green approach for decolorization and detoxification of textile dye-CI direct blue 201 using native bacterial strains. Environ. Nat. Resour. J. 2021, 18, 1–8. [Google Scholar] [CrossRef]
- Rovira, J.; Domingo, J.L. Human health risks due to exposure to inorganic and organic chemicals from textiles: A review. Environ. Res. 2019, 168, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Mahagamage, M.; Chinthaka, S.; Manage, P.M. Multivariate analysis of physico-chemical and microbial parameters of surface water in Kelani river basin. Int. J. Multidiscip. Stud. 2014, 1, 55. [Google Scholar] [CrossRef]
- Vats, A.; Mishra, S. Decolorization of complex dyes and textile effluent by extracellular enzymes of Cyathus bulleri cultivated on agro-residues/domestic wastes and proposed pathway of degradation of Kiton blue A and reactive orange 16. Environ. Sci. Pollut. Res. 2017, 24, 11650–11662. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.-D.; Azab, M.S.; Saied, E. Decolorization of Different Azo Dyes and Detoxification of Dyeing Wastewater by Pseudomonas stutzeri (SB_13) Isolated from Textile Dyes Effluent. Br. Biotechnol. J. 2016, 15, 1–18. [Google Scholar] [CrossRef]
- Hassan, S.; Fouda, A.; Salah, M.; Saied, E. Biological decolorization of different azo dyes using two bacterial strains of Klebsiella spp. and their consortium. Int. J. Environ. Biol. 2015, 5, 104–114. [Google Scholar]
- Salem, S.S.; Mohamed, A.; El-Gamal, M.; Talat, M.; Fouda, A. Biological decolorization and degradation of azo dyes from textile wastewater effluent by Aspergillus niger. Egypt. J. Chem. 2019, 62, 1799–1813. [Google Scholar]
- Yaseen, D.A.; Scholz, M. Shallow pond systems planted with Lemna minor treating azo dyes. Ecol. Eng. 2016, 94, 295–305. [Google Scholar] [CrossRef]
- Siddique, K.; Rizwan, M.; Shahid, M.J.; Ali, S.; Ahmad, R.; Rizvi, H. Textile Wastewater Treatment Options: A Critical Review. Enhancing Cleanup Environ. Pollut. 2017, 183–207. [Google Scholar] [CrossRef]
- Gomes, C.; Piccin, J.; Gutterres, M. Optimizing adsorption parameters in tannery-dye-containing effluent treatment with leather shaving waste. Process. Saf. Environ. Prot. 2016, 99, 98–106. [Google Scholar] [CrossRef]
- Mostafa, A.A.-F.; Elshikh, M.S.; Al-Askar, A.A.; Hadibarata, T.; Yuniarto, A.; Syafiuddin, A. Decolorization and biotransformation pathway of textile dye by Cylindrocephalum aurelium. Bioprocess Biosyst. Eng. 2019, 42, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Bankole, P.O.; Adekunle, A.A.; Govindwar, S.P. Demethylation and desulfonation of textile industry dye, Thiazole Yellow G by Aspergillus niger LAG. Biotechnol. Rep. 2019, 23, e00327. [Google Scholar] [CrossRef] [PubMed]
- Santhanam, M.; Selvaraj, R.; Veerasubbian, V.; Sundaram, M. Bacterial degradation of electrochemically oxidized textile effluent: Performance of oxic, anoxic and hybrid oxic-anoxic consortium. Chem. Eng. J. 2019, 355, 186–195. [Google Scholar] [CrossRef]
