The Emergence of Echinocandin-Resistant Candida glabrata Exhibiting High MICs and Related FKS Mutations in Turkey
Abstract
:1. Introduction
2. Case Report
3. Other Echinocandin-Resistant C. glabrata Strains Isolated in Our Center Following This First Case
4. Isolation and Identification of the Strains, Detection of In Vitro Echinocandin Resistance and Molecular Analysis
5. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Benedict, K.; Richardson, M.; Vallabhaneni, S.; Jackson, B.R.; Chiller, T. Emerging issues, challenges, and changing epidemiology of fungal disease outbreaks. Lancet Infect. Dis. 2017, 17, e403–e411. [Google Scholar] [CrossRef]
- Seagle, E.E.; Williams, S.L.; Chiller, T.M. Recent trends in the epidemiology of fungal infections. Infect. Dis. Clin. N. Am. 2021, 35, 237–260. [Google Scholar] [CrossRef]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018, 4, 18026. [Google Scholar] [CrossRef]
- Gulmez, D.; Sig, A.K.; Akar, N.; Duyan, S.; Arikan Akdagli, S. Changing trends in isolation frequencies and species of clinical fungal strains: What do the 12-years (2008–2019) mycology laboratory data tell about? Mikrobiyol. Bul. 2021, 55, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty years of the SENTRY antifungal surveillance program: Results for Candida species from 1997–2016. Open Forum Infect. Dis. 2019, 6, S79–S94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, K.; Askari, F.; Sahu, M.S.; Kaur, R. Candida glabrata: A lot more than meets the eye. Microorganisms 2019, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Alp, S.; Arikan-Akdagli, S.; Gulmez, D.; Ascioglu, S.; Uzun, O.; Akova, M. Epidemiology of candidaemia in a tertiary care university hospital: 10-year experience with 381 candidaemia episodes between 2001 and 2010. Mycoses 2015, 58, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Bassetti, M.; Calandra, T.; Garbino, J.; Kullberg, B.J.; Lortholary, O.; Meersseman, W.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Non-neutropenic adult patients. Clin. Microbiol. Infect. 2012, 18 (Suppl. 7), 19–37. [Google Scholar] [CrossRef] [Green Version]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Perlin, D.S. Echinocandin resistance: An emerging clinical problem? Curr. Opin. Infect. Dis. 2014, 27, 484–492. [Google Scholar] [CrossRef] [Green Version]
- CLSI. CLSI Document M60-ED2:2020 Performance Standards for Antifungal Susceptibility Testing of Yeasts, 2nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Arendrup, M.C.; Meletiadis, J.; Mouton, W.; Lagrou, K.; Hamal, P.; Guinea, J.; The Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts; EUCAST Definitive Document E.DEF 7.3.2.; EUCAST: Växjö, Sweden, 2020. [Google Scholar]
- EUCAST. European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs for Antifungal Agents, 10th ed.; EUCAST: Växjö, Sweden, 2020; Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7.3.2_Yeast_testing_definitive_revised_2020.pdf (accessed on 27 May 2021).
- Castanheira, M.; Messer, S.A.; Rhomberg, P.R.; Pfaller, M.A. Antifungal susceptibility patterns of a global collection of fungal isolates: Results of the SENTRY Antifungal Surveillance Program (2013). Diagn. Microbiol. Infect. Dis. 2016, 85, 200–204. [Google Scholar] [CrossRef]
- Alexander, B.D.; Johnson, M.D.; Pfeiffer, C.D.; Jimenez-Ortigosa, C.; Catania, J.; Booker, R.; Castanheira, M.; Messer, S.A.; Perlin, D.S.; