Next Article in Journal
New Perspectives in the Antimicrobial Activity of the Amphibian Temporin B: Peptide Analogs Are Effective Inhibitors of Candida albicans Growth
Next Article in Special Issue
Genetic Manipulation as a Tool to Unravel Candida parapsilosis Species Complex Virulence and Drug Resistance: State of the Art
Previous Article in Journal
Characterisation of Aspergillus fumigatus Endocytic Trafficking within Airway Epithelial Cells Using High-Resolution Automated Quantitative Confocal Microscopy
Previous Article in Special Issue
In Silico Predicted Antifungal Peptides: In Vitro and In Vivo Anti-Candida Activity
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Bioactive Compounds from Mangrove Endophytic Fungus and Their Uses for Microorganism Control

by
Rafael Dorighello Cadamuro
1,
Isabela Maria Agustini da Silveira Bastos
1,
Izabella Thais Silva
1,2,
Ariadne Cristiane Cabral da Cruz
1,3,
Diogo Robl
1,
Louis Pergaud Sandjo
4,
Sergio Alves, Jr.
5,
Jose M. Lorenzo
6,7,*,
David Rodríguez-Lázaro
8,
Helen Treichel
9,
Mário Steindel
1 and
Gislaine Fongaro
1,*
1
Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
2
Department of Pharmaceutical Sciences, Federal University Santa Catarina, Florianopolis 88040-900, SC, Brazil
3
Department of Dentistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
4
Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
5
Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó 89802-112, SC, Brazil
6
Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
7
Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
8
Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
9
Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim 99700-000, RS, Brazil
*
Authors to whom correspondence should be addressed.
J. Fungi 2021, 7(6), 455; https://doi.org/10.3390/jof7060455
Submission received: 14 May 2021 / Revised: 31 May 2021 / Accepted: 3 June 2021 / Published: 7 June 2021

Abstract

:
Mangroves are ecosystems with unique characteristics due to the high salinity and amount of organic matter that house a rich biodiversity. Fungi have aroused much interest as they are an important natural source for the discovery of new bioactive compounds, with potential biotechnological and pharmacological interest. This review aims to highlight endophytic fungi isolated from mangrove plant species and the isolated bioactive compounds and their bioactivity against protozoa, bacteria and pathogenic viruses. Knowledge about this type of ecosystem is of great relevance for its preservation and as a source of new molecules for the control of pathogens that may be of importance for human, animal and environmental health.

1. Introduction

The extensive and continued use of natural products in popular medicine may be considered an indicator that they contain bioactive molecules with the potential to be transformed into new therapeutic agents for use in the treatment of diseases [1]. There are many examples of medicines (antibiotics, antiviral, anti-fungal, anti-parasitic, anti-tumoral, anticholesterolemic, anti-hypertensive, among others) from natural products, notably from higher plants, microorganisms and animals, among the best-sellers worldwide. According to Cragg and Newman [2,3], from the 1562 drugs approved by the FDA between 1981 and 2014, around 525 (33.7%) were natural products or natural product derivatives. The use of natural products in the drug discovery process and development has some clear advantages: they represent chemical novelties when compared with other sources, leading to new drug candidates for complex targets [4,5]. By contrast, access to natural biological resources by lack of government legislation sometimes makes it challenging to use naturally derived molecules as a source of new medicines. However, naturally derived constituents have an extraordinary chemical diversity, compared to any collection of synthetic chemicals, and despite having differences such as complex two-dimensional and three-dimensional structures, pharmacological target, selectivity, behavior and resistance, they are capable of being absorbed and metabolized in the body [6].
The search for new bioactive compounds is three-fold: (i) find molecules that may control diseases that no synthetic drug has been shown to be capable of, (ii) discover alternative compounds that provoke fewer side-effects and lower multi-drug resistance over the microbiomes and (iii) replace synthetic drugs to mitigate environmental impacts caused by their presence in soil and bodies of water [6,7,8]. Natural products obtained from microorganisms (microbial products) are generally used for the treatment of diseases caused by bacteria, fungi, protozoa and viruses. Microorganisms have stood out in the production of new natural products. Out of the 23,000 existing microbial compounds with antimicrobial and anti-infectious activities, 42% are produced by fungi and 32% by filamentous bacteria, the actinomycetes [9].
The production of antibiotics began with the discovery of penicillin at the end of the 1920s [10,11]. After the 1980s, pharmaceutical companies began to lose interest in the development of new compounds, as each new discovery takes years of development, requires both pre-clinical and clinical studies and has a short window of time for organizations to sell the products before the expiration of the patent. The most intensive use of classical antibiotics occurred in the era of antibiotics (1940–1962), so new antibiotics are necessary for the treatment of diseases since pathogens in their great majority can create resistance to old natural products, while some have this resistance naturally, such as Pseudomonas aeruginosa [9]. The search for new compounds for drug production is challenging. The screening of new compounds requires a lot of knowledge, scientific experience and the use of technology [12].
The mangrove ecosystem is an attractive biodiversity hotspot for prospecting new useful bioactive and chemical scaffolds, including those with potential medicinal application. Overall, in the past two decades, mangrove-associated bacteria/fungi have gained considerable attention due to their unique ecological characteristics, diversity and abundance of novel bioactive secondary metabolites, as demonstrated by the growth in the number of publications in the literature [13,14]. Mangrove forests are composed mainly of shrubs and trees of the Rhizophoraceae, Acanthaceae, Lythraceae, Verbenaceae, Combretaceae and Arecaceae families [14]. In Brazil, mangroves are classified as red, white or black mangroves according to some of these families: Rhizophora mangle (Rhizophoraceae) [15], Laguncularia racemosa (Combretaceae) [15] and Avicennia schaueriana (Verbenaceae) [16], respectively. These species can be found mainly in the city of Florianópolis, which is the capital city of the state of Santa Catarina, and is located on an island, together with the species Spartina densiflora and Spartina alterniflora weeds. In the transitional forest area, there are also species such as Hibiscus pernambucensis and Acrostichum danaeaefolium, commonly known as “mangrove cotton” and “mangrove fern” [17].
The endemic mangrove flora represents a great source of molecules with biological potential produced by plant biosynthesis, microbial interaction and cohabitation with other species [18]. Beyond this, mangroves have fauna rich in aquatic animals (fish, amphibians and reptiles) and land animals (mammals and birds). These animals take advantage of mangrove forests for their essential life cycle activities, and their breeding and reproducing cycles provide a rich source of food for humans [19].
Mangrove forest is a refuge for several microorganisms, such as fungi, bacteria and algae. In this review, we focused on endophytic fungi from mangrove ecosystems as a potential source of new natural products with biotechnological and pharmaceutical applications. Moreover, methodologies used for the isolation of these microorganisms are also presented.
Endophytic fungi isolated from mangrove plants and mangrove soils were first described by Cribb [20]. Since then, several studies on these marine fungi have been conducted along the coast of the Indian, Pacific and Atlantic oceans. These fungi comprise the second-largest ecological group of marine fungi. They have unique morphological structures and physiological mechanisms for the survival of host plants in adverse environmental conditions, such as the ability to grow in high salt concentrations through endophyte–host interactions [21].
Many of the physiological mechanisms of endophytic–host interaction are still poorly understood and established, mainly those related to the evolutionary and genetic mechanisms of the endophytes. It is supposed that the endophytic species have often evolved from plant pathogenic ancestors, and that this interaction can range from parasitism to mutualism, which depends mainly on the fungi species, the genetic background of the host and the environment where these microorganisms are found [22].

