In Vitro Activity of Ibrexafungerp against a Collection of Clinical Isolates of Aspergillus, Including Cryptic Species and Cyp51A Mutants, Using EUCAST and CLSI Methodologies
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kosmidis, C.; Denning, D.W. The clinical spectrum of pulmonary aspergillosis. Thorax 2015, 70, 270–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alastruey-Izquierdo, A.; Mellado, E.; Cuenca-Estrella, M. Current section and species complex concepts in Aspergillus: Recommendations for routine daily practice. Ann. N. Y. Acad. Sci. 2012, 1273, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Alastruey-Izquierdo, A.; Alcazar-Fuoli, L.; Cuenca-Estrella, M. Antifungal susceptibility profile of cryptic species of Aspergillus. Mycopahologia 2014, 178, 427–433. [Google Scholar] [CrossRef]
- Bongomin, F.; Moore, C.B.; Masania, R.; Rowbotham, E.; Alastruey-Izquierdo, A.; Novak-Frazer, L.; Richardson, M.D. Sequence analysis of isolates of Aspergillus from patients with chronic and allergic aspergillosis reveals a spectrum of cryptic species. Future Microbiol. 2018, 13, 1557–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negri, C.E.; Gonçalves, S.S.; Xafranski, H.; Bergamasco, M.D.; Aquino, V.R.; Castro, P.T.O.; Colombo, A.L. Cryptic and rare Aspergillus species in Brazil: Prevalence in clinical samples and in vitro susceptibility to triazoles. J. Clin. Microbiol. 2014, 52, 3633–3640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salah, H.; Lackner, M.; Houbraken, J.; Theelen, B.; Lass-Flörl, C.; Boekhout, T.; Almaslamani, M.; Taj-Aldeen, S.J. The emergence of rare clinical Aspergillus species in Qatar: Molecular characterization and antifungal susceptibility profiles. Front. Microbiol. 2019, 10, 1677. [Google Scholar] [CrossRef] [Green Version]
- Lamoth, F. Aspergillus fumigatus—related species in clinical practice. Front. Microbiol. 2016, 7, 683. [Google Scholar] [CrossRef] [Green Version]
- Denning, D.W.; Bromley, M.J. Infectious disease: How to bolster the antifungal pipeline. Science 2015, 347, 1414–1416. [Google Scholar] [CrossRef] [Green Version]
- Wring, S.A.; Randolph, R.; Park, S.; Abruzzo, G.; Chen, Q.; Flattery, A.; Garett, G.; Peel, M.; Outcalt, R.; Powell, K.; et al. Preclinical pharmacokinetics and pharmacodynamic target of SCY-078, a first-in-class orally active antifungal glucan synthesis inhibitor, in murine models of disseminated candidiasis. Antimicrob. Agents Chemother. 2017, 61, e02068-16. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Ortigosa, C.; Perez, W.B.; Angulo, D.; Borroto-Esoda, K.; Perlin, D.S. De novo acquisition of resistance to SCY-078 in Candida glabrata involves FKS mutations that both overlap and are distinct from those conferring echinocandin resistance. Antimicrob. Agents Chemother. 2017, 61, e00833-17. [Google Scholar] [CrossRef] [Green Version]
- Arendrup, M.C.; Jorgensen, K.M.; Hare, R.K.; Chowdhary, A. In vitro activity of obrexafungerp (SCY-078) against Candida auris isolates as determined by EUCAST methodology and comparison with activity against C. albicans and C. glabrata and with the activities of six comparator agents. Antimicrob. Agents Chemother. 2020, 64, e02136-19. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Messer, S.A.; Rhomberg, P.R.; Borroto-Esoda, K.; Castanheira, M. Differential activity of the oral glucan synthase inhibitor SCY-078 against wild-type and echinocandin-resistant strains of Candida species. Antimicrob. Agents Chemother. 2017, 61, e00161-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schell, W.A.; Jones, A.M.; Borroto-Esoda, K.; Alexander, B.D. Antifungal activity of SCY-078 and standard antifungal agents against 178 clinical isolates of resistant and susceptible Candida species. Antimicrob. Agents Chemother. 2017, 61, e01102-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghannoum, M.; Long, L.; Larkin, E.L.; Isham, N.; Sherif, R.; Borroto-Esoda, K.; Barat, S.; Angulo, D. Evaluation of the antifungal activity of the novel oral glucan synthase inhibitor SCY-078, singly and in combination, for the treatment of invasive aspergillosis. Antimicrob. Agents Chemother. 