Distinct Compartmentalization of Microbial Community and Potential Metabolic Function in the Fruiting Body of Tricholoma matsutake
Abstract
:1. Introduction
- (i)
- If there are differences in specific bacterial and fungal taxa associated with the compartments of Agaricales;
- (ii)
- What are the dominant potential metabolic functional traits in different compartments of sporophores of Agaricales?
- (a)
- It is an iconic Agaricales mushroom species which belongs to Basidiomycota, with distinct fruiting body structures [14];
- (b)
- It is ecologically important in maintaining forest health and functioning, through formation of symbiotic ectomycorrhizal relationships with forest trees species worldwide such as Picea glehnii in Japan, Pinus densiflora in Korea, and P. sylvestris in Europe, as well as Castanopsis, Quercus, and Lithocarpus in China [15,16].
2. Materials and Methods
2.1. Site Description and Sampling Method
2.2. Mushroom Fruiting Body Compartment Separation
2.3. DNA Extraction and PCR Amplification
2.4. Illumina Miseq Sequencing and Data Processing
2.5. Statistical Analysis
3. Results
3.1. Microbial Diversity Differences in Various Compartments
3.2. Differences in Microbial Relative Abundance and Community Structure
3.3. Primary Taxa Difference Analysis
3.4. Putative Function Change
4. Discussion
4.1. Differences in Microbial Attributes within T. matsutake Fruiting Body Structures
4.2. Predictive Functional Profiling within T. matsutake Compartments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirk, P.; Cannon, P.; Minter, D.; Stalpers, J. Dictionary of the Fungi, 10th ed.; CABI: Wallingford, UK, 2008. [Google Scholar]
- Hawksworth, D.L.; Lücking, R. Fungal Diversity Revisited: 2.2 to 3.8 Million Species. Microbiol. Spectr. 2017, 5, FUNK-00522016. [Google Scholar] [CrossRef]
- Liu, D.; He, X.; Chater, C.C.C.; Perez-Moreno, J.; Yu, F. Microbiome community structure and functional gene partitioning in different micro-niches within a sporocarp-forming fungus. Front. Microbiol. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Pérez-Moreno, J.; Guerin-Laguette, A.; Flores-Arzú, R.; Yu, F. Mushrooms, Humans and Nature in a Changing World; Springer: New York, NY, USA, 2020. [Google Scholar]
- Bonfante, P.; Genre, A. Mechanisms underlying beneficial plant-Fungus interactions in mycorrhizal symbiosis. Nat. Commun. 2010, 1, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Moreno, J.; Guerin-Laguette, A.; Rinaldi, A.C.; Yu, F.; Verbeken, A.; Hernández-Santiago, F.; Martínez-Reyes, M. Edible mycorrhizal fungi of the world: What is their role in forest sustainability, food security, biocultural conservation and climate change? Plants People Planet 2021. [Google Scholar] [CrossRef]
- Frey-Klett, P.; Garbaye, J.; Tarkka, M. The mycorrhiza helper bacteria revisited. New Phytol. 2007, 176, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Miles, P.; Chang, S. Mushroom Biology: Cocise Basics and Current Developments; World Scientific: Hackensack, NJ, USA, 1997. [Google Scholar]
- Pent, M.; Põldmaa, K.; Bahram, M. Bacterial communities in boreal forest mushrooms are shaped both by soil parameters and host identity. Front. Microbiol. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Yang, R.H.; Bao, D.P.; Guo, T.; Li, Y.; Ji, G.Y.; Ji, K.P.; Tan, Q. Bacterial profiling and dynamic succession analysis of phlebopus portentosus casing soil using MiSeq sequencing. Front. Microbiol. 2019, 10, 1927. [Google Scholar] [CrossRef]