2. Endophytic Fungi

Endophytic fungi are phylogenetically characterized as belonging to the Ascomycota, Basidiomycota and Zygomycota phyla [23]. The ascomycetes of the genus Trichoderma, reported in the literature in the last ten years, were first isolated from mangrove areas of Brazil, China and Indonesia in 1920 (Table 1). Known as a biocontrol agent against pathogens of cultivated plants, Trichoderma spp. also present an increased capacity of degradation of some toxic compounds present in plants, soil and water [24]. Trichoderma spp. colonizes its hosts quickly, producing a large number of green spores of free life, and has fruiting bodies that assist in the fungal characterization of this genus [25].
Zygomycetes of Rhizopus genera isolated in a mangrove area of Nigeria (Table 1) is also a filamentous fungus that presents branched mycelium bodies. It is mainly used in traditional food fermentation processes and as a source of enzymes for degradation of organic pollutants [26,27]. The filamentous fungi Schizophyllum commune, isolated from the Indian mangrove forest (Table 1), belongs to the basidiomycete phylum. It has fruiting bodies (which facilitate its characterization) and whitish to light greyish/brown colonies. It is used in pigment production and has antiviral and anticancer capacities [28].
The diversity of endophytic fungi has been studied mainly on barks, branches, leaves, stems and roots of mangrove plant taxa in many countries around the world in order to identify their biological activities. It is noteworthy that China is the country with the highest number of endophytic fungi isolated from mangrove plants. Ascomycetes, belonging to the Alternaria, Ascomycota, Aspergillus, Campylocarpon, Cladosporium, Colletotrichum, Cytospora, Daldinia, Diaporthe, Dothiorella, Emericella, Eupenicillium, Eurotium, Guignardia, Glomerella, Lasiodiplodia, Leptosphaerulina, Neosartorya, Nodulisporium, Nigrospora, Penicillium, Pestalotiopsis, Phoma, Phomopsis, Phyllosticta, Pleosporales, Stemphylium, Talaromyces, Trichoderma and Xylaria genera, and the basidiomycete Phellinus noxius, were the most frequently found (Table 1).
In Brazil, endophytic ascomycetes of the Colletotrichum, Glomerella, Guignardia, Nodulisporium, Phomopsis and Phyllosticta genera were isolated in a mangrove area of the island of Itamaracá in the state of Pernambuco [29]. Isolations have also occurred in the Cananeia and Bertioga mangrove forests in the coast of the state of São Paulo, with the predominance of ascomycetes of the Colletotrichum, Diaporthe, Fusarium, Trichoderma and Xylaria genera [30]. More recently, ascomycetes from the Aspergillus, Fusarium, Penicillium and Trichoderma genera have been isolated from a mangrove area in the city of Canavieiras, in the state of Bahia [31]. Thus, considering the vast coastal extension of Brazil with different ecosystems, with a distance between Bahia and Santa Catarina higher than 1.900 km, for example, this way, there are few studies of endophytic fungi from mangrove plants.
Table 1. Endophytic fungi isolated from mangrove plants worldwide.
Table 1. Endophytic fungi isolated from mangrove plants worldwide.
Endophytic FungiMangrove PlantReference
Acremonium sp. and Acremonium strictumRhizophora apiculata[32,33]
Alternaria longipeAvicennia officinalis[34]
Alternaria sp.Myoporum bontioides, Rhizophora mucronata[35,36]
Ascomycota sp.Pluchea indica[37]
Aspergillus clavatusMyoporum bontioides[38]
Aspergillus flavipesAcanthus ilicifolius[39]
Aspergillus flavusHibiscus tiliaceus, Sonneratia griffithii, Kandelia obovata[40,41,42]
Aspergillus fumigatusAcrostichum specioum, Sonneratia griffithii[41,43]
Aspergillus nidulansRhizophora stylosa[44,45]
Aspergillus nigerSonneratia apetala,S. griffithii[41,46,47,48]
Aspergillus sp.Bruguiera gymnorrhiza, Avicennia africana, Xylocarpus moluccensis, Acanthus ilicifolius, Avicennia marina, Dalbergia ecastaphyllum[31,49,50,51,52,53]
Aspergillus tubingensisPongamia pinnata[54]
Aspergillus versicolorExcoecaria agallocha[55]
Campylocarpon sp.Sonneratia caseolaris[56]
Cladosporium sp.Rhizophora apiculata, Aegiceras corniculatum, Kandelia candel, Rhizophora mucronata, Excoecaria agallocha[36,52,57,58,59]
Colletotrichum gloeosporioidesAvicennia schaueriana and Laguncularia racemosa, Ceriops tagal and Sonneratia apetala[29,47,60]
Colletotrichum sp.Xylocarpus granatum, Avicennia schaueriana Laguncularia racemosa and Rhizophora mangle Aegiceras corniculatum, Avicennia africana,[29,50,57]
Cytospora sp.Ceriops tagal[61]
Daldinia eschscholtziiBruguiera sexangula var. rhynchopetala[62]
Diaporthe sp.Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle, Rhizophora stylosa[30,63]
Dothiorella sp.Aegiceras corniculatum[64]
Emericella sp.Aegiceras corniculatum[65]
Epicoccum sp.Avicennia africana[50]
Eupenicillium sp.Xylocarpus granatum[66]
Eurotium chevalierRhizophora mucronata[67]
Eurotium rubrumHibiscus tiliaceu[68]
Fusarium equisetiSonneratia apetala[47]
Fusarium lateritiumRhizophora mucronata[36]
Fusarium napiformeRhizophora mucronata[69]
Fusarium phyllophilumAvicennia africana[50]
Fusarium sp.Avicennia schaueriana, Laguncularia racemosa, Rhizophora mangle, Rhizophora mucronata, and Dalbergia ecastaphyllum[30,36,69]
Glomerella cingulata and Guignardia sp.Avicennia schaueriana, Laguncularia racemosa, Rhizophora mangle[29]
Guignardia camelliaeAvicennia sp.[70]
Guignardia sp.Scyphiphora hydrophyllacea, Aegiceras corniculatum, Acanthus ilicifolius;[59,71,72]
Glomerella sp.Aegiceras corniculatum[59]
Hypocrea virensPremna serratifolia[73]
Lasiodiplodia theobromaeAcanthus ilicifolius, Avicennia lanata[74,75]
Leptosphaerulina sp.Acanthus ilicifolius[76]
Neosartorya hiratsukaeAvicennia sp. and Aricennia marina[76,77]
Nodulisporium gregariumAvicennia schaueriana[29]
Nodulisporium sp.Acanthus ilicifolius[72]
Nigrospora sp.Kandelia candel, Pongamia pinnata, and Rhizophora mucronata[36,78,79]
Nigrospora sphaericaBruguiera gymnorrhyza[79]
Phellinus noxiusAcanthus ilicifolius[72]
Penicillium brocaeAvicennia marina[80,81]
Penicillium chrysogenumPorteresia coarctata, Myoporum bontioides[82,83]
Penicillium citrinumBruguiera sexangula var. rhynchopetala[84,85]
Penicillium coffeae and Penicillium herqueiLaguncularia racemosa[86,87]
Penicillium simplicissimumBruguiera sexangula var. rhynchopetala[88]
Penicillium spp.Bruguiera sexangula var. Rhynchopetala, Bruguiera gymnorrhiza, K. candel, Avicennia africana, Dalbergia ecastaphyllum[31,50,89,90,91]
Pestalotiopsis sp.Aegiceras corniculatum, Rhizophora mucronata, Rhizophora stylosa[36,92,93,94]
Pestalotiopsis vaciniiKandelia candel[7]
Phoma sp.Thespesia populneoide, Myoporum bontioides, Rhizophora mucronata, Kandelia sp., Acanthus ilicifolius[36,38,72,95]
Phomopsis archeri, P. diacheniiAvicennia schaueriana and Laguncularia racemosa[29]
Phomopsis longicollaBrguiera sexangula var. rhynchopetala[38]
Phomopsis sp.Rhizophora apiculata, Kandelia candel, Acanthus ilicifolius, Xylocarpus granatum, Avicennia africana[50,96,97,98]
Phyllosticta capitalensisBruguiera sexangula[94]
Phyllosticta sp.Acanthus ilicifolius, Avicennia alba, Ceriops decandra, Lumnitzera littorea, Rhizophora apiculata, Rhizophora mucronata, Sonneratia alba, Xylocarpus moluccensis, Rhizophora mangle[28,57]
Pleosporales sp.Kandelia candel[99]
Rhizopus sp.Avicennia africana[50]
Schizophyllum communeAvicennia officinalis[100]
Stemphylium sp.Bruguiera sexangula var. rhynchopetala[101,102]
Talaromyces sp.Kandelia candel[103]
Talaromyces stipitatusAcanthus ilicifolius[98]
Trichoderma sp.Avicennia schaueriana Laguncularia racemosa, Rhizophora mangle, Clerodendrum inerme, Ceriops tagal, Bruguiera sp., Dalbergia ecastaphyllum[30,70,103,104]
Xylaria psidiiAegle marmelos[104]
Xylaria sp.Avicennia schaueriana, Laguncularia racemosa, Rhizophora mangle, Rhizophora mucronata Xylocarpus granatum, Acanthus ilicifolius[30,36,51,72]
Zasmidium sp.L. racemosa[105,106]

3. Bioactive Compounds from Mangrove Endophytic Fungus

The main classes of endophytic fungal compounds isolated from mangrove areas and their pharmacological activities are presented in Table 2. The potential biological applications of metabolites produced by these fungi include growth inhibition of bacteria and protozoan and virus inactivation [106].
Saad [105] isolated endophytic fungi from root samples of Malva parviflora and leaf samples of Chenopodium album, Pelargonium graveolens and Melia azedarach. Nine fungi presented bioactivity and were identified using DNA-sequences, with five being isolated from C. album: Fusarium chlamydosporum, A. alternata saad5 MG786542, A. alternata saad8 MG786545, Fusarium oxysporum and Phoma sp. Two fungi were isolated from M. azedarach: F. equiseti and Stemphylium sp., and two from the medicinal plant M. azedarach: C. lunata and Nigrospora sphaerica. The metabolites presented bioactivity against Spodoptera littoralis, a lepidopteran pest known to infect around 44 different families of hosts, such as cruciferous, legumes, grasses and deciduous fruit trees. Metabolites produced by the fungi Curvularia lunata and Alternaria solani demonstrated bioactivity, inhibiting 60% and 40% of larvae of Spodoptera littoralis, respectively.
It is expected that some of the endophytic-fungi extracts harbor bioactive compounds when the fungal cells have been grown in the presence of epigenetic regulators, which are able to modulate gene expression for secondary-metabolite synthesis [48,107,108,109,110,111,112,113,114,115]. Recently, Demers [116] showed that 72% of the analyzed mangrove fungi presented active extracts only when cultured in media containing histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi). In addition, those authors also showed that nearly 70% of the active extracts were selective to a single target organism. Thus, considering the specificity of each endophytic-fungi bioactive against different microorganisms, the effects of these compounds against protozoan, bacteria and virus are addressed below in separate subsections.

3.1. Antiprotozoan

Malaria is an example of a tropical disease caused by Plasmodium spp., which accounts for around 220 million cases of the disease and 435,000 deaths worldwide every year [87]. The emergence of strains of malaria resistant to synthetic classical drugs requires a continuous search for new compounds from alternative niches to introduce new and efficient products to the treatment [107].
The compound oxylipin, (9Z, 11E)-13-oxooctadeca-9,11-dienoic acid, produced by the fungus Penicillium herquei isolated from the mangrove plant Laguncularia racemosa, showed minimal anti-parasitic activity against Plasmodium falciparum (half-maximal inhibitory concentration, IC50 > 100 µM), Trypanosoma brucei (IC50 > 100 µM), Leishmania donovani (IC50 > 100 µM) and Leishmania major (IC50 > 100 µM) [119]. Fortunately, other potentially bioactive compounds for Trypanosoma brucei have been investigated. Dihydroisocoumarins (trans and cis 4,8-dihydroxy-3-methylisochroman-1-one, 5-hydroxymellein and -mellein or 8-hydroxy-3-methylisochroman-1-one) and naphthoquinones (anhydrofusarubin, javanicin, dihydrojavanicin and solaniol) were produced by the fungi Lasiodiplodia theobromae and Fusarium sp. respectively, from the Malaysian mangrove plant Avicennia lanata (Table 2). These compounds showed significant activity against Trypanosoma brucei brucei with IC50 values of 0.32–12.5 μM [75].
It is worth noting that the bioprospection of bioactive compounds against protozoan must take into account their cytotoxicity for the protozoan host cells [120]. Among thirty-four active fungal extracts assayed against the amoeba Naegleria fowleri, by Demeres et al. [121], two were detected with high cytotoxicity on the J774 macrophage cell line (IC50 < 5 µg/mL). For Leishmania donovani infecting the same macrophage lineage, those authors found 562 extracts active at 10 µg/mL or less. However, when they established a criterium for high antiparasitic activity (IC50 < 1.0 µg/mL) and low cytotoxicity (J774 IC50 > 5 µg/mL), only 116 remained. Besides, 64% of these 116 extracts were found when the endophytic fungal strains were grown under the influence of epigenetic modulators [121]. By contrast, these cytotoxic compounds may be useful for cancer and tumor treatments [119,121,122,123].
The trypanosomatid Trypanosoma cruzi is the etiologic agent of Chagas disease. Although only about 10% of people infected are diagnosed, it has been estimated that 6–7 million people worldwide (endemic in Latin America) may be infected with T. cruzi, putting over 70 million people at risk [124]. In this sense, bioprospection of trypanocidal molecules is of undoubted interest to public health, mostly because Chagas disease is considered a neglected tropical disease, as pharmaceutical companies do not normally show interest in it. Fortunately, extracts of endophytic fungi have shown promising results, with high activity against trypanosomatids [87,121]. Ferreira [120] showed that extracts of the endophytic fungi Diaporthe cf. mayteni and Endomelanconiopsis endophytica have high trypanocidal activity against amastigote forms of T. cruzi. In another study of the same group, ophiobolin K and 6-epi-ophiobolin K (two bioactive compounds) were isolated from Aspergillus calidoustus and shown to be effective against this trypanosomatid [122]. However, despite being a promising approach to fight Chagas disease, there is still a lack of specific studies on mangrove-isolated endophytes against T. cruzi.