2018, 62, e00244-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez-Ortigosa, C.; Paderu, P.; Motyl, M.R.; Perlin, D.S. Enfumafungin derivative MK-3118 shows increased in vitro potency against clinical echinocandin-resistant Candida species and Aspergillus species isolates. Antimicrob. Agents Chemother. 2014, 58, 1248–1251. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Messer, S.A.; Motyl, M.R.; Jones, R.N.; Castanheira, M. In vitro activity of a new oral glucan synthase inhibitor (MK-3118) tested against Aspergillus spp. by CLSI and EUCAST broth microdilution methods. Antimicrob. Agents Chemother. 2013, 57, 1065–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rautemaa-Richardson, R.; Moore, C.B.; Rawson, K.; Novak-Frazer, L.; Angulo, D.; Barat, S.; Richardson, M.D. Aspergillus isolates from patients with chronic pulmonary aspergillosis mycologically and clinically resistant to azole antifungals are sensitive to ibrexafungerp (SCY-078). In Proceedings of the 9th Trends in Medical Mycology, Nice, France, 11–14 October 2019; pp. 11–14. [Google Scholar]
- Lamoth, F.; Alexander, B.D. Antifungal activities of SCY-078 (MK-3118) and standard antifungal agents against clinical non-Aspergillus mold isolates. Antimicrob. Agents Chemother. 2015, 59, 4308–4311. [Google Scholar] [CrossRef] [Green Version]
- Barat, S.; Barroto-Esoda, K.; Ghannoum, M.; Berkow, E.; Angulo, D.A. Activity of ibrexafungerp (formerly SCY-078) against Candida auris: In vitro, in vivo, and clinical case studies of candidemia. Open Forum Infect. Dis. 2019, 6, S307. [Google Scholar] [CrossRef] [Green Version]
- Barroto-Esoda, K.; Barat, S.; Angulo, D.; Holden, K.; Warn, P. SCY-078 demonstrates significant antifungal activity in a murine model of invasive aspergillosis. Open Forum Infect. Dis. 2017, 4, S472. [Google Scholar] [CrossRef]
- Lepak, A.J.; Marchillo, K.; Andes, D.R. Pharmacodynamic target evaluation of a novel oral glucan synthase inhibitor, SCY-078 (MK-3118), using an in vivo murine invasive candidiasis model. Antimicrob. Agents Chemother. 2015, 59, 1265–1272. [Google Scholar] [CrossRef] [Green Version]
- Petraitis, V.; Petraitiene, R.; Katragkou, A.; Maung, B.B.W.; Naing, E.; Kavaliauskas, P.; Barat, S.; Borroto-Esoda, K.; Azie, N.; Angulo, D.; et al. Combination therapy with ibrexafungerp (formerly SCY-078), a first-in-class triterpenoid inhibitor of (1→3)-B-D-glucan synthesis, and isavuconazole for treatment of experimental invasive pulmonary aspergillosis. Antimicrob. Agents Chemother. 2020, 64, e02429-19. [Google Scholar] [CrossRef]
- Wiederhold, N.P.; Najvar, L.K.; Jaramillo, R.; Olivo, M.; Pizzini, J.; Catano, G.; Patterson, T.F. Oral glucan synthase inhibitor SCY-078 is effective in an experimental murine model of invasive candidiasis caused by WT and echinocandin-resistant Candida glabrata. J. Antimicrob. Chemother. 2018, 73, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Alastruey-Izquierdo, A.; Mellado, E.; Pelaez, T.; Peman, J.; Zapico, S.; Alvarez, M.; Rodríguez-Tudela, J.L.; Cuenca-Estrella, M.; FILPOP Study Group. Population-based survey of filamentous fungi and antifungal resistance in Spain (FILPOP Study). Antimicrob. Agents Chemother. 2013, 57, 3380–3387. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.B.; Go, S.J.; Shin, H.D.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 2005, 97, 1316–1329. [Google Scholar] [CrossRef] [PubMed]
- Ashtiani, N.M.; Kachuei, R.; Yalfani, R.; Harchegani, A.B.; Nosratabadi, M. Identification of Aspergillus sections Flavi, Nigri, and Fumigati and their differentiation using specific primers. Infez Med. 2017, 2, 127–132. [Google Scholar]
- Arendrup, M.C.; Meletiadis, J.; Mouton, J.W.; Lagrou, K.; Hamal, P.; Guinea, J. EUCAST Definitive Document E.DEF 9.3.2: Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_9.3.2_Mould_testing_definitive_revised_2020.pdf. (accessed on 24 September 2020).
