Influence of Galectin-3 on the Innate Immune Response during Experimental Cryptococcosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Cryptococcus Neoformans Infection
2.3. Histopathological Analysis
2.4. Polymerase Chain Reaction (PCR) Array
2.5. Genes Analyzed Using the Mouse Antifungal Response RT² Profiler PCR Array Kit (Qiagen Cat# PAMM-147Z)
2.6. Statistical Analysis
3. Results
3.1. Histopathological Analysis of WT and Gal-3 KO Mice during C. neoformans Infection
3.2. Experimental Cryptococcosis Influence the Gene Expression Related to Inflammation, Signal Transduction Pathways and Fungal Standard Recognition Receptors
3.3. Gal-3 Absence Promotes Downregulation of Genes Related to Inflammation, Signal Transduction Pathways and Phagocytose during C. neoformans Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perfect, J.R.; Casadevall, A. Cryptococcosis. Infect. Dis. Clin. N. Am. 2002, 16, 837–874. [Google Scholar] [CrossRef]
- Barnett, J.A. A history of research on yeasts 14: Medical yeasts part 2, Cryptococcus neoformans. Yeast 2010, 27, 875–904. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, C.A.; Giamberardino, C.; Sykes, S.M.; Yu, C.-H.; Tenor, J.L.; Chen, Y.; Yang, T.; Jones, A.M.; Sun, S.; Haverkamp, M.R.; et al. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res. 2017, 27, 1207–1219. [Google Scholar] [CrossRef] [Green Version]
- Garcia-hermoso, D.; Janbon, G.; Dromer, F. Epidemiological evidence for dormant Cryptococcus neoformans infection. J. Clin. Microbiol. 1999, 37, 3204–3209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindell, D.M.; Ballinger, M.N.; McDonald, R.A.; Toews, G.B.; Huffnagle, G.B. Immunologic homeostasis during infection: Coexistence of strong pulmonary cell-mediated immunity to secondary Cryptococcus neoformans infection while the primary infection still persists at low levels in the lungs. J. Immunol. 2006, 177, 4652–4661. [Google Scholar] [CrossRef] [Green Version]
- Kronstad, J.; Saikia, S.; Nielson, E.D.; Kretschmer, M.; Jung, W.; Hu, G.; Geddes, J.M.; Griffiths, E.J.; Choi, J.; Cadieux, B.; et al. Adaptation of Cryptococcus neoformans to mammalian hosts: Integrated regulation of metabolism and virulence. Eukaryot. Cell 2012, 11, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Vasta, G.R. Galectins as pattern recognition receptors: Structure, function, and evolution. Adv. Exp. Med. Biol. 2012, 946, 21–36. [Google Scholar]
- Liu, F.T.; Patterson, R.J.; Wang, J.L. Intracellular functions of galectins. Biochim. Biophys. Acta 2002, 1572, 263–273. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Weng, I.C.; Hong, M.-H.; Liu, F.-T. Galectins as bacterial sensors in the host innate response. Curr. Opin. Microbiol. 2014, 17, 75–81. [Google Scholar] [CrossRef]
- Nio-Kobayashi, J. Tissue- and cell-specific localization of galectins, β-galactose-binding animal lectins, and their potential functions in health and disease. Anat. Sci. Int. 2017, 92, 25–36. [Google Scholar] [CrossRef]
- Dumic, J.; Dabelic, S.; Flögel, M. Galectin-3: An open-ended story. Biochim. Biophys. Acta 2006, 1760, 616–635. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Alvarez, L.; Ortega, E. The Many Roles of Galectin-3, a Multifaceted Molecule, in Innate Immune Responses against Pathogens. Mediat. Inflamm. 2017, 2017, 9247574. [Google Scholar] [CrossRef] [Green Version]
- Rezende, C.P.; Brito, P.K.M.O.; Pessoni, A.M.; Da Silva, T.A.; Goldman, G.H.; Almeida, F. Altered expression of genes related to innate antifungal immunity in the absence of galectin-3. Virulence 2021, 12, 981–988. [Google Scholar] [CrossRef] [PubMed]