- Wargo, M.J.; Hogan, D.A. Fungal-bacterial interactions: A mixed bag of mingling microbes. Curr. Opin. Microbiol. 2006, 9, 359–364. [Google Scholar] [CrossRef]
- Nielsen, M.N.; Sørensen, J. Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiol. Ecol. 1999, 30, 217–227. [Google Scholar] [CrossRef]
- Kobayashi, D.Y.; Reedy, R.M.; Bick, J.A.; Oudemans, P.V. Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl. Environ. Microbiol. 2002, 68, 1047–1054. [Google Scholar] [CrossRef] [Green Version]
- Yun, W.; Hall, I.R.; Evans, L.A. Ectomycorrhizal fungi with edible fruiting bodies Tricholoma matsutake and related fungi. Econ. Bot. 1997, 51, 311–327. [Google Scholar] [CrossRef]
- Yamanaka, T.; Ota, Y.; Konno, M.; Kawai, M.; Ohta, A.; Neda, H.; Terashima, Y.; Yamada, A. The host ranges of conifer-associated Tricholoma matsutake, fagaceae-associated T. bakamatsutake and T. fulvocastaneum are wider in vitro than in nature. Mycologia 2014, 106, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, T.; Yamada, A.; Furukawa, H. Advances in the cultivation of the highly-prized ectomycorrhizal mushroom Tricholoma matsutake. Mycoscience 2020, 61, 49–57. [Google Scholar] [CrossRef]
- Zhao, X.R.; Wu, H.Y.; Song, X.D.; Yang, S.H.; Dong, Y.; Yang, J.L.; Zhang, G.L. Intra-horizon differentiation of the bacterial community and its co-occurrence network in a typical Plinthic horizon. Sci. Total Environ. 2019, 678, 692–701. [Google Scholar] [CrossRef]
- Langille, M.G.I.; Zaneveld, J.; Caporaso, J.G.; McDonald, D.; Knights, D.; Reyes, J.A.; Clemente, J.C.; Burkepile, D.E.; Vega Thurber, R.L.; Knight, R.; et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013, 31, 814–821. [Google Scholar] [CrossRef]
- Oh, S.Y.; Fong, J.J.; Park, M.S.; Lim, Y.W. Distinctive feature of microbial communities and bacterial functional profiles in Tricholoma matsutake dominant soil. PLoS ONE 2016, 11, e0168573. [Google Scholar] [CrossRef]
- Li, S.H.; Zheng, L.Y.; Liu, C.Y.; Wang, Y.; Li, L.; Zhao, Y.C.; Zhang, X.L.; Yang, M.; Xiong, H.K.; Qing, Y.; et al. Two new truffles species, Tuber alboumbilicum and Tuber pseudobrumale from China. Mycol. Prog. 2014, 13, 1004. [Google Scholar] [CrossRef]
- Sun, H.; Santalahti, M.; Pumpanen, J.; Köster, K.; Berninger, F.; Raffaello, T.; Jumpponen, A.; Asiegbu, F.O.; Heinonsalo, J. Fungal community shifts in structure and function across a boreal forest fire chronosequence. Appl. Environ. Microbiol. 2015. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Zhao, Q.; Xue, C.; Xun, W.; Zhao, J.; Wu, H.; Li, R.; Shen, Q. Comparison of fungal community in black pepper-vanilla and vanilla monoculture systems associated with vanilla fusarium wilt disease. Front. Microbiol. 2016, 7, 117. [Google Scholar] [CrossRef]
- Chang, H.C.; Leaw, S.N.; Huang, A.H.; Wu, T.L.; Chang, T.C. Rapid identification of yeasts in positive blood cultures by a multiplex PCR method. J. Clin. Microbiol. 2001, 39, 3466–3471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Kahl, G. UPGMA. In The Dictionary of Genomics, Transcriptomics and Proteomics; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 1–11. [Google Scholar]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, S.Y.; Kim, M.; Eimes, J.A.; Lim, Y.W. Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds. PLoS ONE 2018, 13, e0190948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selim, K.; Nagia, M. Ghwas DEE Endophytic fungi are multifunctional biosynthesizers: Ecological role and chemical diversity; Nova: New York, NY, USA, 2016; ISBN 978-1-53610-341-0. [Google Scholar]