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 3rd ed.; CLSI standard M38; Clinical and Laboratory Standars Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Rivero-Menendez, O.; Alastruey-Izquierdo, A.; Mellado, E.; Cuenca-Estrella, M. Triazole resistance in Aspergillus spp.: A worldwide problem? J. Fungi 2016, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Zoran, T.; Sartori, B.; Sappl, L.; Aigner, M.; Sanchez-Reus, F.; Rezusta, A.; Chowdhary, A.; Taj-Aldeen, S.J.; Arendrup, M.C.; Oliveri, S.; et al. Azole-resistance in Aspergillus terreus and related species: An emerging problem or a rare phenomenon? Front. Microbiol. 2018, 9, 516. [Google Scholar] [CrossRef] [PubMed]
- Imbert, S.; Normand, A.C.; Ranque, S.; Costa, J.M.; Guitard, J.; Accoceberry, I.; Bonnal, C.; Fekkar, A.; Bourgeois, N.; Houzé, S.; et al. Species identification and in vitro antifungal susceptibility of Aspergillus terreus species complex clinical isolates from a French multicenter study. Antimicrob. Agents Chemother. 2018, 62, e02315-17. [Google Scholar] [CrossRef] [Green Version]
- Glampedakis, E.; Cassaing, S.; Fekkar, A.; Dannaoui, E.; Bougnoux, M.E.; Bretagne, S.; Neofytos, D.; Schreiber, P.W.; Hennequin, C.; Morio, F.; et al. Invasive aspergillosis due to Aspergillus section Usti: A multicenter retrospective study. Clin. Infect. Dis. 2020, ciaa230. [Google Scholar] [CrossRef]
- Siqueira, J.P.; Sutton, D.A.; Gene, J.; Garcia, D.; Wiederhold, N.; Peterson, S.W.; Guarro, J. Multilocus phylogeny and antifungal susceptibility of Aspergillus section Circumdati from clinical samples and description of A. pseudosclerotiorum sp. nov. J. Clin. Microbiol. 2017, 55, 947–958. [Google Scholar] [CrossRef] [Green Version]
- Perez-Cantero, A.; Lopez-Fernandez, L.; Guarro, J.; Capilla, J. New insights into the Cyp51 contribution to azole resistance in Aspergillus section Nigri. Antimicrob. Agents Chemother. 2019, 63, e00543-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, M.R.; Donnelley, M.A.; Thompson, G.R. Ibrexafungerp: A novel oral glucan synthase inhibitor. Med. Mycol. 2020, 58, 579–592. [Google Scholar] [CrossRef] [PubMed]
- Jagadeesan, V.; Driscoll, E.; Hao, B.; Barat, S.; Borroto-Esoda, K.; Angulo, D.; Clancy, C.; Nguyen, M. In vitro evaluation of combination of ibrexafungerp and azoles against Aspergillus spp. isolated from lung transplant recipients. In Proceedings of the 9th Advances Against Aspergillosis and Mucormycosis, Lugano, Switzerland, 27–29 February 2020; Volume 89. [Google Scholar]