- Srinivasan, S.; Sadasivam, S.K.; Gunalan, S.; Shanmugam, G.; Kothandan, G. Application of docking and active site analysis for enzyme linked biodegradation of textile dyes. Environ. Pollut. 2019, 248, 599–608. [Google Scholar] [CrossRef]
- Hamza, M.F.; Ahmed, F.Y.; El-Aassy, I.; Fouda, A.; Guibal, E. Groundwater Purification in a Polymetallic Mining Area (SW Sinai, Egypt) Using Functionalized Magnetic Chitosan Particles. Water Air Soil Pollut. 2018, 229, 360. [Google Scholar] [CrossRef]
- Barathi, S.; Karthik, C.; Padikasan, I.A. Biodegradation of textile dye Reactive Blue 160 by Bacillus firmus (Bacillaceae: Bacillales) and non-target toxicity screening of their degraded products. Toxicol. Rep. 2020, 7, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, L.; Ahire, M.; Nikam, T. Bacopa monnieri (L.) Pennell, a potential plant species for degradation of textile azo dyes. Environ. Sci. Pollut. Res. 2020, 27, 9349–9363. [Google Scholar] [CrossRef]
- Fouda, A.; Salem, S.S.; Wassel, A.R.; Hamza, M.F.; Shaheen, T. Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon 2020, 6. [Google Scholar] [CrossRef]
- Shaheen, T.I.; Fouda, A.; Salem, S.S. Integration of Cotton Fabrics with Biosynthesized CuO Nanoparticles for Bactericidal Activity in the Terms of Their Cytotoxicity Assessment. Ind. Eng. Chem. Res. 2021, 60, 1553–1563. [Google Scholar] [CrossRef]
- Salem, S.S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2021, 199, 344–370. [Google Scholar] [CrossRef]
- Acikgoz, C.; Gül, Ü.D.; Özan, K.; Borazan, A.A. Degradation of Reactive Blue by the mixed culture of Aspergillus versicolor and Rhizopus arrhizus in membrane bioreactor (MBR) system. Desalination Water Treat. 2014, 57, 1–7. [Google Scholar] [CrossRef]
- Dandia, A.; Taneja, H.; Gupta, R.; Paul, S. An Efficient Procedure for the Synthesis of Spiro (3H-Indole-3,4′ (1′H)pyrano[2,3-C]pyrrole]-5′-carbonitriles Using Solid Inorganic Supports and Microwave Activation. Synth. Commun. 1999, 29, 2323–2335. [Google Scholar] [CrossRef]
- Fouda, A.; Khalil, A.M.A.; El-Sheikh, H.H.; Abdel-Rhaman, E.M.; Hashem, A.H. Biodegradation and Detoxification of Bisphenol-A by Filamentous Fungi Screened from Nature. J. Adv. Biol. Biotechnol. 2015, 2, 123–132. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M., Gelfand, D., Shinsky, J., White, T., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Fouda, A.; Eid, A.M.; Elsaied, A.; El-Belely, E.F.; Barghoth, M.G.; Azab, E.; Gobouri, A.A.; Hassan, S.E.-D. Plant Growth-Promoting Endophytic Bacterial Community Inhabiting the Leaves of Pulicaria incisa (Lam.) DC Inherent to Arid Regions. Plants 2021, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Hassan, S.; Alsharif, S.; Eid, A.; Ewais, E.; Azab, E.; Gobouri, A.; Elkelish, A.; Fouda, A. Isolation and Characterization of Fungal Endophytes Isolated from Medicinal Plant Ephedra pachyclada as Plant Growth-Promoting. Biomoleclues 2021, 11, 140. [Google Scholar] [CrossRef]