- Snarr, B.D.; St-Pierre, G.; Ralph, B.; Lehoux, M.; Sato, Y.; Rancourt, A.; Takazono, T.; Baistrocchi, S.R.; Corsini, R.; Cheng, M.P.; et al. Galectin-3 enhances neutrophil motility and extravasation into the airways during Aspergillus fumigatus infection. PLoS Pathog. 2020, 16, e1008741. [Google Scholar] [CrossRef]
- Linden, J.R.; De Paepe, M.E.; Laforce-Nesbitt, S.S.; Bliss, J.M. Galectin-3 plays an important role in protection against disseminated candidiasis. Med. Mycol. 2013, 51, 641–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, F.; Wolf, J.M.; da Silva, T.A.; DeLeon-Rodriguez, C.M.; Rezende, C.P.; Pessoni, A.M.; Fernandes, F.F.; Silva-Rocha, R.; Martinez, R.; Rodrigues, M.L.; et al. Galectin-3 impacts Cryptococcus neoformans infection through direct antifungal effects. Nat. Commun. 2017, 8, 1968. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.Y.; Yu, J.S.; Liu, F.T.; Miaw, S.C.; Wu-Hsieh, B.A. Galectin-3 negatively regulates dendritic cell production of IL-23/IL-17-axis cytokines in infection by Histoplasma capsulatum. J. Immunol. 2013, 190, 3427–3437. [Google Scholar] [CrossRef] [Green Version]
- Ruas, L.P.; Bernardes, E.S.; Fermino, M.L.; de Oliveira, L.L.; Hsu, D.K.; Liu, F.T.; Chammas, R.; Roque-Barreira, M.C. Lack of galectin-3 drives response to Paracoccidioides brasiliensis toward a Th2-biased immunity. PLoS ONE 2009, 4, e4519. [Google Scholar] [CrossRef]
- Hatanaka, O.; Rezende, C.P.; Moreno, P.; Fernandes, F.F.; Brito, P.K.M.O.; Martinez, R.; Coelho, C.; Roque-Barreira, M.C.; Casadevall, A.; Almeida, F. Galectin-3 Inhibits Paracoccidioides brasiliensis Growth and Impacts Paracoccidioidomycosis through Multiple Mechanisms. MSphere 2019, 4, e00209-19. [Google Scholar] [CrossRef] [Green Version]
- Hsu, D.K.; Yang, R.Y.; Pan, Z.; Yu, L.; Salomon, D.R.; Fung-Leung, W.P.; Liu, F.T. Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. Am. J. Pathol. 2000, 156, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Brubaker, S.W.; Bonham, K.S.; Zanoni, I.; Kagan, J.C. Innate immune pattern recognition: A cell biological perspective. Annu. Rev. Immunol. 2015, 33, 257–290. [Google Scholar] [CrossRef] [Green Version]
- Walsh, N.M.; Wuthrich, M.; Wang, H.; Klein, B.; Hull, C.M. Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and Dectin-1. PLoS ONE 2017, 12, e0173866. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Castrillón-Betancur, J.C.; Klaile, E.; Slevogt, H. The Interaction of Human Pathogenic Fungi With C-Type Lectin Receptors. Front. Immunol. 2018, 9, 1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhao, G.; Lin, J.; Li, C.; Jiang, N.; Xu, Q.; Zhang, J. Role of the Mannose Receptor During Aspergillus fumigatus Infection and Interaction With Dectin-1 in Corneal Epithelial Cells. Cornea 2016, 35, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Xaplanteri, P.; Lagoumintzis, G.; Dimitracopoulos, G.; Paliogianni, F. Synergistic regulation of Pseudomonas aeruginosa-induced cytokine production in human monocytes by mannose receptor and TLR2. Eur. J. Immunol. 2009, 39, 730–740. [Google Scholar] [CrossRef]
- Holder, G.E.; McGary, C.M.; Johnson, E.M.; Zheng, R.; John, V.T.; Sugimoto, C.; Kuroda, M.J.; Kim, W.K. Expression of the mannose receptor CD206 in HIV and SIV encephalitis: A phenotypic switch of brain perivascular macrophages with virus infection. J. Neuroimmune Pharmacol. 2014, 9, 716–726. [Google Scholar] [CrossRef] [Green Version]