- Alastruey-Izquierdo, A.; Melhem, M.S.; Bonfietti, L.X.; Rodriguez-Tudela, J.L. Susceptibility test for fungi: Clinical and laboratorial correlations in medical mycology. Rev. Inst. Med. Trop Sao Paulo 2015, 57, 57–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Test Method | |||||||||
---|---|---|---|---|---|---|---|---|---|
Antifungal Test at 48 h of Incubation by EUCAST and by CLSI | |||||||||
EUCAST | CLSI | ||||||||
Species (no. tested) | AMB | VRC | MCF | IBF | AMB | VRC | MCF | IBF | |
Aspergillus fumigatus complex | |||||||||
Aspergillus fumigatus s.s. WT (10) | GM | 0.435 | 1.231 | 0.011 | 0.040 | 0.232 | 0.660 | 0.005 | 0.040 |
MIC50/MEC50 | 0.5 | 2 | 0.015 | 0.03 | 0.25 | 0.5 | 0.004 | 0.03 | |
MIC90/MEC90 | 0.5 | 2 | 0.03 | 0.12 | 0.25 | 2 | 0.015 | 0.12 | |
Range | 0.25–0.5 | 0.5–2 | 0.004–0.03 | 0.03–0.12 | 0.12–0.25 | 0.25–2 | 0.004–0.015 | 0.03–0.12 | |
Aspergillus fumigatus s.s. azole R (10) | GM | 0.406 | 2.144 | 0.013 | 0.092 | 0.161 | 2.000 | 0.004 | 0.056 |
MIC50/MEC50 | 0.5 | 4 | 0.015 | 0.06 | 0.12 | 4 | 0.004 | 0.06 | |
MIC90/MEC90 | 1 | 16 | 0.03 | 2 | 0.25 | 16 | 0.004 | 0.12 | |
Range | 0.25–1 | 0.25–16 | 0.007–0.06 | 0.03–8 | 0.12–0.25 | 0.25–16 | 0.004–0.007 | 0.03–0.12 | |
Aspergillus lentulus (20) | GM | 3.864 | 2.639 | 0.009 | 0.086 | 0.636 | 2.378 | 0.004 | 0.074 |
MIC50/MEC50 | 2 | 4 | 0.007 | 0.06 | 0.5 | 2 | 0.004 | 0.06 | |
MIC90/MEC90 | 32 | 4 | 0.015 | 0.25 | 1 | 4 | 0.004 | 0.25 | |
Range | 1–32 | 0.5–16 | 0.004–0.03 | 0.03–0.5 | 0.12–2 | 1–4 | 0.004–0.004 | 0.03–0.25 | |
Aspergillus fumigatiaffinis (10) | GM | 22.627 | 4.287 | 0.015 | 0.227 | 2.144 | 2.639 | 0.004 | 0.040 |
MIC50/MEC50 | 32 | 4 | 0.015 | 0.12 | 2 | 2 | 0.004 | 0.03 | |
MIC90/MEC90 | 32 | 8 | 0.03 | 16 | 4 | 4 | 0.004 | 0.06 | |
Range | 8–32 | 2–8 | 0.007–0.03 | 0.03–16 | 1–8 | 2–4 | 0.004–0.004 | 0.03–0.06 | |
Aspergillus thermomutatus (10) | GM | 0.536 | 2.297 | 0.021 | 0.130 | 0.131 | 1.741 | 0.013 | 0.056 |
MIC50/MEC50 | 0.5 | 2 | 0.015 | 0.12 | 0.12 | 2 | 0.015 | 0.06 | |
MIC90/MEC90 | 2 | 4 | 0.06 | 0.5 | 0.5 | 4 | 0.06 | 0.12 | |
Range | 0.25–2 | 0.5–4 | 0.015–0.06 | 0.03–2 | 0.03–1 | 0.25–4 | 0.004–0.06 | 0.03–0.12 | |
Aspergillus udagawae (10) | GM | 3.031 | 2.000 | 0.008 | 0.183 | 0.616 | 1.866 | 0.004 | 0.069 |
MIC50/MEC50 | 2 | 2.000 | 0.007 | 0.12 | 0.5 | 2 | 0.004 | 0.12 | |
MIC90/MEC90 | 8 | 4.000 | 0.015 | 8 | 1 | 2 | 0.004 | 0.25 | |
Range | 2–16 | 1–4 | 0.004–0.015 | 0.03–8 | 0.5–1 | 1–2 | 0.004–0.007 | 0.03–0.25 | |
Aspergillus hiratsukae (7) | GM | 1.641 | 1.811 | 0.008 | 0.221 | 0.301 | 1.641 | 0.005 | 0.042 |