- Association, A.P.H.; Association, A.W.W.; Federation, W.P.C.; Federation, W.E. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1912; Volume 2. [Google Scholar]
- Jain, K.; Shah, V.; Chapla, D.; Madamwar, D. Decolorization and degradation of azo dye—Reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil. J. Hazard. Mater. 2012, 213-214, 378–386. [Google Scholar] [CrossRef]
- Nejad, Z.G.; Borghei, S.M.; Yaghmaei, S. Biodegradation of synthetic dye using partially purified and characterized laccase and its proposed mechanism. Int. J. Environ. Sci. Technol. 2019, 16, 7805–7816. [Google Scholar] [CrossRef]
- Fouda, A.H.; Hassan, S.E.-D.; Eid, A.M.; Ewais, E.E.-D. Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann. Agric. Sci. 2015, 60, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, W.S.E.-D. Isolation and screening of reactive dye decolorizing bacterial isolates from textile industry effluent. Int. J. Microbiol. Res. 2016, 7, 1–8. [Google Scholar]
- Saratale, R.; Saratale, G.; Chang, J.; Govindwar, S. Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng. 2011, 42, 138–157. [Google Scholar] [CrossRef]
- Singh, A.L.; Chaudhary, S.; Kayastha, A.M.; Yadav, A. Decolorization and Degradation of Textile Effluent with the Help of Enterobacter Asburiae; NISCAIR-CSIR: New Delhi, India, 2015. [Google Scholar]
- Srinivasan, S.; Sadasivam, S.K. Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems. J. Water Process. Eng. 2018, 22, 180–191. [Google Scholar] [CrossRef]
- Sudiana, I.K.; Sastrawida, I.D.K.; Sukarta, I.N. Decolorization Study of Remazol Black B Textile Dye Using Local Fungi of Ganoderma sp. and Their Ligninolytic Enzymes. J. Environ. Sci. Technol. 2017, 11, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Ilyas, S.; Rehman, A. Decolorization and detoxification of Synozol red HF-6BN azo dye, by Aspergillus niger and Nigrospora sp. Iran. J. Environ. Health Sci. Eng. 2013, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Hashem, R.A.; Samir, R.; Essam, T.M.; Ali, A.E.; Amin, M.A. Optimization and enhancement of textile reactive Remazol black B decolorization and detoxification by environmentally isolated pH tolerant Pseudomonas aeruginosa KY284155. AMB Express 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Namdhari, B.; Rohilla, S.; Salar, R.; Gahlawat, S.; Bansal, P.; Saran, A. Decolorization of reactive blue MR, using Aspergillus species isolated from textile wastewater. ISCA J. Biol. Sci. 2012, 1, 24–29. [Google Scholar]
- Dave, S.R.; Patel, T.L.; Tipre, D.R. Bacterial Degradation of Azo Dye Containing Wastes. In Spatial Modeling in Forest Resources Management; Springer International Publishing: New York, NY, USA, 2014; pp. 57–83. [Google Scholar]