- Pacioni, G.; Leonardi, M.; Aimola, P.; Ragnelli, A.M.; Rubini, A.; Paolocci, F. Isolation and characterization of some mycelia inhabiting Tuber ascomata. Mycol. Res. 2007, 111, 1450–1460. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
- Liu, D.; Keiblinger, K.M.; Leitner, S.; Wegner, U.; Zimmermann, M.; Fuchs, S.; Lassek, C.; Riedel, K.; Zechmeister-Boltenstern, S. Response of microbial communities and their metabolic functions to drying–rewetting stress in a temperate forest soil. Microorganisms 2019, 7, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Harki, E.; Bouya, D.; Dargent, R. Maturation-associated alterations of the biochemical characteristics of the black truffle Tuber melanosporum Vitt. Food Chem. 2006, 99, 394–400. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, D.; Dong, Y.; Ju, H.; Wu, C.; Lin, S. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPME-GC–MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1099, 46–55. [Google Scholar] [CrossRef]
- Cho, I.H.; Namgung, H.-J.; Choi, H.-K.; Kim, Y.-S. Volatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake Sing.). Food Chem. 2008, 106, 71–76. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L.; Li, W.; Li, X.; Huang, W.; Yang, H.; Zheng, L. Chemical compositions and volatile compounds of Tricholoma matsutake from different geographical areas at different stages of maturity. Food Sci. Biotechnol. 2016, 25, 71–77. [Google Scholar] [CrossRef]
- Vahdatzadeh, M.; Deveau, A.; Splivallo, R. The role of the microbiome of truffles in aroma formation: A meta-analysis approach. Appl. Environ. Microbiol. 2015, 81, 6946–6952. [Google Scholar] [CrossRef] [Green Version]
- Deveau, A.; Antony-Babu, S.; Le Tacon, F.; Robin, C.; Frey-Klett, P.; Uroz, S. Temporal changes of bacterial communities in the Tuber melanosporum ectomycorrhizosphere during ascocarp development. Mycorrhiza 2016, 26, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yan, L.; Ye, L.; Zhou, J.; Zhang, B.; Peng, W.; Zhang, X.; Li, X. Chinese Black Truffle (Tuber indicum) alters the ectomycorrhizosphere and endoectomycosphere microbiome and metabolic profiles of the host tree Quercus aliena. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halsey, J.A.; de Cássia Pereira e Silva, M.; Andreote, F.D. Bacterial selection by mycospheres of Atlantic Rainforest mushrooms. Antonie Van Leeuwenhoek 2016, 109, 1353–1365. [Google Scholar] [CrossRef]
- Liu, D.; Herrera, M.; Yu, F.; Pèrez-moreno, J. Provenances originate morphological and microbiome variation of Tuber pseudobrumale in southwestern China despite strong genetic consistency. Mycol. Prog. 2020, 19, 1545–1558. [Google Scholar] [CrossRef]
- Gehrmann, T.; Pelkmans, J.F.; Ohm, R.A.; Vos, A.M.; Sonnenberg, A.S.M.; Baars, J.J.P.; Wösten, H.A.B.; Reinders, M.J.T.; Abeel, T. Nucleus-specific expression in the multinuclear mushroom-forming fungus Agaricus bisporus reveals different nuclear regulatory programs. Proc. Natl. Acad. Sci. USA 2018, 115, 4429–4434. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, Y.; Kaneko, S.; Sunagawa, M.; Shishido, K.; Yamazaki, T.; Nakamura, M.; Babasaki, K. The fruiting-specific Le.flp1 gene, encoding a novel fungal fasciclin-like protein, of the basidiomycetous mushroom Lentinula edodes. Curr. Genet. 2007, 51, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.M.; Bing, L.; Yu, F.Q.; Hua, Y. Chemical constituents from the fruiting bodies of Tricholoma matsutake. Mycosphere 2021, in press. [Google Scholar]