3.2. Antibacterial

Animal management is essential for the improvement of livestock. Nonetheless, this interaction led to the appearance of several foodborne diseases [125,126]. Diseases that can spread among several different animal species affecting are defined as zoonotic diseases. Among the groups of bacteria, zoonotic enterobacteria are highlighted for possessing resistance to pH and temperature variations [127]. One factor that influences the low efficiency of pesticides in agriculture is the large-scale administration of synthetic antibiotics to the healthcare of humans and animals, which also has a role in selecting plasmids of resistance to synthetic chemicals [128,129,130].
In this sense, the search for alternatives such as endophytic fungi bioactive compounds may overcome the bacterial resistance problem, and consequently mitigate the environmental impact caused by high amounts of inefficient pesticides. Aflatoxin B2b mycotoxin produced by Aspergillus flavus associated with Chinese mangrove plant Hibiscus tiliaceus (Table 2) showed antibacterial activity against Escherichia coli, Bacillus subtilis and Enterobacter aerogenes, with IC50 values of 22.5, 1.7 and 1.1 μM [40]. In addition, sesquiterpenoids compounds (Table 2), isolated from an Aspergillus spp. strain found at Xylocarpus moluccensis, presented moderate antibacterial activities against Staphylococcus aureus, with IC50 values from 31.5 to 41.9 μM [51].
Another compound was isolated from Pestalotiopsis sp. present in the leaves of Rhizophora mucronata and collected in the region of Dong Zhai Gang-Mangrove Garden on Hainan Island, China. This compound possesses a novel hybrid sesquiterpene-cyclo-paldic acid metabolite with an unusual carbon skeleton, called pestalotiopisorin A. Antibacterial activity was evaluated against Enterococcus faecalis, showing moderate results [91] (Table 2). The tetracyclic triterpenoids 12α-acetoxy-4,4-dimethyl-24-methylene-5α-cholesta-8-momoene-3β, 11β-diol, 12α-acetoxy-4,4-dimethyl-24-methylene-5α-cholesta-8,14-diene-2α,3β,11β-triol, and meroterpernoids Guignardone B, Guignardone I, Guignardone A and Guignardone J, isolated from the fungi Guignardia sp and Phyllosticta capitalensis, were also investigated for inhibitory activity against several bacteria, such as S. aureus, E. coli, Micrococcus tetragenu and Pseudomonas aeruginosa (Table 2) [131].
A new isocoumarin derivative (pestalotiopisorin B), isolated from the endophytic fungus Pestalotiopsis sp., was shown to be active against P. aeruginosa, methicillin-resistant S. aureus, B. subtilis and E. coli. The fungus was isolated from Rhizophora stylosa, a plant present in a mangrove area of China [94]. Numerous compounds were also obtained from the culture of Ascomycota sp. found on Pluchea indica, collected in Shankou Mangrove Nature Reserve in the Guangxi Province, China. The obtained compounds showed antibacterial activity against the Gram-positive S. aureus and B. subtilis, and the Gram-negative E. coli, K. pneumoniae and Acinetobacter calcoaceticus. These compounds were identified as dichloroisocoumarins–dichlorodiaportintone, desmethyldichlorodiaportin and dichlorodiaportin [83].
Kandelia candel is a plant spread in Guangdong province, China, a host of Guignardia sp., which produces Guignardins B and palmarumycin BG1. Among them, Guignardins B presented antibacterial activity against E. faecalis ATCC 29,212 and another one against Aeromonas hydrophila ATCC 7966 [131]. Heritiera fomes is a mangrove plant located in the region of Sundarbans, India. The endophyte isolated from it is Pestalotia spp., which produces oxysporone, a compound containing a 4H-furo(2,3-b)pyran-2(3H)-one structure, and xylitol, a molecule with five-carbon sugar alcohol. Both compounds demonstrated efficiency against methicillin-resistant S. aureus (MRSA) strains ATCC 25,923, RN4220, EMRSA-15, EMRSA-16, SA-1199B and XU2, with IC50 values ranging between 32 and 128 µg/mL [48].

3.3. Antiviral

The viruses are intracellular-dependent, and are always necessary for the invasion and kidnap of cellular machinery to replication. Enveloped viruses differ from non-enveloped ones in these situations. Enveloped viruses tend to fuse their membrane to release the genome inside the cytoplasm of the host using cytoplasmic endosomes. This way, fusogenic peptides that work in low pH facilitate access to cytoplasmic endosomes. In response, the release of molecules by the cells can prevent pH lowering, which inhibits the capability of virion fusion.
Non-enveloped viruses (such as enteroviruses) accumulate in endosomes and present high acidity. Identification of these viruses depends on the receptors exposed on the surface of the cells, to which viruses attach. Enteroviruses usually read α2β1 integrin, while adenoviruses and coxsackieviruses use coxsackie and adenovirus receptors [132,133]. Viruses with an RNA genome initiate their translation and transcription in the cytoplasm, turning them into specific targets to inhibitors inside the cell. On the other hand, DNA viruses need to penetrate the nucleus to start the process of replication. During translation and transcription, there is an abundance of proteins and viral polymerases, thus creating a target for drugs with inhibitory action. Assembly of non-enveloped viruses generally occurs in the cytoplasm, lysing the cell and spreading viral particles to other cells [134]. In addition, replication alters the functions of endosomes, as well as ER and Golgi, required for viral replication [135,136]. Even cholesterols and lipidic structures are unusual, making them targets for antiviral drugs [137,138].
Viruses essentially depend on manipulation of apoptosis to successfully replicate. This is necessary for the virus to interrupt anti-apoptotic growth factors in the early stages of replication and boost replication at the end of the cycle, with pro-apoptotic caspases assisting in viral dispersion in the cells. Considering this, some drugs exploit cellular apoptosis activity, which includes, for example, the recognition of viral invasion by pattern recognition receptors (PRRs) and the signaling to Bcl-2 proteins, proteins essential to the apoptosis process by regulation of pro-apoptotic and anti-apoptotic intracellular signals [139,140,141]. The process initially includes the recognition of viral invasion by pattern recognition receptors (PRRs) and the signaling to Bcl-2 proteins, proteins which are members of the B cell lymphoma 2 (BCL-2) gene family.
The replication of the hepatitis C virus recruits a NS3 protease, which is a serine protease with activity at the amino-terminal and helicase function at the carboxyl-terminal. These two functions elect NS3 as an efficient target for antiviral therapy [142,143].
Paclitaxel is a compound initially isolated from parts of western yew in 1960, and is used as an anticancer drug [144]. Endophytic fungi were identified as feasible alternatives as producers when compared to western yew producers [145]. Fusarium oxysporum endophytic fungi isolated from Rhizophora annamalayana was observed as an example of a paclitaxel producer [146]. Besides having anticancer and antitumor activities, paclitaxel also presents anti-HIV activities, acting in the processes before and after viral invasion. At a concentration of 20 μg/mL, paclitaxel from fungi provided a 66% inhibition efficiency against the HIV-1 pseudo-virus. Although the inhibition effect over HIV-1 integrase has been relatively weak, the inhibition activity against the viral protease was as high as that observed with pepstatin A (a known HIV-1 protease inhibitor), which was enough to hinder the success of viral replication [147].
The Neosartorya udagawae HDN13-313 strain (which metabolome presents the Neosartoryadins A and B secondary metabolites) was found in roots of the mangrove plant Aricennia marina. These fumiquinazoline alkaloids displayed, respectively, IC50 values of 66 and 58 μM against the virus H1N1, which is a better result than that observed for the synthetic drug Ribavirin (IC50 = 94 μM) [76]. Other compounds investigated concerning H1N1 antiviral activity were the Emerimidine A and B isodolines and the pestalotiopsone F, pestalotiopsone B, 3,8-dihydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate and 5-chloroisothiorin polyketides. The isodolines and polyketides were isolated from the Emericella sp. fungus of the mangrove plant Aegiceras corniculatum and the Pestalotiopsis spp. fungus of the mangrove plant Rhizophora stylosa [63] (Table 2). These studies demonstrate the value of biocompounds obtained from endophytic fungi as a source of a new, unexplored, bioactive niche of biocontrollers for pathogens such as protozoan, bacteria and viruses.

4. Future Challenges

The abundance of natural compounds present in mangrove areas is an example of biocompound richness, given the plethora of unexplored secondary metabolites [148]. Several studies have reported this production of pathogen biocontrollers as a defense mechanism developed to the presence of fungi in plants [149,150]. Beyond the natural benefits of exploring this niche, there are other ways to obtain such metabolites. In general, these molecules are produced in low quantities as part of the plant’s defense mechanisms. However, some techniques may enhance the production of secondary metabolites, such as strain improvement, one strain–many compounds (OSMAC), epigenetic modulation and conducted stress.
A common technique used for this purpose is co-cultivation. It consists in cultivating microorganisms that are antagonistic or that depend on the same resources, which leads to competition. Several of these compounds are not produced in axenic cultivation. Nevertheless, co-cultivation makes it possible to stimulate cryptic compounds, allowing for the discovery of new molecules [151]. Co-cultivation of marine-derived fungi Emericella spp. and actinomycete Salinispora arenicola allowed for the discovery of compound Emericellamides A and B, which presented antibacterial activity [152]. Compounds such as Neoaspergillic acid, Ergosterol and Aspergicin were isolated utilizing co-cultivation of mangrove epiphyte and present antibacterial activity against Gram-positive bacteria [153].
The application of epigenetic elicitors presents a viable niche to be explored, albeit the omics knowledge and genome data are still unclear and require further studies. Beyond that, the knowledge hitherto obtained about evolution, ecology and interaction pattern with plants and other microbes is limited, hampering the discovery process. Another difficulty is the long process of screening strains and obtaining new compounds. In addition, the process of deciphering bioactive compounds from endophytes in lab conditions entails a diminution of metabolite production compared to the yield result of repeated subculturing.

Author Contributions

Conceptualization, R.D.C., I.M.A.d.S.B., M.S., L.P.S., D.R.-L. and G.F.; writing—original draft preparation, R.D.C., I.T.S., D.R., A.C.C.d.C., S.A.J. and H.T.; writing—review and editing, D.R.-L., G.F. and J.M.L. All authors have read and agreed to the published version of the manuscript.

Funding

Thanks are extended to Research and Innovation Support Foundation of Santa Catarina State—(grant number PRONEM-2020TR715).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available upon request from the corresponding authors.