- Nor, N.M.; Hadibarata, T.; Zubir, M.M.F.A.; Lazim, Z.M.; Adnan, L.A.; Fulazzaky, M.A. Mechanism of triphenylmethane Cresol Red degradation by Trichoderma harzianum M06. Bioprocess Biosyst. Eng. 2015, 38, 2167–2175. [Google Scholar] [CrossRef] [PubMed]
- Hefnawy, M.A.; Gharieb, M.M.; Shaaban, M.T.; Soliman, A.M. Optimization of culture condition for enhanced decolorization of direct blue dye by Aspergillus flavus and Penicillium canescens. J. Appl. Pharm. Sci. 2017, 7, 83–92. [Google Scholar]
- Patil, S.B.; Sabale, P.; Patil, S.A. Experimental Study on Dye Removal of Textile Wastewater by Using Natural Adsorbent. Resincap J. Sci. Eng. 2019, 3, 526–533. [Google Scholar]
- Hameed, B.B.; Ismail, Z.Z. Decolorization, Biodegradation and Detoxification of Reactive Blue Azo Dye Using Immobilized Mixed Cells. J. Eng. 2019, 25, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Maniyam, M.N.; Ibrahim, A.L.; Cass, A.E.G. Decolourization and biodegradation of azo dye methyl red by Rhodococcus strain UCC 0016. Environ. Technol. 2018, 41, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Arshad, M.; Negm, F.; Khalid, A.; Shaharoona, B.; Hussain, S.; Nadeem, S.M.; Crowley, D.E. Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp. strain IFN4. Ecotoxicol. Environ. Saf. 2016, 124, 42–49. [Google Scholar] [CrossRef]
- Surti, A.; Ansari, R. Characterization of dye degrading potential of suspended and nanoparticle immobilized cells of Pseudomonas aeruginosa AR-7. J. Microbiol. Biotechnol. Food Sci. 2018, 8, 774–780. [Google Scholar] [CrossRef]
- Lade, H.S.; Waghmode, T.R.; Kadam, A.A.; Govindwar, S.P. Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium. Int. Biodeterior. Biodegrad. 2012, 72, 94–107. [Google Scholar] [CrossRef]
- Khehra, M.S.; Saini, H.S.; Sharma, D.K.; Chadha, B.S.; Chimni, S.S. Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes. Water Res. 2005, 39, 5135–5141. [Google Scholar] [CrossRef]
- Cui, D.; Li, G.; Zhao, D.; Gu, X.; Wang, C.; Zhao, M. Microbial community structures in mixed bacterial consortia for azo dye treatment under aerobic and anaerobic conditions. J. Hazard. Mater. 2012, 221–222, 185–192. [Google Scholar] [CrossRef]
- Bankole, P.O.; Adekunle, A.A.; Obidi, O.F.; Chandanshive, V.V.; Govindwar, S.P. Biodegradation and detoxification of Scarlet RR dye by a newly isolated filamentous fungus, Peyronellaea prosopidis. Sustain. Environ. Res. 2018, 28, 214–222. [Google Scholar] [CrossRef]
- Chaieb, K.; Hagar, M.; Radwan, N.R.E. Biodegradation and decolorization of azo dyes by adherent Staphylococcus lentus strain. Appl. Biol. Chem. 2016, 59, 405–413. [Google Scholar] [CrossRef]
- Zille, A. Laccase Reactions for Textile Applications. Ph.D. Thesis, Universidade do Minho, Braga, Portugal, 2005. Available online: http://hdl.handle.net/1822/4899 (accessed on 1 May 2005).