- Rinaldi, A.C.; Comandini, O.; Kuyper, T.W. Ecotomycorrhizal fungal diversity: Separating the wheat from the chaff. Fungal Divers. 2008, 33, 1–45. [Google Scholar]
- Tedersoo, L.; May, T.W.; Smith, M.E. Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 2010, 20, 217–263. [Google Scholar] [CrossRef]
- Rosling, A.; Cox, F.; Cruz-Martinez, K.; Ihrmark, K.; Grelet, G.-A.; Lindahl, B.D.; Menkis, A.; James, T.Y. Archaeorhizomycetes: Unearthing an Ancient Class of Ubiquitous Soil Fungi. Science 2011, 333, 876–879. [Google Scholar] [CrossRef]
- Nilsson, T. Studies on wood degradation and cellulolytic activity of microfungi. Stud. For. Suec. 1973, 104, 1–40. [Google Scholar]
- Bills, G.F.; Gloer, J.B.; An, Z. Coprophilous fungi: Antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Curr. Opin. Microbiol. 2013, 16, 549–565. [Google Scholar] [CrossRef] [PubMed]
- Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedini, S.; Bagnoli, G.; Sbrana, C.; Leporini, C.; Tola, E.; Dunne, C.; Filippi, C.; D’Andrea, F.; Nuti, M.P. Pseudomonads isolated from within fruit bodies of Tuber borchii are capable of producing biological control or phytostimulatory compounds in pure culture. Symbiosis 1999, 26, 223–236. [Google Scholar]
- Rainey, P.B. Effect of Pseudomonas putida on hyphal growth of Agaricus bisporus. Mycol. Res. 1991, 95, 699–704. [Google Scholar] [CrossRef]
Bacteria | Fungi | |||||||
---|---|---|---|---|---|---|---|---|
Chao1 | ACE | Simpson | Shannon | Chao1 | ACE | Simpson | Shannon | |
SC | 915 (18) c | 943 (5) b | 0.93 (0.03) a | 6.25 (0.57) a | 392 (85) a | 389 (95) a | 0.54 (0.16) a | 2.66 (0.13) a |
S | 862 (24) c | 863 (25) c | 0.96 (0.02) a | 6.75 (0.10) a | 322 (29) a | 325 (35) a | 0.36 (0.17) b | 1.92 (0.56) b |
PC | 1205 (63) a | 1241 (67) a | 0.94 (0.03) a | 6.84 (0.42) a | 343 (14) a | 345 (14) a | 0.38 (0.20) b | 1.95 (0.60) b |
P | 914 (36) c | 891 (76) c | 0.95 (0.02) a | 6.57 (0.64) a | 325 (15) a | 324 (18) a | 0.42 (0.31) b | 2.05 (0.26) b |
L | 960 (95) b | 991 (85) b | 0.93 (0.02) a | 6.24 (0.83) a | 345 (46) a | 349 (47) a | 0.24 (0.01) c | 1.47 (0.01) c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Perez-Moreno, J.; Zhang, P.; Wang, R.; Chater, C.C.C.; Yu, F. Distinct Compartmentalization of Microbial Community and Potential Metabolic Function in the Fruiting Body of Tricholoma matsutake. J. Fungi 2021, 7, 586. https://doi.org/10.3390/jof7080586
Liu D, Perez-Moreno J, Zhang P, Wang R, Chater CCC, Yu F. Distinct Compartmentalization of Microbial Community and Potential Metabolic Function in the Fruiting Body of Tricholoma matsutake. Journal of Fungi. 2021; 7(8):586. https://doi.org/10.3390/jof7080586
Chicago/Turabian StyleLiu, Dong, Jesús Perez-Moreno, Peng Zhang, Ran Wang, Caspar C. C. Chater, and Fuqiang Yu. 2021. "Distinct Compartmentalization of Microbial Community and Potential Metabolic Function in the Fruiting Body of Tricholoma matsutake" Journal of Fungi 7, no. 8: 586. https://doi.org/10.3390/jof7080586
APA StyleLiu, D., Perez-Moreno, J., Zhang, P., Wang, R., Chater, C. C. C., & Yu, F. (2021). Distinct Compartmentalization of Microbial Community and Potential Metabolic Function in the Fruiting Body of Tricholoma matsutake. Journal of Fungi, 7(8), 586. https://doi.org/10.3390/jof7080586