Acknowledgments

Thanks are extended to GAIN (Axencia Galega de Innovación) for supporting this review (grant number IN607A2019/01).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Elshafie, H.S.; Caputo, L.; De Martino, L.; Grul’ová, D.; Zheljazkov, V.V.; De Feo, V.; Camele, I. Biological investigations of essential oils extracted from three Juniperus species and evaluation of their antimicrobial, antioxidant and cytotoxic activities. J. Appl. Micro 2020, 129, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
  2. Camele, I.; Elshafie, H.S.; Caputo, L.; Sakr, S.H.; de Feo, V. Bacillus mojavensis: Biofilm formation and biochemical investigation of its bioactive metabolites. J. Bio. Res. 2019, 92, 39–45. [Google Scholar] [CrossRef]
  3. Cragg, G.M.; Newman, D.J. Biodiversity: A continuing source of novel drug leads*. Pure Appl. Chem. 2005, 77, 26–31. [Google Scholar] [CrossRef] [Green Version]
  4. Strohl, W.R. The role of natural products in a modern drug discovery program. Drug Discov. Today 2000. [Google Scholar] [CrossRef]
  5. Li, J.W.H.; Vederas, J.C. Drug discovery and natural products: End of an era or an endless frontier? Science 2009. [Google Scholar] [CrossRef] [Green Version]
  6. Dias, D.A.; Urban, S.; Roessner, U. A Historical Overview of Natural Products in Drug Discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [Green Version]
  7. Wang, K.-W.; Wang, S.-W.; Wu, B.; Wei, J.-G. Bioactive Natural Compounds from the Mangrove Endophytic Fungi. Mini Rev. Med. Chem. 2014, 14, 370–391. [Google Scholar] [CrossRef] [PubMed]
  8. Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; Van Staden, J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol. Adv. 2020, 39, 107462. [Google Scholar] [CrossRef] [PubMed]
  9. Jakubczyk, D.; Dussart, F. Selected Fungal Natural Products with Antimicrobial Properties. Molecules 2020, 25, 911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  10. Elshafie, H.S.; Camele, I. An Overview of Metabolic Activity, Beneficial and Pathogenic Aspects of Burkholderia spp. Metabolites 2021, 11, 321. [Google Scholar] [CrossRef]
  11. Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of b. influenz? Br. J. Exp. Pathol. 1929, 10, 226–236. [Google Scholar] [CrossRef]
  12. Amit Koparde, A.; Chandrashekar Doijad, R.; Shripal Magdum, C. Natural Products in Drug Discovery. In Pharmacognosy-Medicinal Plants; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
  13. Ancheeva, E.; El-Neketi, M.; Daletos, G.; Ebrahim, W.; Song, W.; Lin, W.; Proksch, P. Anti-infective Compounds from Marine Organisms. Grand Chall. Mar. Biotechnol. 2018, 97–155. [Google Scholar] [CrossRef]
  14. Rafferty, J.P. Lakes and Wetlands South America. 2011. Available online: https://books.google.com.br/books?id=StCGBdKR4qgC&printsec=frontcover&hl=pt-BR&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (accessed on 14 September 2020).
  15. Francisco, P.M.; Tambarussi, E.V.; de Alves, F.M.; Bajay, S.; Ciampi-Guillardi, M.; Souza, A.P. Genetic diversity and mating system of rhizophora mangle l. (rhizophoraceae) in Northern Brazil revealed by microsatellite analysis. Cerne 2018, 24, 295–302. [Google Scholar] [CrossRef]
  16. Silva, J.M.; Martins, M.B.G.; Cavalheiro, A.J. Caracterização anatômica e perfis químicos de folhas de Avicennia schaueriana Stapf. & Leech. ex Moldenke e Rhizophora mangle L. de manguezais impactados e não impactados do litoral paulista. Insul. Rev. Botânica 2010, 39, 14–33. [Google Scholar] [CrossRef] [Green Version]
  17. Glauce Brasil, A. A efetividade da gestão das unidades de conservação na proteção dos sistemas de manguezais na ilha de santa Catarina. Doctoral Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2017. [Google Scholar]
  18. Patra, J.K.; Thatoi, H.N. Metabolic diversity and bioactivity screening of mangrove plants: A review. Acta Physiol. Plant. 2011. [Google Scholar] [CrossRef]
  19. Rajpar, M.N.; Zakaria, M. Mangrove fauna of Asia. In Mangrove Ecosystems of Asia; Springer: New York, NY, USA, 2014; pp. 153–197. [Google Scholar] [CrossRef]
  20. Cribb, J.W. WoRMS-World Register of Marine Species-Lulworthia cylindrica (Linder) Cribb & J.W. Cribb, 1955. Available online: http://www.marinespecies.org/aphia.php?p=taxdetails&id=438136 (accessed on 22 December 2020).
  21. Zhou, J.; Diao, X.; Wang, T.; Chen, G.; Lin, Q.; Yang, X.; Xu, J. Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea. PLoS ONE 2018, 13, e0197359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Sun, X.; Guo, L.D. Endophytic fungal diversity: Review of traditional and molecular techniques. Mycology 2012, 3, 65–76. [Google Scholar] [CrossRef]
  23. Rajesh, R.W.; Rahul, M.S.; Ambalal, N.S. Trichoderma: A significant fungus for agriculture and environment. Afr. J. Agric. Res. 2016, 11, 1952–1965. [Google Scholar] [CrossRef] [Green Version]
  24. Adnan, M.; Islam, W.; Shabbir, A.; Khan, K.A.; Ghramh, H.A.; Huang, Z.; Chen, H.Y.H.; Lu, G.-G. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb. Pathog. 2019. [Google Scholar] [CrossRef]
  25. Luo, J.M.; Xiao, X.; Luo, S.L. Biosorption of cadmium(II) from aqueous solutions by industrial fungus Rhizopus cohnii. Trans. Nonferrous Met. Soc. China 2010, 20, 1104–1111. [Google Scholar] [CrossRef]
  26. Petruzzello, M. Rhizopus|Fungus Genus|Britannica. Encycl. Br. 2016. Available online: https://www.britannica.com/science/Rhizopus (accessed on 22 December 2020).
  27. Biasetto, C.R.; Somensi, A.; Figueiro, F.S.; De Moraes, L.A.B.; Silva, G.H.; Marx Young, M.C.; Da Silva Bolzani, V.; Araújo, A.R. Diketopiperazines and arylethylamides produced by Schizophyllum commune, an endophytic fungus in Alchornea glandulosa. Eclet. Quim. 2019, 44, 36–42. [Google Scholar] [CrossRef]
  28. Costa, I.P.M.W.; Maia, L.C.; Cavalcanti, M.A. Diversity of leaf endophytic fungi in mangrove plants of Northeast Brazil. Braz. J. Microbiol. 2012, 43, 1165–1173. [Google Scholar] [CrossRef] [Green Version]
  29. De Souza Sebastianes, F.L.; Romão-Dumaresq, A.S.; Lacava, P.T.; Harakava, R.; Azevedo, J.L.; De Melo, I.S.; Pizzirani-Kleiner, A.A. Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr. Genet. 2013, 59, 153–166. [Google Scholar] [CrossRef] [PubMed]
  30. Taub, L. Universidade Federal de Alfenas Rayra Annara da Fonseca Otacílio Pinto Bioprospecção e Caracterização de Fungos Endofíticos Produtores de Compostos Bioativos Isolados de Dalbergia; Universidade Federal de Alfenas: Alfenas, Brazil, 2019. [Google Scholar]
  31. Rajamanikyam, M.; Vadlapudi, V.; Amanchy, R.; Upadhyayula, S.M. Endophytic fungi as novel resources of natural therapeutics. Braz. Arch. Biol. Technol. 2017, 60, 17160542. [Google Scholar] [CrossRef] [Green Version]
  32. Hammerschmidt, L.; Debbab, A.; Ngoc, T.D.; Wray, V.; Hemphil, C.P.; Lin, W.; Broetz-Oesterhelt, H.; Kassack, M.U.; Proksch, P.; Aly, A.H. Polyketides from the mangrove-derived endophytic fungus Acremonium strictum. Tetrahedron Lett. 2014, 55, 3463–3468. [Google Scholar] [CrossRef]
  33. Rukachaisirikul, V.; Rodglin, A.; Sukpondma, Y.; Phongpaichit, S.; Buatong, J.; Sakayaroj, J. Phthalide and Isocoumarin Derivatives Produced by an Acremonium sp. Isolated from a Mangrove Rhizophora apiculata. J. Nat. Prod. 2012. [Google Scholar] [CrossRef]
  34. Ranganathan, N.; Mahalingam, G. Secondary metabolite as therapeutic agent from endophytic fungi Alternaria longipes strain VITN14G of mangrove plant Avicennia officinalis. J. Cell. Biochem. 2019, 120, 4021–4031. [Google Scholar] [CrossRef] [PubMed]
  35. Wang, J.; Ding, W.; Wang, R.; Du, Y.; Liu, H.; Kong, X.; Li, C. Identification and bioactivity of compounds from the mangrove endophytic fungus Alternaria sp. Mar. Drugs 2015, 13, 4492–4504. [Google Scholar] [CrossRef] [Green Version]
  36. Hamzah, T.N.T.; Lee, S.Y.; Hidayat, A.; Terhem, R.; Faridah-Hanum, I.; Mohamed, R. Diversity and characterization of endophytic fungi isolated from the tropical mangrove species, Rhizophora mucronata, and identification of potential antagonists against the soil-borne fungus, Fusarium solani. Front. Microbiol. 2018, 9, 1707. [Google Scholar] [CrossRef]
  37. Chen, Y.; Liu, Z.; Liu, H.; Pan, Y.; Li, J.; Liu, L.; She, Z. Dichloroisocoumarins with Potential Anti-Inflammatory Activity from the Mangrove Endophytic Fungus Ascomycota sp. CYSK-4. Mar. Drugs 2018, 16, 54. [Google Scholar] [CrossRef] [Green Version]
  38. Li, W.; Xiong, P.; Zheng, W.; Zhu, X.; She, Z.; Ding, W.; Li, C. Identification and Antifungal Activity of Compounds from the Mangrove Endophytic Fungus Aspergillus clavatus R7. Mar. Drugs 2017, 15, 259. [Google Scholar] [CrossRef] [Green Version]
  39. Bai, Z.Q.; Wang, Y.; Lin, X.; Wang, Y.; Wang, J.; Zhou, X.; Yang, B.; Liu, J.; Yang, X.; Liu, Y. New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius. Fitoterapia 2014, 95, 194–202. [Google Scholar] [CrossRef] [PubMed]
  40. Wang, H.; Lu, Z.; Qu, H.J.; Liu, P.; Miao, C.; Zhu, T.; Li, J.; Hong, K.; Zhu, W. Antimicrobial aflatoxins from the marine-derived fungus Aspergillus flavus 092008. Arch. Pharm. Res. 2012, 35, 1387–1392. [Google Scholar] [CrossRef]
  41. Handayani, D.; Rivai, H.; Hutabarat, M.; Rasyid, R. Antibacterial activity of endophytic fungi isolated from mangrove plant Sonneratia griffithii Kurz. J. Appl. Pharm. Sci. 2017, 7, 209–212. [Google Scholar] [CrossRef] [Green Version]
  42. Wu, Y.; Chen, Y.; Huang, X.; Pan, Y.; Liu, Z.; Yan, T.; Cao, W.; She, Z. α-Glucosidase Inhibitors: Diphenyl Ethers and Phenolic Bisabolane Sesquiterpenoids from the Mangrove Endophytic Fungus Aspergillus flavus QQSG-3. Mar. Drugs 2018, 16, 307. [Google Scholar] [CrossRef] [Green Version]
  43. Guo, Z.; Gai, C.; Cai, C.; Chen, L.; Liu, S.; Zeng, Y.; Yuan, J.; Mei, W.; Dai, H. Metabolites with Insecticidal Activity from Aspergillus fumigatus JRJ111048 Isolated from Mangrove Plant Acrostichum specioum Endemic to Hainan Island. Mar. Drugs 2017, 15, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  44. An, C.Y.; Li, X.M.; Luo, H.; Li, C.S.; Wang, M.H.; Xu, G.M.; Wang, B.G. 4-Phenyl-3,4-dihydroquinolone derivatives from aspergillus nidulans MA-143, an endophytic fungus isolated from the mangrove plant rhizophora stylosa. J. Nat. Prod. 2013, 76, 1896–1901. [Google Scholar] [CrossRef] [PubMed]
  45. Yang, S.Q.; Li, X.M.; Xu, G.M.; Li, X.; An, C.Y.; Wang, B.G. Antibacterial anthraquinone derivatives isolated from a mangrove-derived endophytic fungus Aspergillus nidulans by ethanol stress strategy. J. Antibiot. 2018, 71, 778–784. [Google Scholar] [CrossRef]
  46. Liu, D.; Li, X.M.; Li, C.S.; Wang, B.G. Nigerasterols A and B, antiproliferative sterols from the mangrove-derived endophytic fungus Aspergillus niger MA-132. Helv. Chim. Acta 2013, 96, 1055–1061. [Google Scholar] [CrossRef]
  47. Nurunnabi, T.R.; Sabrin, F.; Sharif, D.I.; Nahar, L.; Sohrab, M.H.; Sarker, S.D.; Rahman, S.M.M.; Billah, M.M. Antimicrobial activity of endophytic fungi isolated from the mangrove plant Sonneratia apetala (Buch.-Ham) from the Sundarbans mangrove forest. Adv. Tradit. Med. 2020, 20, 419–425. [Google Scholar] [CrossRef]
  48. Nurunnabi, T.R.; Nahar, L.; Al-Majmaie, S.; Rahman, S.M.M.; Sohrab, M.H.; Billah, M.M.; Ismail, F.M.D.; Rahman, M.M.; Sharples, G.P.; Sarker, S.D. Anti-MRSA activity of oxysporone and xylitol from the endophytic fungus Pestalotia sp. growing on the Sundarbans mangrove plant Heritiera fomes. Phyther. Res. 2018, 32, 348–354. [Google Scholar] [CrossRef] [Green Version]