- Nouren, S.; Bhatti, H.N.; Iqbal, M.; Bibi, I.; Kamal, S.; Sadaf, S.; Sultan, M.; Kausar, A.; Safa, Y. By-product identification and phytotoxicity of biodegraded Direct Yellow 4 dye. Chemosphere 2017, 169, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Devi, M.; Kaushik, B. Decolourization of textile dyes and dye effluent by Aspergillus spp. Indian J. Microbiol. 2005, 45, 41. [Google Scholar]
- Fouda, A.; Hassan, S.E.-D.; Saied, E.; Azab, M.S. An eco-friendly approach to textile and tannery wastewater treatment using maghemite nanoparticles (γ-Fe2O3-NPs) fabricated by Penicillium expansum strain (K-w). J. Environ. Chem. Eng. 2021, 9, 104693. [Google Scholar] [CrossRef]
- Saroj, S.; Dubey, S.; Agarwal, P.; Prasad, R.; Singh, R.P. Evaluation of the efficacy of a fungal consortium for degradation of azo dyes and simulated textile dye effluents. Sustain. Water Resour. Manag. 2015, 1, 233–243. [Google Scholar] [CrossRef]
- Andleeb, S.; Atiq, N.; Robson, G.D.; Ahmed, S. An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Environ. Sci. Pollut. Res. 2011, 19, 1728–1737. [Google Scholar] [CrossRef] [PubMed]
- Iordache, O.; Cornea, P.C.; Popa, G.; Dumitrescu, I.; Diguta, C.; Varzaru, E.; Rodino, S.; Ionescu, I.; Matei, A. Evaluation of decolorization abilities of some textile dyes by fungal isolates. Ind. Text. 2016, 67, 181–188. [Google Scholar]
- Ong, S.-A.; Toorisaka, E.; Hirata, M.; Hano, T. Decolorization of Orange II using an anaerobic sequencing batch reactor with and without co-substrates. J. Environ. Sci. 2012, 24, 291–296. [Google Scholar] [CrossRef]
- Ali, N.; Hameed, A.; Ahmed, S. Role of brown-rot fungi in the bioremoval of azo dyes under different conditions. Braz. J. Microbiol. 2010, 41, 907–915. [Google Scholar] [CrossRef]
- Kumar, P.R.; Pinto, L.B.; Somashekar, R. Assessment of the efficiency of sewage treatment plants: A comparative study between Nagasandra and Mailasandra sewage treatment plants. Kathmandu Univ. J. Sci. Eng. Technol. 2020, 6, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Jamil, A.; Bokhari, T.H.; Javed, T.; Mustafa, R.; Sajid, M.; Noreen, S.; Zuber, M.; Nazir, A.; Iqbal, M.; Jilani, M.I. Photocatalytic degradation of disperse dye Violet-26 using TiO2 and ZnO nanomaterials and process variable optimization. J. Mater. Res. Technol. 2020, 9, 1119–1128. [Google Scholar] [CrossRef]
- Iqbal, M.; Bhatti, I.A. Gamma radiation/H2O2 treatment of a nonylphenol ethoxylates: Degradation, cytotoxicity, and mutagenicity evaluation. J. Hazard. Mater. 2015, 299, 351–360. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M.; Iqbal, M.; Hu, H.; Zhang, X. Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. Int. J. Biol. Macromol. 2016, 89, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Dawkar, V.V.; Jadhav, U.U.; Jadhav, M.U.; Kagalkar, A.N.; Govindwar, S.P. Decolorization and detoxification of sulphonated azo dye Red HE7B by Bacillus sp. VUS. World J. Microbiol. Biotechnol. 2009, 26, 909–916. [Google Scholar] [CrossRef]
- Kalyani, D.; Patil, P.; Jadhav, J.; Govindwar, S. Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour. Technol. 2008, 99, 4635–4641. [Google Scholar] [CrossRef] [PubMed]