- Van de Veerdonk, F.L.; Marijnissen, R.J.; Kullberg, B.J.; Koenen, H.J.; Cheng, S.C.; Joosten, I.; van den Berg, W.B.; Williams, D.L.; van der Meer, J.W.; Joosten, L.A.; et al. The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 2009, 5, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Loures, F.V.; Araújo, E.F.; Feriotti, C.; Bazan, S.B.; Calich, V.L.G. TLR-4 cooperates with Dectin-1 and mannose receptor to expand Th17 and Tc17 cells induced by Paracoccidioides brasiliensis stimulated dendritic cells. Front. Microbiol. 2015, 6, 261. [Google Scholar] [CrossRef]
- Traynor, T.R.; Huffnagle, G.B. Role of chemokines in fungal infections. Med. Mycol. 2001, 39, 41–50. [Google Scholar] [CrossRef]
- D’Ambrosio, D.; Mariani, M.; Panina-Bordignon, P.; Sinigaglia, F. Chemokines and Their Receptors Guiding T Lymphocyte Recruitment in Lung Inflammation. Am. J. Respir. Crit. Care Med. 2001, 164, 1266–1275. [Google Scholar] [CrossRef]
- Qin, S.; Rottman, J.B.; Myers, P.; Kassam, N.; Weinblatt, M.; Loetscher, M.; Koch, A.E.; Moser, B.; Mackay, C.R. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J. Clin. Investig. 1998, 101, 746–754. [Google Scholar] [CrossRef]
- Groom, J.R.; Richmond, J.; Murooka, T.T.; Sorensen, E.W.; Sung, J.H.; Bankert, K.; von Andrian, U.H.; Moon, J.J.; Mempel, T.R.; Luster, A.D. CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 2012, 37, 1091–1103. [Google Scholar] [CrossRef] [Green Version]
- Huffnagle, G.B.; McNeil, L.K.; McDonald, R.A.; Murphy, J.W.; Toews, G.B.; Maeda, N.; Kuziel, W.A. Cutting edge: Role of C-C chemokine receptor 5 in organ-specific and innate immunity to Cryptococcus neoformans. J. Immunol. 1999, 163, 4642–4646. [Google Scholar]
- Souto, J.T.; Aliberti, J.C.; Campanelli, A.P.; Livonesi, M.C.; Maffei, C.M.L.; Ferreira, B.R.; Travassos, L.R.; Martinez, R.; Rossi, M.A.; Silva, J.S. Chemokine production and leukocyte recruitment to the lungs of Paracoccidioides brasiliensis-infected mice is modulated by interferon-gamma. Am. J. Pathol. 2003, 163, 583–590. [Google Scholar] [CrossRef]
- Gramberg, T.; Caminschi, I.; Wegele, A.; Hofmann, H.; Pöhlmann, S. Evidence that multiple defects in murine DC-SIGN inhibit a functional interaction with pathogens. Virology 2006, 345, 482–491. [Google Scholar] [CrossRef] [Green Version]
- Takahara, K.; Tokieda, S.; Nagaoka, K.; Takeda, T.; Kimura, Y.; Inaba, K. C-type lectin SIGNR1 enhances cellular oxidative burst response against C. albicans in cooperation with Dectin-1. Eur. J. Immunol. 2011, 41, 1435–1444. [Google Scholar] [CrossRef]
- Takahara, K.; Tokieda, S.; Nagaoka, K.; Inaba, K. Efficient capture of Candida albicans and zymosan by SIGNR1 augments TLR2-dependent TNF-alpha production. Int. Immunol. 2012, 24, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansour, M.K.; Latz, E.; Levitz, S.M. Cryptococcus neoformans Glycoantigens Are Captured by Multiple Lectin Receptors and Presented by Dendritic Cells. J. Immunol. 2006, 176, 3053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeibundGut-Landmann, S.; Groß, O.; Robinson, M.J.; Osorio, F.; Slack, E.C.; Tsoni, S.V.; Schweighoffer, E.; Tybulewicz, V.; Brown, G.D.; Ruland, J.; et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 2007, 8, 630. [Google Scholar] [CrossRef] [PubMed]