  49. Li, S.; Wei, M.; Chen, G.; Lin, Y. Two new dihydroisocoumarins from the endophytic fungus Aspergillus sp. Collected from the South China Sea. Chem. Nat. Compd. 2012, 48, 371–373. [Google Scholar] [CrossRef]
  50. Akinduyite, A.E.; Ariole, C.N. Bioactive compounds and antibacterial activity of endophytic fungi isolated from Black Mangrove (Avicennia africana) leaves. Niger. J. Biotechnol. 2019, 35, 35. [Google Scholar] [CrossRef] [Green Version]
  51. Wang, L.; Han, X.; Zhu, G.; Wang, Y.; Chairoungdua, A.; Piyachaturawat, P.; Zhu, W. Polyketides from the Endophytic Fungus Cladosporium sp. Isolated From the Mangrove Plant Excoecaria agallocha. Front. Chem. 2018, 6, 344. [Google Scholar] [CrossRef]
  52. Wu, Y.; Chen, S.; Liu, H.; Huang, X.; Liu, Y.; Tao, Y.; She, Z. Cytotoxic isocoumarin derivatives from the mangrove endophytic fungus Aspergillus sp. HN15-5D. Arch. Pharm. Res. 2019, 42, 326–331. [Google Scholar] [CrossRef]
  53. Cai, R.; Jiang, H.; Zang, Z.; Li, C.; She, Z. New Benzofuranoids and Phenylpropanoids from the Mangrove Endophytic Fungus, Aspergillus sp. ZJ-68. Mar. Drugs 2019, 17, 478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Huang, H.B.; Feng, X.J.; Liu, L.; Chen, B.; Lu, Y.J.; Ma, L.; She, Z.G.; Lin, Y.C. Three dimeric naphtho-γ-pyrones from the mangrove endophytic fungus Aspergillus tubingensis isolated from Pongamia pinnata. Planta Med. 2010, 76, 1888–1891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  55. Cui, H.; Liu, Y.; Ding, M.; Zhang, Z.; Liu, H.; Huang, X.; She, Z. New pyranonaphthazarin and 2-naphthoic acid derivatives from the mangrove endophytic fungus Leptosphaerulina sp. SKS032. Phytochem. Lett. 2017, 20, 214–217. [Google Scholar] [CrossRef]
  56. Zhu, M.; Zhang, X.; Feng, H.; Che, Q.; Zhu, T.; Gu, Q.; Li, D. Campyridones A–D, pyridone alkaloids from a mangrove endophytic fungus Campylocarpon sp. HDN13-307. Tetrahedron 2016, 72, 5679–5683. [Google Scholar] [CrossRef]
  57. Chaeprasert, S.; Piapukiew, J.; Whalley, A.J.S.; Sihanonth, P. Endophytic fungi from mangrove plant species of Thailand: Their antimicrobial and anticancer potentials. Bot. Mar. 2010, 53, 555–564. [Google Scholar] [CrossRef]
  58. Ai, W.; Lin, X.; Wang, Z.; Lu, X.; Mangaladoss, F.; Yang, X.; Zhou, X.; Tu, Z.; Liu, Y. Cladosporone A, a new dimeric tetralone from fungus Cladosporium sp. KcFL6′ derived of mangrove plant Kandelia candel. J. Antibiot. 2015, 68, 213–215. [Google Scholar] [CrossRef]
  59. Bin, G.; Chen, Y.; Zhang, H.; Zheng, X.; Zhang, Y.; Fang, H.; Zhong, Q.; Chenxiao, Z. Isolation, characterization and anti-multiple drug resistant (MDR) bacterial activity of endophytic fungi isolated from the mangrove plant, Aegiceras corniculatum. Trop. J. Pharm. Res. 2014, 13, 593–599. [Google Scholar] [CrossRef] [Green Version]
  60. Luo, X.W.; Chen, C.M.; Li, K.L.; Lin, X.P.; Gao, C.H.; Zhou, X.F.; Liu, Y.H. Sesquiterpenoids and meroterpenoids from a mangrove derived fungus Diaporthe sp. SCSIO 41011. Nat. Prod. Res. 2019, 1–7. [Google Scholar] [CrossRef] [PubMed]
  61. Wei, C.; Deng, Q.; Sun, M.; Xu, J. Cytospyrone and Cytospomarin: Two new polyketides isolated from mangrove endophytic fungus, Cytospora sp . Molecules 2020, 25, 4224. [Google Scholar] [CrossRef] [PubMed]
  62. Liao, H.X.; Shao, T.M.; Mei, R.Q.; Huang, G.L.; Zhou, X.M.; Zheng, C.J.; Wang, C.Y. Bioactive Secondary Metabolites from the Culture of the Mangrove-Derived Fungus Daldinia eschscholtzii HJ004. Mar. Drugs 2019, 17, 710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. Luo, X.; Yang, J.; Chen, F.; Lin, X.; Chen, C.; Zhou, X.; Liu, S.; Liu, Y. Structurally diverse polyketides from the mangrove-derived fungus diaporthe sp. SCSIO 41011 with their anti-influenza A virus activities. Front. Chem. 2018, 6, 282. [Google Scholar] [CrossRef] [Green Version]
  64. Du, X.P.; Su, W.J. Two new polyketides from mangrove endophytic fungus dothiorella sp. Chem. Nat. Compd. 2014, 50, 214–216. [Google Scholar] [CrossRef]
  65. Zhang, G.; Sun, S.; Zhu, T.; Lin, Z.; Gu, J.; Li, D.; Gu, Q. Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry 2011, 72, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
  66. Mei, R.Q.; Nong, X.H.; Wang, B.; Sun, X.P.; Huang, G.L.; Luo, Y.P.; Zheng, C.J.; Chen, G.Y. A new phenol derivative isolated from mangrove-derived fungus Eupenicillium sp. HJ002. Nat. Prod. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
  67. May Zin, W.W.; Buttachon, S.; Dethoup, T.; Pereira, J.A.; Gales, L.; Inácio, Â.; Costa, P.M.; Lee, M.; Sekeroglu, N.; Silva, A.M.S.; et al. Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006. Phytochemistry 2017, 141, 86–97. [Google Scholar] [CrossRef]
  68. Yan, H.J.; Li, X.M.; Li, C.S.; Wang, B.G. Alkaloid and anthraquinone derivatives produced by the marine-derived endophytic fungus Eurotium rubrum. Helv. Chim. Acta 2012, 95, 163–168. [Google Scholar] [CrossRef]
  69. Supratman, U.; Hirai, N.; Sato, S.; Watanabe, K.; Malik, A.; Annas, S.; Harneti, D.; Maharani, R.; Koseki, T.; Shiono, Y. New naphthoquinone derivatives from Fusarium napiforme of a mangrove plant. Nat. Prod. Res. 2019, 1–7. [Google Scholar] [CrossRef] [PubMed]
  70. Ling, O.M.; Teen, L.P.; Mujahid, A.; Proksch, P.; Müller, M. Initial screening of mangrove endophytic fungi for antimicrobial compounds and heavy metal biosorption potential. Sains Malays. 2016, 45, 1063–1071. [Google Scholar]
  71. Mei, W.L.; Zheng, B.; Zhao, Y.X.; Zhong, H.M.; Chen, X.L.W.; Zeng, Y.B.; Dong, W.H.; Huang, J.L.; Proksch, P.; Dai, H.F. Meroterpenes from endophytic fungus A1 of mangrove plant Scyphiphora hydrophyllacea. Mar. Drugs 2012, 10, 1993–2001. [Google Scholar] [CrossRef] [PubMed]
  72. Chi, W.C.; Pang, K.L.; Chen, W.L.; Wang, G.J.; Lee, T.H. Antimicrobial and iNOS inhibitory activities of the endophytic fungi isolated from the mangrove plant Acanthus ilicifolius var. xiamenensis. Bot. Stud. 2019, 60, 4. [Google Scholar] [CrossRef] [PubMed]
  73. Ratnaweera, P.B.; De Silva, E.D.; Wijesundera, R.L.; Andersen, R.J. Antimicrobial constituents of Hypocrea virens, an endophyte of the mangrove-associate plant Premna serratifolia L. J. Natl. Sci. Found. Sri Lanka 2016, 44, 43. [Google Scholar] [CrossRef] [Green Version]
  74. Chen, S.; Liu, Z.; Liu, H.; Long, Y.; Chen, D.; Lu, Y.; She, Z. Lasiodiplactone A, a novel lactone from the mangrove endophytic fungus Lasiodiplodia theobromae ZJ-HQ1. Org. Biomol. Chem. 2017, 15, 6338–6341. [Google Scholar] [CrossRef] [PubMed]
  75. Mazlan, N.W.; Tate, R.; Yusoff, Y.M.; Clements, C.; Edrada-Ebel, R. Metabolomics-Guided Isolation of Anti-Trypanosomal Compounds from Endophytic Fungi of the Mangrove plant Avicennia Lanata. Curr. Med. Chem. 2019, 27, 1815–1835. [Google Scholar] [CrossRef]
  76. Cui, H.; Liu, Y.; Li, T.; Zhang, Z.; Ding, M.; Long, Y.; She, Z. 3-Arylisoindolinone and sesquiterpene derivatives from the mangrove endophytic fungi Aspergillus versicolor SYSU-SKS025. Fitoterapia 2018, 124, 177–181. [Google Scholar] [CrossRef]
  77. Yu, G.; Zhou, G.; Zhu, M.; Wang, W.; Zhu, T.; Gu, Q.; Li, D. Neosartoryadins A and B, Fumiquinazoline Alkaloids from a Mangrove-Derived Fungus Neosartorya udagawae HDN13-313. Org. Lett. 2015. [Google Scholar] [CrossRef]
  78. Xia, X.; Li, Q.; Li, J.; Shao, C.; Zhang, J.; Zhang, Y.; Liu, X.; Lin, Y.; Liu, C.; She, Z. Two new derivatives of griseofulvin from the mangrove endophytic fungus nigrospora sp(Strain No.1403) from Kandelia candel (L.) Druce. Planta Med. 2011, 77, 1735–1738. [Google Scholar] [CrossRef]
  79. Ukwatta, K.M.; Lawrence, J.L.; Wijayarathna, C.D. The study of antimicrobial, anti-cancer, anti-inflammatory and α-glucosidase inhibitory activities of Nigronapthaphenyl, isolated from an extract of Nigrospora sphaerica. Mycol. Int. J. Fungal Biol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  80. Meng, L.H.; Zhang, P.; Li, X.M.; Wang, B.G. Penicibrocazines A-E, five new sulfide diketopiperazines from the marine-derived endophytic fungus Penicillium brocae. Mar. Drugs 2015, 13, 276–287. [Google Scholar] [CrossRef] [Green Version]
  81. Meng, L.H.; Li, X.M.; Liu, Y.; Xu, G.M.; Wang, B.G. Antimicrobial alkaloids produced by the mangrove endophyte Penicillium brocae MA-231 using the OSMAC approach. RSC Adv. 2017, 7, 55026–55033. [Google Scholar] [CrossRef] [Green Version]
  82. Devi, P.; Rodrigues, C.; Naik, C.G.; D’Souza, L. Isolation and Characterization of Antibacterial Compound from a Mangrove-Endophytic Fungus, Penicillium chrysogenum MTCC 5108. Indian J. Microbiol. 2012, 52, 617–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  83. Zhu, X.; Wu, Z.; Liang, F.; Gan, S.; Huang, Q.; Ding, W.; Li, C. A New L-alanine Derivative from the Mangrove Fungus Penicillium chrysogenum V11. Chem. Nat. Compd. 2018, 54, 520–522. [Google Scholar] [CrossRef]
  84. Huang, S.; Xu, J.; Li, F.; Zhou, D.; Xu, L.; Li, C. Identification and Antifungal Activity of Metabolites from the Mangrove Fungus Phoma sp. L28. Chem. Nat. Compd. 2017, 53, 237–240. [Google Scholar] [CrossRef]
  85. He, K.Y.; Zhang, C.; Duan, Y.R.; Huang, G.L.; Yang, C.Y.; Lu, X.R.; Zheng, C.J.; Chen, G.Y. New chlorinated xanthone and anthraquinone produced by a mangrove-derived fungus Penicillium citrinum HL-5126. J. Antibiot. 2017, 70, 823–827. [Google Scholar] [CrossRef] [PubMed]
  86. Cao, J.; Li, X.M.; Li, X.; Li, H.L.; Meng, L.H.; Wang, B.G. New lactone and isocoumarin derivatives from the marine mangrove-derived endophytic fungus Penicillium coffeae MA-314. Phytochem. Lett. 2019, 32, 1–5. [Google Scholar] [CrossRef]
  87. Hayibor, K.; Kwain, S.; Osei, E.; Nartey, A.P.; Tetevi, G.M.; Owusu, K.B.-A.; Camas, M.; Camas, A.S.; Kyeremeh, K. Ghanaian mangrove wetland endophytic fungus, Penicillium herquei strain BRS2A-AR produces (9Z, 11E)-13-oxooctadeca-9,11-dienoic acid with activity against Trichomonas mobilensis. Int. J. Biol. Chem. Sci. 2019, 13, 1918. [Google Scholar] [CrossRef] [Green Version]
  88. Xu, R.; Li, X.M.; Wang, B.G. Penicisimpins A–C, three new dihydroisocoumarins from Penicillium simplicissimum MA-332, a marine fungus derived from the rhizosphere of the mangrove plant Bruguiera sexangula var. rhynchopetala. Phytochem. Lett. 2016, 17, 114–118. [Google Scholar] [CrossRef]
  89. Zheng, C.; Chen, Y.; Jiang, L.L.; Shi, X.M. Antiproliferative metabolites from the endophytic fungus Penicillium sp. FJ-1 isolated from a mangrove Avicennia marina. Phytochem. Lett. 2014, 10, 272–275. [Google Scholar] [CrossRef]
  90. Ding, B.; Wang, Z.; Huang, X.; Liu, Y.; Chen, W.; She, Z. Bioactive α-pyrone meroterpenoids from mangrove endophytic fungus Penicillium sp. Nat. Prod. Res. 2016, 30, 2805–2812. [Google Scholar] [CrossRef]
  91. Qi, X.; Li, X.; Zhao, J.; He, N.; Li, Y.; Zhang, T.; Wang, S.; Yu, L.; Xie, Y. GKK1032C, a new alkaloid compound from the endophytic fungus Penicillium sp. CPCC 400817 with activity against methicillin-resistant S. aureus. J. Antibiot. 2019, 72, 237–240. [Google Scholar] [CrossRef]
  92. Hemberger, Y.; Xu, J.; Wray, V.; Proksch, P.; Wu, J.; Bringmann, G. Pestalotiopens A and B: Stereochemically Challenging Flexible Sesquiterpene-Cyclopaldic Acid Hybrids from Pestalotiopsis sp. Chem. A Eur. J. 2013, 19, 15556–15564. [Google Scholar] [CrossRef] [PubMed]