- Khandare, R.V.; Rane, N.R.; Waghmode, T.R.; Govindwar, S.P. Bacterial assisted phytoremediation for enhanced degradation of highly sulfonated diazo reactive dye. Environ. Sci. Pollut. Res. 2012, 19, 1709–1718. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, M.; Hu, H.; Zhang, X. Mutagenicity, cytotoxicity and phytotoxicity evaluation of biodegraded textile effluent by fungal ligninolytic enzymes. Water Sci. Technol. 2016, 73, 2332–2344. [Google Scholar] [CrossRef]
- Torres, J.M.O.; Cardenas, C.V.; Moron, L.S.; Guzman, A.P.A.; dela Cruz, T.E.E. Dye decolorization activities of ma-rine-derived fungi isolated from Manila Bay and Calatagan Bay, Philippines. Philipp. J. Sci. 2011, 140, 133–143. [Google Scholar] [CrossRef]
pH | Biodegradation (%) of Textile Wastewater without Fungal Inoculation (Ctrl) | ||||||
---|---|---|---|---|---|---|---|
Incubation Periods (Days) | |||||||
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
6 | 0.4 ± 0.0 | 0.2 ± 0.01 | 0.4 ± 0.0 | 0.2 ± 0.01 | 0.3 ± 0.0 | 0.4 ± 0.0 | 0.4 ± 0.01 |
7 | 0.3 ± 0.0 | 0.8 ± 0.0 | 0.3 ± 0.01 | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.3 ± 0.0 |
8 | 0.4 ± 0.01 | 1.2 ± 0.02 | 0.4 ± 0.0 | 0.3 ± 0.0 | 0.4 ± 0.01 | 0.4 ± 0.0 | 0.4 ± 0.0 |
9 | 0.5 ± 0.0 | 0.8 ± 0.1 | 0.4 ± 0.0 | 0.3 ± 0.0 | 0.3 ± 0.0 | 0.3 ± 0.01 | 0.5 ± 0.01 |
10 | 0.9 ± 0.01 | 0.3 ± 0.0 | 0.9 ± 0.1 | 0.3 ± 0.0 | 0.4 ± 0.0 | 0.3 ± 0.01 | 0.9 ± 0.0 |
11 | 0.7 ± 0.01 | 0.7 ± 0.0 | 0.9 ± 0.0 | 0.4 ± 0.0 | 0.3 ± 0.01 | 0.3 ± 0.0 | 0.8 ± 0.01 |
pH | Biodegradation (%) of Textile Wastewater by A. flavus (A2) | ||||||
Incubation Periods (Days) | |||||||
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
6 | 1.9 ± 0.0 | 3.6 ± 0.1 | 5.4 ± 0.3 | 6.3 ± 0.6 | 7.4 ± 0.4 | 4.2 ± 0.3 | 0.2 ± 0.0 |
7 | 3.1 ± 0.0 | 6.6 ± 0.02 | 8.4 ± 0.1 | 11.9 ± 0.4 | 16.5 ± 0.4 | 8.6 ± 0.1 | 2.2 ± 0.01 |
8 | 7.3 ± 0.0 | 11.9 ± 0.01 | 16.5 ± 0.1 | 19.8 ± 0.2 | 26.2 ± 1.3 | 17.5 ± 1.7 | 4.2 ± 0.1 |
9 | 3.4 ± 1.2 | 4.5 ± 1.02 | 7.4 ± 0.3 | 10.2 ± 1.02 | 11.3 ± 0.3 | 8.03 ± 0.2 | 1.1 ± 0.01 |
10 | 1.9 ± 1.01 | 2.3 ± 1.0 | 5.4 ± 0.7 | 6.3 ± 1.2 | 7.4 ± 1.02 | 4.2 ± 0.4 | 0.2 ± 0.01 |
11 | 0.4 ± 0.2 | 2.3 ± 0.2 | 3.4 ± 0.9 | 5.2 ± 0.3 | 6.2 ± 1.4 | 2.3 ± 0.01 | 0.1 ± 0.2 |
pH | Biodegradation (%) of Textile Wastewater by F. oxysporum (G2-1) | ||||||
Incubation Periods (Days) | |||||||
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
6 | 7.4 ± 0.0 | 13.8 ± 0.4 | 18.6 ± 0.4 | 21.5 ± 0.4 | 27.8 ± 0.02 | 13.8 ± 0.02 | 2.6 ± 0.01 |
7 | 6.8 ± 0.02 | 7.4 ± 0.1 | 16.4 ± 0.1 | 19.9 ± 0.7 | 25.7 ± 0.02 | 13.8 ± 0.04 | 6.6 ± 0.03 |
8 | 5.9 ± 0.1 | 7.4 ± 0.02 | 13.6 ± 0.4 | 18.2 ± 0.3 | 23.7 ± 0.4 | 10.6 ± 0.1 | 2.2 ± 0.01 |
9 | 3.04 ± 0.1 | 3.7 ± 0.1 | 6.1 ± 0.3 | 7.3 ± 0.4 | 13.8 ± 0.01 | 4.2 ± 0.03 | 0.2 ± 0.0 |
10 | 0.2 ± 0.0 | 6.5 ± 0.1 | 1.1 ± 0.1 | 3.04 ± 0.3 | 2.2 ± 0.2 | 0.2 ± 0.02 | 0.2 ± 0.0 |