MIC50/MEC50 | 1 | 1 | 0.007 | 0.12 | 0.25 | 2 | 0.004 | 0.06 | |
MIC90/MEC90 | 16 | 8 | 0.03 | 8 | 2 | 8 | 0.015 | 0.06 | |
Range | 0.5–32 | 0.5–8 | 0.004–0.03 | 0.03–16 | 0.03–2 | 0.5–8 | 0.004–0.015 | 0.03–0.06 | |
Aspergillus felis (2) | GM | 1.414 | 8.000 | 0.007 | 0.085 | 0.707 | 8.000 | 0.004 | 0.060 |
Range | 1–2 | 8–8 | 0.007–0.007 | 0.06–0.12 | 0.5–1 | 8–8 | 0.004–0.004 | 0.06–0.06 | |
Aspergillus terreus complex | |||||||||
Aspergillus citrinoterreus (8) | GM | 3.668 | 0.595 | 0.012 | 0.078 | 1.000 | 0.354 | 0.010 | 0.050 |
MIC50/MEC50 | 4 | 0.5 | 0.015 | 0.06 | 1 | 0.5 | 0.007 | 0.06 | |
MIC90/MEC90 | 8 | 1 | 0.015 | 0.12 | 1 | 0.5 | 0.03 | 0.06 | |
Range | 2–16 | 0.5–1 | 0.007–0.015 | 0.06–0.12 | 1–1 | 0.25–0.5 | 0.007–0.03 | 0.03–0.06 | |
Aspergillus carneus (4) | GM | 1.189 | 1.000 | 0.044 | 0.030 | 0.420 | 1.682 | 0.004 | 0.030 |
Range | 1–2 | 1–1 | 0.004–4 | 0.03–0.03 | 0.25–0.5 | 1–2 | 0.004–0.004 | 0.03–0.03 | |
Aspergillus aureoterreus (3) | GM | 2.520 | 0.794 | 0.005 | 0.030 | 0.621 | 0.315 | 0.004 | 0.048 |
Range | 0.5–8 | 0.5–1 | 0.004–0.007 | 0.03–0.03 | 0.12–2 | 0.25–0.5 | 0.004–0.004 | 0.03–0.06 | |
Aspergillus hortai (3) | GM | 2.000 | 1.000 | 0.012 | 0.030 | 0.397 | 0.630 | 0.004 | 0.030 |
Range | 1–4 | 1–1 | 0.007–0.015 | 0.03–0.03 | 0.25–0.5 | 0.5–1 | 0.004–0.004 | 0.03–0.03 | |
Aspergillus ustus complex | |||||||||
Aspergillus calidoustus (15) | GM | 0.955 | 8.378 | 0.115 | 0.952 | 0.395 | 8.378 | 0.072 | 0.500 |
MIC50/MEC50 | 1 | 8 | 0.12 | 1 | 0.5 | 8 | 0.06 | 0.5 | |
MIC90/MEC90 | 2 | 16 | 0.25 | 4 | 1 | 8 | 0.12 | 1 | |
Range | 0.25–2 | 4–16 | 0.06–0.25 | 0.12–4 | 0.12–1 | 8–16 | 0.03–0.12 | 0.25–1 | |
Aspergillus insuetus (3) | GM | 1.000 | 8.000 | 0.120 | 3.175 | 0.500 | 12.699 | 0.095 | 1.260 |
Range | 1–1 | 8–8 | 0.12–0.12 | 2–8 | 0.5–0.5 | 8– 1 6 | 0.06–0.12 | 0.5–2 | |
Aspergillus keveii (2) | GM | 0.707 | 16.000 | 0.085 | 0.707 | 0.354 | 16.000 | 0.030 | 1.000 |
Range | 0.5–1 | 16–16 | 0.06–0.12 | 0.5–1 | 0.25–0.5 | 16–16 | 0.03–0.03 | 0.5–2 | |
Aspergillus section Circumdati | |||||||||
Aspergillus ochraceus (10) | GM | 10.556 | 0.871 | 0.017 | 0.121 | 1.414 | 0.707 | 0.013 | 0.122 |
MIC50/MEC50 | 32 | 1 | 0.015 | 0.12 | 2 | 1 | 0.015 | 0.12 | |
MIC90/MEC90 | 32 | 1 | 0.06 | 0.5 | 2 | 1 | 0.03 | 0.25 | |
Range | 2–32 | 0.5–1 | 0.007–0.06 | 0.03–1 | 1–2 | 0.25–1 | 0.004–0.03 | 0.03–0.25 | |
Aspergillus sclerotiorum (5) | GM | 16.000 | 2.297 | 0.007 | 0.034 | 2.297 | 1.741 | 0.006 | 0.106 |
MIC50/MEC50 | 32 | 2 | 0.007 | 0.03 | 2 | 2 | 0.004 | 0.12 | |