- Joller, N.; Weber, S.S.; Oxenius, A. Antibody–Fc receptor interactions in protection against intracellular pathogens. Eur. J. Immunol. 2011, 41, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Lee, S.C.; Casadevall, A. Antibodies to Cryptococcus neoformans glucuronoxylomannan enhance antifungal activity of murine macrophages. Infect. Immun. 1995, 63, 573–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Farah, C.S.; Ashman, R.B. Isolates of Candida albicans that differ in virulence for mice elicit strain-specific antibody-mediated protective responses. Microbes Infect. 2006, 8, 612–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, R.; Clynes, R.; Oh, J.; Ravetch, J.V.; Scharff, M.D. Antibody-mediated modulation of Cryptococcus neoformans infection is dependent on distinct Fc receptor functions and IgG subclasses. J. Exp. Med. 1998, 187, 641–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fungal Pattern Recognition Receptors (PRRs) | |
---|---|
Responsive to beta-glucan | cd5, cd36, clec7a, itgam, itgb2, scarf1, tlr2 |
Responsive to mannose/chitin | cd207, cd209a, chia1, clec4n, mcr1. tlr2, tlr4 |
Others fungal PRRs | colec12, nlrp3, nptx1, ptx3, tlr9 |
Signal Transduction | |
Dectin-1 | bcl10, card9, clec7a, malt1, plcg2, raf1, syk |
NFΚβ signaling | bcl10, card9, casp1, casp8, cd40, ikkβ, il-10, il-1β, irak4, malt1, map3k7, nfkb1, nfkbia, stat1, tnf |
Toll-like receptor (TLR) | casp8, cd14, fos, irak1, itgb2, jun, map2k4, map3k7, mapk14, mapk8, nfkβ, tirap, tlr2, tlr4, tlr9 |
Complement signaling | c3, c5ar1, itgam, itgb2, mbl2, syk |
NOD-like receptor (NLR) | card9, casp1, nlrp3, pycard |
Inflammation | |
c3, ccl12, ccl20, ccl5, ccr1, ccr5, cd14, cd40, clec7a, cxcl1, cxcl10, cxcl11, cxcl3, cxcl9, f3, fos, il-10, il-1α, il-1β, il-2, il-23a, il-6, itgb2, lyn, mbl2, myd88, nfkb1, ptgs2, tirap, tlr2, tlr4, tlr9, tnf | |
Phagocytosis | |
c3, cd14, cd36, clec7a, colec12, fcgr1, fcnb, mbl2, sftpd | |
Genes Responsive to Pathogenic Fungi | |
Candida albicans | ccl12, ccl20, ccl5, ccr1, cd14, cd209a, cd83, clec4n, clec7a, csf2, csf3, cxcl1, cxcl10, cxcl11, cxcl3, cxcl9, fcgr1, fcgr4, ifng, il-12b, il-18, il-1α, il-1β, il1r, il-13a, il-6, myd88, nfkb1, ptgs2, socs3, tlr2, tnf |
Aspergillus fumigatus | c3, casp1, casp8, ccl12, ccl20, ccl5, ccr1, ccr5, cd14, cd40, cd83, clec4n, clec7a, csf2, csf3, cxcl1, cxcl10, cxcl11, cxcl3, cxcl9, f2rl1, f3, fcgr1, fcgr3, fcnb, ifn-γ, il-10, il-12a, il-12b, il-18, il-1α, il-1β, il1r1, il-6, jun, malt1, mapk14, mbl2, myd88, nfkbia, ptgs2, ptpn6, ptx3, sftpd, socs3, st3gal5, stat1, syk, tlr2, tlr4, tlr9, tnf |
Cryptococcus neoformans | c3, cd5, ccl12, cd40, socs3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezende, C.P.; Brito, P.K.M.O.; Da Silva, T.A.; Pessoni, A.M.; Ramalho, L.N.Z.; Almeida, F. Influence of Galectin-3 on the Innate Immune Response during Experimental Cryptococcosis. J. Fungi 2021, 7, 492. https://doi.org/10.3390/jof7060492
Rezende CP, Brito PKMO, Da Silva TA, Pessoni AM, Ramalho LNZ, Almeida F. Influence of Galectin-3 on the Innate Immune Response during Experimental Cryptococcosis. Journal of Fungi. 2021; 7(6):492. https://doi.org/10.3390/jof7060492
Chicago/Turabian StyleRezende, Caroline Patini, Patricia Kellen Martins Oliveira Brito, Thiago Aparecido Da Silva, Andre Moreira Pessoni, Leandra Naira Zambelli Ramalho, and Fausto Almeida. 2021. "Influence of Galectin-3 on the Innate Immune Response during Experimental Cryptococcosis" Journal of Fungi 7, no. 6: 492. https://doi.org/10.3390/jof7060492
APA StyleRezende, C. P., Brito, P. K. M. O., Da Silva, T. A., Pessoni, A. M., Ramalho, L. N. Z., & Almeida, F. (2021). Influence of Galectin-3 on the Innate Immune Response during Experimental Cryptococcosis. Journal of Fungi, 7(6), 492. https://doi.org/10.3390/jof7060492