  93. Xu, Z.; Xiong, B.; Xu, J. Chemical Investigation of Secondary Metabolites Produced by Mangrove Endophytic Fungus Phyllosticta Capitalensis. Nat. Prod. Res. 2019. [Google Scholar] [CrossRef]
  94. Xu, Z.; Wu, X.; Li, G.; Feng, Z.; Xu, J. Pestalotiopisorin B, a new isocoumarin derivative from the mangrove endophytic fungus Pestalotiopsis sp. HHL101. Nat. Prod. Res. 2020, 34, 1002–1007. [Google Scholar] [CrossRef]
  95. Huang, G.L.; Zhou, X.M.; Bai, M.; Liu, Y.X.; Zhao, Y.L.; Luo, Y.P.; Niu, Y.Y.; Zheng, C.J.; Chen, G.Y. Dihydroisocoumarins from the mangrove-derived fungus Penicillium citrinum. Mar. Drugs 2016, 14, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Klaiklay, S.; Rukachaisirikul, V.; Phongpaichit, S.; Pakawatchai, C.; Saithong, S.; Buatong, J.; Preedanon, S.; Sakayaroj, J. Anthraquinone derivatives from the mangrove-derived fungus Phomopsis sp. PSU-MA214. Phytochem. Lett. 2012, 5, 738–742. [Google Scholar] [CrossRef]
  97. Zhang, D.; Tao, X.; Chen, R.; Liu, J.; Li, L.; Fang, X.; Yu, L.; Dai, J. Pericoannosin A, a Polyketide Synthase-Nonribosomal Peptide Synthetase Hybrid Metabolite with New Carbon Skeleton from the Endophytic Fungus Periconia sp. Org. Lett. 2015, 17, 4304–4307. [Google Scholar] [CrossRef] [PubMed]
  98. Cai, R.; Chen, S.; Liu, Z.; Tan, C.; Huang, X.; She, Z. A new α-pyrone from the mangrove endophytic fungus Phomopsis sp. HNY29-2B. Nat. Prod. Res. 2017, 2, 124–130. [Google Scholar] [CrossRef]
  99. Wen, S.; Fan, W.; Guo, H.; Huang, C.; Yan, Z.; Long, Y. Two new secondary metabolites from the mangrove endophytic fungus Pleosporales sp. SK7. Nat. Prod. Res. 2019. [Google Scholar] [CrossRef]
  100. Joel, E.L.; Bhimba, B.V. A secondary metabolite with antibacterial activity produced by mangrove foliar fungus Schizophyllum commune. Int. J. Chem. Env. Biol. Scn. 2013, 1, 2320–4087. [Google Scholar]
  101. Zhou, X.M.; Zheng, C.J.; Chen, G.Y.; Song, X.P.; Han, C.R.; Li, G.N.; Fu, Y.H.; Chen, W.H.; Niu, Z.G. Bioactive anthraquinone derivatives from the mangrove-derived fungus stemphylium sp. 33231. J. Nat. Prod. 2014, 77, 2021–2028. [Google Scholar] [CrossRef]
  102. Liu, F.; Cai, X.L.; Yang, H.; Xia, X.K.; Guo, Z.Y.; Yuan, J.; Li, M.F.; She, Z.G.; Lin, Y.C. The bioactive metabolites of the mangrove endophytic fungus talaromyces sp. ZH-154 isolated from kandelia candel (L.) Druce. Planta Med. 2010, 76, 185–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  103. Zhang, L.; Niaz, S.I.; Wang, Z.; Zhu, Y.; Lin, Y.; Li, J.; Liu, L. α-Glucosidase inhibitory and cytotoxic botryorhodines from mangrove endophytic fungus Trichoderma sp. 307. Nat. Prod. Res. 2018, 32, 2887–2892. [Google Scholar] [CrossRef]
  104. Arora, D.; Sharma, N.; Singamaneni, V.; Sharma, V.; Kushwaha, M.; Abrol, V.; Guru, S.; Sharma, S.; Gupta, A.P.; Bhushan, S.; et al. Isolation and characterization of bioactive metabolites from Xylaria psidii, an endophytic fungus of the medicinal plant Aegle marmelos and their role in mitochondrial dependent apoptosis against pancreatic cancer cells. Phytomedicine 2016, 23, 1312–1320. [Google Scholar] [CrossRef] [PubMed]
  105. Lopéz, D.; Cherigo, L.; Mejia, L.C.; Loza-Mejía, M.A.; Martínez-Luis, S. α-Glucosidase inhibitors from a mangrove associated fungus, Zasmidium sp. strain EM5-10. BMC Chem. 2019, 13, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  106. Strobel, G.; Daisy, B. Bioprospecting for Microbial Endophytes and Their Natural Products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef] [Green Version]
  107. Saad, M.M.G.; Ghareeb, R.Y.; Saeed, A.A. The potential of endophytic fungi as bio-control agents against the cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Egypt. J. Biol. Pest Control 2019, 29, 7. [Google Scholar] [CrossRef]
  108. Challis, G.L. Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 2008, 154, 1555–1569. [Google Scholar] [CrossRef] [PubMed]
  109. Cichewicz, R.H. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat. Prod. Rep. 2010, 27, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  110. Chiang, Y.M.; Chang, S.L.; Oakley, B.R.; Wang, C.C.C. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr. Opin. Chem. Biol. 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  111. Beau, J.; Mahid, N.; Burda, W.N.; Harrington, L.; Shaw, L.N.; Mutka, T.; Kyle, D.E.; Barisic, B.; van Olphen, A.; Baker, B.J. Epigenetic Tailoring for the Production of Anti-Infective Cytosporones from the Marine Fungus Leucostoma persoonii. Mar. Drugs 2012, 10, 762–774. [Google Scholar] [CrossRef]
  112. Lim, F.Y.; Sanchez, J.F.; Wang, C.C.C.; Keller, N.P. Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi. In Methods in Enzymology; Academic Press Inc.: Cambridge, MA, USA, 2012; pp. 303–324. [Google Scholar] [CrossRef] [Green Version]
  113. González-Menéndez, V.; Pérez-Bonilla, M.; Pérez-Victoria, I.; Martín, J.; Muñoz, F.; Reyes, F.; Tormo, J.; Genilloud, O. Multicomponent Analysis of the Differential Induction of Secondary Metabolite Profiles in Fungal Endophytes. Molecules 2016, 21, 234. [Google Scholar] [CrossRef] [Green Version]
  114. Demers, D.; Knestrick, M.; Fleeman, R.; Tawfik, R.; Azhari, A.; Souza, A.; Vesely, B.; Netherton, M.; Gupta, R.; Colon, B.; et al. Exploitation of Mangrove Endophytic Fungi for Infectious Disease Drug Discovery. Mar. Drugs 2018, 16, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  115. Zhang, F.Z.; Li, X.M.; Li, X.; Yang, S.Q.; Meng, L.H.; Wang, B.G. Polyketides from the mangrove-derived endophytic fungus Cladosporium cladosporioides. Mar. Drugs 2019, 17, 296. [Google Scholar] [CrossRef] [Green Version]
  116. World Health Organization. The World Malaria Report 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
  117. Shang, Z.; Li, X.-M.; Li, C.-S.; Wang, B.-G. Diverse Secondary Metabolites Produced by Marine-Derived Fungus Nigrospora sp. MA75 on Various Culture Media. Chem. Biodivers. 2012, 9, 1338–1348. [Google Scholar] [CrossRef]
  118. Wang, J.; Wei, X.; Lu, X.; Xu, F.; Wan, J.; Lin, X.; Zhou, X.; Liao, S.; Yang, B.; Tu, Z.; et al. Eight new polyketide metabolites from the fungus Pestalotiopsis vaccinii endogenous with the mangrove plant Kandelia candel (L.) Druce. Tetrahedron 2014, 70, 9695–9701. [Google Scholar] [CrossRef]
  119. Campos, F.F.; Sales Junior, P.A.; Romanha, A.J.; Araújo, M.S.S.; Siqueira, E.P.; Resende, J.M.; Alves, T.M.A.; Martins-Filho, O.A.; Dos Santos, V.L.; Rosa, C.A.; et al. Bioactive endophytic fungi isolated from caesalpinia echinata Lam. (Brazilwood) and identification of beauvericin as a trypanocidal metabolite from fusarium sp. Mem. Inst. Oswaldo Cruz 2015, 110, 1–10. [Google Scholar] [CrossRef]
  120. Ferreira, M.C.; Vieira M de, L.A.; Zani, C.L.; Alves TM de, A.; Junior, P.A.S.; Murta, S.M.F.; Romanha, A.J.; Gil, L.H.V.G.; Carvalho AG de, O.; Zilli, J.E.; et al. Molecular phylogeny, diversity, symbiosis and discover of bioactive compounds of endophytic fungi associated with the medicinal Amazonian plant Carapa guianensis Aublet (Meliaceae). Biochem. Syst. Ecol. 2015, 59, 36–44. [Google Scholar] [CrossRef]
  121. Rosa, L.H.; Gonçalves, V.N.; Caligiorne, R.B.; Alves, T.M.A.; Rabello, A.; Sales, P.A.; Romanha, A.J.; Sobral, M.E.G.; Rosa, C.A.; Zani, C.L. Leishmanicidal, trypanocidal, and cytotoxic activities of endophytic fungi associated with bioactive plants in Brazil. Braz. J. Microbiol. 2010, 41, 420–430. [Google Scholar] [CrossRef]
  122. De Carvalho, C.R.; De Lourdes Almeida Vieira, M.; Cantrell, C.L.; Wedge, D.E.; Alves, T.M.A.; Zani, C.L.; Pimenta, R.S.; Sales, P.A.; Murta, S.M.F.; Romanha, A.J.; et al. Biological activities of ophiobolin K and 6-epi-ophiobolin K produced by the endophytic fungus Aspergillus calidoustus. Nat. Prod. Res. 2016, 30, 478–481. [Google Scholar] [CrossRef] [PubMed]
  123. Wang, A.; Yin, R.; Zhou, Z.; Gu, G.; Dai, J.; Lai, D.; Zhou, L. Eremophilane-Type Sesquiterpenoids From the Endophytic Fungus Rhizopycnis vagum and Their Antibacterial, Cytotoxic, and Phytotoxic Activities. Front. Chem. 2020, 8, 596889. [Google Scholar] [CrossRef]
  124. Mansoldo, F.R.P.; Carta, F.; Angeli, A.; Cardoso V da, S.; Supuran, C.T.; Vermelho, A.B. Chagas Disease: Perspectives on the Past and Present and Challenges in Drug Discovery. Molecules 2020, 25, 5483. [Google Scholar] [CrossRef]
  125. Newell, D.G.; Koopmans, M.; Verhoef, L.; Duizer, E.; Aidara-Kane, A.; Sprong, H.; Opsteegh, M.; Langelaar, M.; Threfall, J.; Scheutz, F.; et al. Food-borne diseases-The challenges of 20years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 2010, 139, S3–S15. [Google Scholar] [CrossRef]
  126. Li, H.-Y.; Zhu, G.-J.; Zhang, Y.-Z.; Zhang, L.-B.; Hagan, E.A.; Martinez, S.; Chmura, A.A.; Francisco, L.; Tai, H.; Miller, M.; et al. A qualitative study of zoonotic risk factors among rural communities in southern China. Int. Health 2020, 12, 77–85. [Google Scholar] [CrossRef]
  127. Säde, E.; Murros, A.; Björkroth, J. Predominant enterobacteria on modified-atmosphere packaged meat and poultry. Food Microbiol. 2013, 34, 252–258. [Google Scholar] [CrossRef]
  128. Mouttotou, N.; Ahmad, S.; Kamran, Z.; Koutoulis, K.C. Prevalence, Risks and Antibiotic Resistance of Salmonella in Poultry Production Chain, in: Current Topics in Salmonella and Salmonellosis. InTech 2017. [Google Scholar] [CrossRef]
  129. Shang, K.; Wei, B.; Kang, M. Distribution and dissemination of antimicrobial-resistant Salmonella in broiler farms with or without enrofloxacin use. BMC Vet. Res. 2018, 14, 257. [Google Scholar] [CrossRef] [Green Version]
  130. Chen, J.; Xing, X.K.; Zhang, L.C.; Xing, Y.M.; Guo, S.X. Identification of Hortaea werneckii Isolated from Mangrove Plant Aegiceras comiculatum Based on Morphology and rDNA Sequences. Mycopathologia 2012, 174, 457–466. [Google Scholar] [CrossRef]
  131. Ai, W.; Wei, X.; Lin, S.; Wang, Z.; Tu, Z.; Yang, X.; Zhou, X.; Li, J.; Liu, Y. Guignardins AeF, spirodioxynaphthalenes from the endophytic fungus Guignardia sp. KcF8 as a new class of PTP1B and SIRT1 inhibitors. Tetrahedron 2014, 70, 5806–5814. [Google Scholar] [CrossRef]
  132. Bergelson, J.M.; Cunningham, J.A.; Droguett, G.; Kurt-Jones, E.A.; Krithivas, A.; Hong, J.S.; Horwitz, M.S.; Crowell, R.L.; Finberg, R.W. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 1997, 275, 1320–1323. [Google Scholar] [CrossRef]
  133. Marjomäki, V.; Turkki, P.; Huttunen, M. Infectious Entry Pathway of Enterovirus B Species. Viruses 2015, 7, 6387–6399. [Google Scholar] [CrossRef] [PubMed]
  134. Linnakoski, R.; Reshamwala, D.; Veteli, P.; Cortina-Escribano, M.; Vanhanen, H.; Marjomäki, V. Antiviral agents from fungi: Diversity, mechanisms and potential applications. Front. Microbiol. 2018. [Google Scholar] [CrossRef] [Green Version]
  135. Chang, J.; Block, T.M.; Guo, J.T. Antiviral therapies targeting host ER alpha-glucosidases: Current status and future directions. Antivir. Res. 2013. [Google Scholar] [CrossRef]
  136. Ma, J.; Zhang, X.; Soloveva, V.; Warren, T.; Guo, F.; Wu, S.; Lu, H.; Guo, J.; Su, Q.; Shen, H.; et al. Enhancing the antiviral potency of ER α-glucosidase inhibitor IHVR-19029 against hemorrhagic fever viruses in vitro and in vivo. Antivir. Res. 2018, 150, 112–122. [Google Scholar] [CrossRef]