MIC90/MEC90 | 32 | 4 | 0.015 | 0.06 | 4 | 4 | 0.015 | 0.5 | |
Range | 4–32 | 1–4 | 0.004–0.015 | 0.03–0.06 | 2–4 | 1–4 | 0.004–0.015 | 0.03–0.5 | |
Aspergillus flavus complex | |||||||||
Aspergillus alliaceus (20) | GM | 28.840 | 0.420 | 0.029 | 5.077 | 17.148 | 0.248 | 0.007 | 1.506 |
MIC50/MEC50 | 32 | 0.5 | 0.03 | 16 | 32 | 0.250 | 0.007 | 1 | |
MIC90/MEC90 | 32 | 1 | 0.06 | 32 | 32 | 1 | 0.015 | 16 | |
Range | 4–32 | 0.12–1 | 0.015–0.06 | 0.03–32 | 1–32 | 0.06–1 | 0.004–0.03 | 0.12–16 | |
Aspergillus niger complex | |||||||||
Aspergillus tubingensis (16) | GM | 0.249 | 1.044 | 0.010 | 0.065 | 0.089 | 1.682 | 0.007 | 0.053 |
MIC50/MEC50 | 0.25 | 1 | 0.007 | 0.06 | 0.12 | 2 | 0.007 | 0.06 | |
MIC90/MEC90 | 0.25 | 2 | 0.03 | 0.12 | 0.12 | 2 | 0.015 | 0.06 | |
Range | 0.12–0.5 | 0.5–2 | 0.007–0.03 | 0.03–0.12 | 0.06–0.12 | 1–2 | 0.004–0.03 | 0.03–0.25 | |
All (168) | GM | 2.246 | 1.736 | 0.019 | 0.329 | 0.640 | 1.465 | 0.017 | 0.185 |
MIC50/MEC50 | 2 | 2 | 0.015 | 0.12 | 0.5 | 2 | 0.015 | 0.12 | |
MIC90/MEC90 | 32 | 8 | 0.12 | 8 | 4 | 8 | 0.06 | 1 | |
Range | 0.06–32 | 0.12–16 | 0.007–4 | 0.06–32 | 0.03–32 | 0.06–16 | 0.004–0.12 | 0.03–16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivero-Menendez, O.; Soto-Debran, J.C.; Cuenca-Estrella, M.; Alastruey-Izquierdo, A. In Vitro Activity of Ibrexafungerp against a Collection of Clinical Isolates of Aspergillus, Including Cryptic Species and Cyp51A Mutants, Using EUCAST and CLSI Methodologies. J. Fungi 2021, 7, 232. https://doi.org/10.3390/jof7030232
Rivero-Menendez O, Soto-Debran JC, Cuenca-Estrella M, Alastruey-Izquierdo A. In Vitro Activity of Ibrexafungerp against a Collection of Clinical Isolates of Aspergillus, Including Cryptic Species and Cyp51A Mutants, Using EUCAST and CLSI Methodologies. Journal of Fungi. 2021; 7(3):232. https://doi.org/10.3390/jof7030232
Chicago/Turabian StyleRivero-Menendez, Olga, Juan Carlos Soto-Debran, Manuel Cuenca-Estrella, and Ana Alastruey-Izquierdo. 2021. "In Vitro Activity of Ibrexafungerp against a Collection of Clinical Isolates of Aspergillus, Including Cryptic Species and Cyp51A Mutants, Using EUCAST and CLSI Methodologies" Journal of Fungi 7, no. 3: 232. https://doi.org/10.3390/jof7030232
APA StyleRivero-Menendez, O., Soto-Debran, J. C., Cuenca-Estrella, M., & Alastruey-Izquierdo, A. (2021). In Vitro Activity of Ibrexafungerp against a Collection of Clinical Isolates of Aspergillus, Including Cryptic Species and Cyp51A Mutants, Using EUCAST and CLSI Methodologies. Journal of Fungi, 7(3), 232. https://doi.org/10.3390/jof7030232