11 | 0.7 ± 0.0 | 0.22 ± 0.1 | 0.4 ± 0.0 | 0.3 ± 0.0 | 0.2 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.0 |
Parameters | Textile Wastewater Treated by | |||||||
---|---|---|---|---|---|---|---|---|
Ctrl. | Removal Percentages (%) | A. flavus A2 | Removal Percentages (%) | F. oxysporium G2-1 | Removal Percentages (%) | Consortium (A2 + G2-1) | Removal Percentages (%) | |
pH | 8.7 ± 0.1 | - | 7.3 ± 0.1 | - | 7.2 ± 0.4 | - | 6.8 ± 0.7 | - |
TDS (mg·L−1) | 1153 ± 1.2 | - | 528 ± 1.4 | 54.2 | 540 ± 0.9 | 53.2 | 251 ± 0.4 | 78.2 |
TSS (mg·L−1) | 708 ± 0.9 | - | 321 ± 0.7 | 54.7 | 335 ± 0.01 | 52.7 | 153 ± 0.3 | 78.4 |
Conductivity (µs·cm−1) | 1047 ± 1.3 | - | 623 ± 1.6 | 40.5 | 680 ± 0.1 | 35.1 | 438 ± 0.01 | 58.2 |
BOD (mg·L−1) | 342 ± 0.9 | - | 153 ± 0.7 | 55.3 | 161 ± 0.4 | 52.9 | 75 ± 0.8 | 78.1 |
COD (mg·L−1) | 611 ± 0.3 | - | 274 ± 0.3 | 55.2 | 285 ± 0.5 | 53.4 | 137 ± 0.3 | 77.6 |
Retention Time (min.) | Suggested Name | Control | Treated by a Fungal Consortium | ||
---|---|---|---|---|---|
Peak area % | Mass area % | Peak Area % | Mass Area % | ||
12.5 | 1,2,3,4,5-pentamethylcyclopentane | 27.8 | 100.0 | 18.1 | 64.3 |
12.6 | 1,2,3,4,5 pentamethyl cyclopentene | 7.5 | 27.01 | 4.9 | 17.7 |
14.03 | 3,3,4-trimethyldecane | 7.5 | 27.1 | 5.5 | 19.3 |
14.1 | 1-methyl,2-propylcyclohexane | 15.9 | 56.9 | 10.9 | 38.8 |
14.4 | 2,3,4-trimehylpentane | 9.9 | 35.5 | 1.6 | 5.7 |
31.1 | N-methyl Benzeneethanamine | 13.1 | 47.2 | - | - |
7.7 | 2,4-dimethylheptane | - | - | 3.3 | 11.6 |
13.2 | 2-Pentenal | - | - | 1.3 | 4.7 |
14.4 | 3-ethylPentane | - | - | 1.6 | 5.7 |
20.1 | 3,6-dimethyldecane | - | - | 1.8 | 6.2 |
22.4 | 3,7-dimethyldecane | - | - | 0.6 | 2.0 |
Parameters | Length of Shoot and Root (cm) after 7 Days | |
---|---|---|
Shoot Length (cm) | Root Length (cm) | |
Water | 17.8 ± 0.7 a | 7.5 ± 2.1 a |
Ctrl | 1.2 ± 0.01 d | 2.1 ± 0.02 c |
A2 | 7.3 ± 0.6 c | 2.96 ± 0.3 bc |
G2-1 | 6.1 ± 0.2 c | 5.3 ± 0.7 b |
A2*G2-1 | 15.1 ± 1.01 b | 6.3 ± 2.1 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selim, M.T.; Salem, S.S.; Mohamed, A.A.; El-Gamal, M.S.; Awad, M.F.; Fouda, A. Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity. J. Fungi 2021, 7, 193. https://doi.org/10.3390/jof7030193
Selim MT, Salem SS, Mohamed AA, El-Gamal MS, Awad MF, Fouda A. Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity. Journal of Fungi. 2021; 7(3):193. https://doi.org/10.3390/jof7030193
Chicago/Turabian StyleSelim, Mohamed T., Salem S. Salem, Asem A. Mohamed, Mamdouh S. El-Gamal, Mohamed F. Awad, and Amr Fouda. 2021. "Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity" Journal of Fungi 7, no. 3: 193. https://doi.org/10.3390/jof7030193
APA StyleSelim, M. T., Salem, S. S., Mohamed, A. A., El-Gamal, M. S., Awad, M. F., & Fouda, A. (2021). Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity. Journal of Fungi, 7(3), 193. https://doi.org/10.3390/jof7030193