  137. González-Aldaco, K.; Torres-Reyes, L.A.; Ojeda-Granados, C.; José-Ábrego, A.; Fierro, N.A.; Román, S. Immunometabolic Effect of Cholesterol in Hepatitis C Infection: Implications in Clinical Management and Antiviral Therapy Concise Review. Ann. Hepatol. Off. J. Mex. Assoc. Hepatol. 2018, 17, 908–919. [Google Scholar] [CrossRef] [PubMed]
  138. Lombardi, L.; Falanga, A.; Del Genio, V.; Palomba, L.; Galdiero, M.; Franci, G.; Galdiero, S. A boost to the antiviral activity: Cholesterol tagged peptides derived from glycoprotein B of Herpes Simplex virus type I. Int. J. Biol. Macromol. 2020, 162, 882–893. [Google Scholar] [CrossRef]
  139. Ashkenazi, A.; Fairbrother, W.J.; Leverson, J.D.; Souers, A.J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat. Rev. Drug Discov. 2017. [Google Scholar] [CrossRef]
  140. Ebert, G.; Preston, S.; Allison, C.; Cooney, J.; Toe, J.G.; Stutz, M.D.; Ojaimi, S.; Scott, H.W.; Baschuk, N.; Nachbur, U.; et al. Cellular inhibitor of apoptosis proteins prevent clearance of hepatitis B virus. Proc. Natl. Acad. Sci. USA 2015, 112, 5797–5802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  141. Shim, J.M.; Kim, J.; Tenson, T.; Min, J.Y.; Kainov, D.E. Influenza virus infection, interferon response, viral counter-response, and apoptosis. Viruses 2017, 9, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  142. Dai, J.R.; Carté, B.K.; Sidebottom, P.J.; Yew, A.L.S.; Ng, S.B.; Huang, Y.; Butler, M.S. Circumdatin G, a new alkaloid from the fungus Aspergillus ochraceus. J. Nat. Prod. 2001, 64, 125–126. [Google Scholar] [CrossRef] [PubMed]
  143. Au, J.S.; Pockros, P.J. Novel Therapeutic Approaches for Hepatitis C. Clin. Pharmacol. Ther. 2013, 95, 78–88. [Google Scholar] [CrossRef]
  144. Wheeler, N.C.; Jech, K.; Masters, S.; Brobst, S.W.; Alvarado, A.B.; Hoover, A.J.; Snader, K.M. Effects of genetic, epigenetic, and environmental factors on taxol content in taxus brevifolia and related species. J. Nat. Prod. 1992, 55, 432–440. [Google Scholar] [CrossRef] [PubMed]
  145. Roopa, G.; Madhusudhan, M.C.; Sunil, K.C.R.; Lisa, N.; Calvin, R.; Poornima, R.; Zeinab, N.; Kini, K.R.; Prakash, H.S.; Geetha, N. Identification of Taxol-producing endophytic fungi isolated from Salacia oblonga through genomic mining approach. J. Genet. Eng. Biotechnol. 2015, 13, 119–127. [Google Scholar] [CrossRef] [Green Version]
  146. Elavarasi, A.; Rathna, G.S.; Kalaiselvam, M. Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana. Asian Pac. J. Trop. Biomed. 2012, 2, S1081–S1085. [Google Scholar] [CrossRef]
  147. Ryang, J.; Yan, Y.; Song, Y.; Liu, F.; Ng, T.B. Anti-HIV, antitumor and immunomodulatory activities of paclitaxel from fermentation broth using molecular imprinting technique. AMB Express 2019, 9. [Google Scholar] [CrossRef]
  148. Rajamani, T.; Suryanarayanan, T.S.; Murali, T.S.; Thirunavukkarasu, N. Distribution and diversity of foliar endophytic fungi in the mangroves of Andaman Islands, India. Fungal Ecol. 2018, 36, 109–116. [Google Scholar] [CrossRef]
  149. Pamphile, J.A.; dos Santos Ribeiro, M.A.; Polonio, J.C. Secondary metabolites of endophyte fungi: Techniques and biotechnological approaches. In Diversity and Benefits of Microorganisms from the Tropics; Springer International Publishing: New York, NY, USA, 2017; pp. 185–206. [Google Scholar] [CrossRef]
  150. Deshmukh, S.K.; Society, M. Sunil Kumar Deshmukh. KAVAKA 2018, 13, 1–13. [Google Scholar]
  151. Marmann, A.; Aly, A.H.; Lin, W.; Wang, B.; Proksch, P. Co-cultivation-A powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar. Drugs 2014, 12, 1043–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  152. Oh, D.C.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J. Nat. Prod. 2007, 70, 515–520. [Google Scholar] [CrossRef] [PubMed]
  153. Zhu, F.; Chen, G.; Chen, X.; Huang, M.; Wan, X. Aspergicin, a new antibacterial alkaloid produced by mixed fermentation of two marine-derived mangrove epiphytic fungi. Chem. Nat. Compd. 2011, 47, 767–769. [Google Scholar] [CrossRef]
Table 2. Chemical class of the main anti-protozoan, antibacterial and antiviral metabolites produced by mangrove endophytic fungi.
Table 2. Chemical class of the main anti-protozoan, antibacterial and antiviral metabolites produced by mangrove endophytic fungi.
Chemical ClassCompounds IsolatedFungusHost Plant(s)LocalizationBiological TargetReference
Isocoumarin
Jof 07 00455 i001
trans and cis 4,8-dihydroxy-3-methylisochroman-1-one, 5-hydroxymellein and -mellein or 8-hydroxy-3-methylisochroman-1-oneLasiodiplodia theobromaeAvicennia lanataTerengganu, MalaysiaTrypanosoma brucei brucei[75]
Naphthoquinones
Jof 07 00455 i002
Anhydrofusarubin, javanicin, dihydrojavanicin and solaniolFusarium sp.Avicennia lanataTerengganu, MalaysiaTrypanosoma brucei brucei[75]
Aflotoxin-derived mycotoxin
Jof 07 00455 i003
Aflatoxin B2bAspergillus flavusHibiscus tiliaceusHainan province, ChinaE. coli, B.
subtilis and Enterobacter aerogenes
[40]
Sesquiterpene
Jof 07 00455 i004
(7 S, 10 S)-7,10-ácido epoxysydonic; (7 R, 11 S) -7,12-epoxi s ácido ydonic; ácido 7-desoxi-7,14-didesidro-12-hydroxysydonic; (E) -7-desoxi-7,8-didesidro-12-ácido hydroxysydonic
Pestalotiopen A
Aspergillus sp.Xylocarpus moluccensisTrang Province, ThailandStaphylococcus aureus[40,51]
Pestalotiopsis sp.Rhizophora mucronataHainan Island, ChinaEnterococcus faecalis[91]
Polyketide-derived mycotoxin
Jof 07 00455 i005
12α- acetoxy- 4,4-dimethyl-24-methylene-5α-cholesta-8-momoene-3β,11β-diol, 2α-acetoxy-4,4-dimethyl-24-methylene-5α-cholesta-8,14-diene-2α,3β,11β-triolPenicillium sp.Bruguiera sexangula var. RhynchopetalaChinaS. aureus, E. coli and Micrococcus tetragenu[88]
Guignardone B and Guignardone IGuignardia sp.Scyphiphora hydrophyllaceaHainan Province, ChinaStaphylococcus aureus (MRSA) and S. aureus.[71]
Guignardone A and
guignardone J
Phyllosticta capitalensisBruguiera sexangulaSouthern ChinaP. aeraeruginosa and S. aureus[92]
Coumarin
Jof 07 00455 i006
AustinolPenicillium
citrinum
Bruguiera
sexangula var.
rhynchopetala
South ChinaS. aureus
S. epidermidis
[85]
Bacillisporin A), bacillisporin B and Penicisimpins A–CPenicillium simplicissimumHainan Island, ChinaBacillus subtilis, Aeromonas hydrophilia, Escherichia coli, M. luteus, Pseudomonas aeruginosa, V. alginolyticus, V. harveyi and V. parahaemolyticus[88]
Isocoumarin
Jof 07 00455 i007
Dichlorodiaportintone, desmethyldichlorodiaportin, dichlorodiaportinAscomycota sp.Pluchea indicaGuangxi Province, ChinaS. aureus, B. subtilis, E. coli, Klebsiella pneumoniae and Acinetobacter calcoaceticus[37]
Spergillumarinas A and BAspergillus sp.Bruguiera gymnorrhizaSouthChinaS. aureus and B. subtilis[49]
Penicimarins G and HPenicillium citrinumBruguiera sexangula var. rhynchopetalaS. aureus,S. epidermidis,
Escherichia coli, Bacillus cereus and Vibrio alginolyticus
[85]
Pestalotiopisorin BPestalotiopsis sp.Rhizophora stylosaHainan Island, ChinaE. coli and P. aeruginosa[93]
4H-chromen-4-one Jof 07 00455 i0088-dihydroxy-chromone, bacillisporin A and bacillisporin BPenicillium aculeatumKandelia candelYangjiang,
Guangdong province, China
B. subtilis and Salmonella spp.[94]
Xanthones
Jof 07 00455 i009
3,6,8-trihydroxy-1-methylxanthoneNigrospora sp.Pongamia pinnataChinaMRSA, E. coli and S. epidermidis[117]
Anthraquinone
Jof 07 00455 i010
Isoversicolorin C, versicolorin CAspergillus
nidulans
Rhizophora stylosaTwig, Chanthaburi Province, Eastern ThailandE. coli, M. luteus, V. vulnificus, V. anguillarum,
V. alginolyticus, Ed.
ictaluri,
V. parahaemolyticus
S. aureus and E. Faecalis
[45]
Diaportheins B and EmodinEurotium chevalierRhizophora
Mucronata
Hainan Island, ChinaE. coli[67]
9-dehydroxyeurotinoneEurotium rubrumHibiscus tiliaceuSouth ChinaStaphylococcus aureus and Escherichia coli[68]
Bostrycin, and DeoxybostrycinNigrospora sp. Kandelia candelS.aureus, E.coli, P. aeruginosa, Sarcina ventriculi, B. subtilis[78]
2′-acetoxy-7-chlorocitreoroseinPenicillium citrinumBruguiera sexangula var. rhynchopetalaVibrio parahaemolyticus[84]
2R,3S)-7-ethyl-1,2,3,4-tetrahydro-2,3,8-trihydroxy-6-methoxy-3-methyl-9,10-anthracenedionePhomopsis sp. Rhizophora apiculataSongkhla province, ThailandStaphylococcus aureus ATCC25923 and methicillin-resistant S. aureus SK1[96]
2-O-acetylaltersolanol B, Altersolanols A and BStemphylium sp.Bruguiera sexangula var. rhynchopetalaSouth ChinaE. coli, S. aureus and B. subtilis[96]
Naphthoquinones
Jof 07 00455 i011
5-hydroxy-2-methoxy-6,7-dimethyl-1,4-naphthoquinoneDaldinia eschscholtziiBruguiera sexangula var. rhynchopetalaSouth ChinaB. cereus[62]
6-hydroxy-astropaquinone
B, astropaquinone D and
3-O-methyl-9-O-methylfusarubin
Fusarium
napiforme
Rhizophora mucronataSouth Sulawesi Province, IndonesiaS. aureus and P.aeruginosa[69]
Biphenyl
Jof 07 00455 i012
5,50-dimethoxybiphenyl-2,20-diolPhomopsis longicollaBrguiera
sexangula var.
rhynchopetala
South ChinaVibrio parahaemolyticus[38]
N-phenylnaphthalen-1-amine
Jof 07 00455 i013
NigronapthaphenylNigrospora sphaericaBruguiera gymnorrhyzaCity of Galle, Sri LankaB, subtilis and Bacillus cereus[115]
Alkaloids
Jof 07 00455 i014
GKK1032CPenicillium sp.Mangrove plant ChineseHainan
province, China
methicillin-resistant S. aureus[90]
Penicibrocazines B–E, Bbrocapyrrozins A and 4-hydroxy-3-phenyl-1H-pyrrol-2(5H)-onePenicillium brocaeAvicennia marinaChinaS. aureus, Micrococcus luteus[80,81]
Socromen-1-ona and 3, Ácido 4-dihidroxibenzóicoPhyllosticta capitalensisBruguiera sexangulaSouthern ChinaP. aeruginosa, S. aureus, B. subtilis and E. coli[92]
Sesquiterpene
Jof 07 00455 i015
Infectopyrones A and BStemphylium sp.Bruguiera sexangula var. rhynchopetalaSouth ChinaB. subtilis Micrococcus tetragenus, Micrococcus luteus and S. albus[101]
p-quinone macrolactam
Jof 07 00455 i016
Cytosporone EAcremonium
Strictum
Rhizophora apiculataIsland of CatBa, VietnamS. aureus[32]
Ent-cladospolide FCladosporium cladosporioidesBruguiera gymnorrhizHainan Island, ChinaS. aureus[118]
(2S)-2,3-dihydro-5,6-dihydroxy-2-methyl-4H-1-benzopyran-4-one and 4-ethyl-3-hydroxy-6-propenyl-2H-pyran-2-oneColletotrichum gloeosporioidesCeriops tagalHainan Province, ChinaMicrococcus tetragenus, S. aureus, Streptomyces albus, B. cereus and
B. subtilis
[60]
CytospomarinCytospora sp.Ceriops tagalHainan Island, ChinaE. coli and M. oryzae[61]
8-O-methylnodulisporin F and nodulisporin HDaldinia eschscholtziiBrguiera sexangula var. rhynchopetalaSouth ChinaStaphylococcus aureus, methicillin-resistant S.
aureus (MRSA) and Bacillus cereus
[62]
Antiviral compounds
Isoindolone
Jof 07 00455 i017
Emerimidine A and BEmericella sp.Aegiceras corniculatumHaiKou, ChinaH1N1[65]
Alkaloid
Jof 07 00455 i018
Neosartoryadins A and BNeosartorya hiratsukaeAricennia marinaChinaH1N1[78]
p-quinone macrolactam
Jof 07 00455 i019
Diaporthe sp.Rhizophora stylosaHainan Province, ChinaH1N1 and H3N2[63]
pestalotiopsone
F, pestalotiopsone B,3,8-dihydroxy-6-methyl-9-
oxo-9H-xanthene-1-carboxylate, and 5-chloroisorotiorin
Pestalotiopsis
vacinii
Kandelia candelAnti-enterovirus 71 (EV71)[116]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Cadamuro, R.D.; da Silveira Bastos, I.M.A.; Silva, I.T.; da Cruz, A.C.C.; Robl, D.; Sandjo, L.P.; Alves, S., Jr.; Lorenzo, J.M.; Rodríguez-Lázaro, D.; Treichel, H.; et al. Bioactive Compounds from Mangrove Endophytic Fungus and Their Uses for Microorganism Control. J. Fungi 2021, 7, 455. https://doi.org/10.3390/jof7060455

AMA Style

Cadamuro RD, da Silveira Bastos IMA, Silva IT, da Cruz ACC, Robl D, Sandjo LP, Alves S Jr., Lorenzo JM, Rodríguez-Lázaro D, Treichel H, et al. Bioactive Compounds from Mangrove Endophytic Fungus and Their Uses for Microorganism Control. Journal of Fungi. 2021; 7(6):455. https://doi.org/10.3390/jof7060455

Chicago/Turabian Style

Cadamuro, Rafael Dorighello, Isabela Maria Agustini da Silveira Bastos, Izabella Thais Silva, Ariadne Cristiane Cabral da Cruz, Diogo Robl, Louis Pergaud Sandjo, Sergio Alves, Jr., Jose M. Lorenzo, David Rodríguez-Lázaro, Helen Treichel, and et al. 2021. "Bioactive Compounds from Mangrove Endophytic Fungus and Their Uses for Microorganism Control" Journal of Fungi 7, no. 6: 455. https://doi.org/10.3390/jof7060455

APA Style

Cadamuro, R. D., da Silveira Bastos, I. M. A., Silva, I. T., da Cruz, A. C. C., Robl, D., Sandjo, L. P., Alves, S., Jr., Lorenzo, J. M., Rodríguez-Lázaro, D., Treichel, H., Steindel, M., & Fongaro, G. (2021). Bioactive Compounds from Mangrove Endophytic Fungus and Their Uses for Microorganism Control. Journal of Fungi, 7(6), 455. https://doi.org/10.3390/jof7060455

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop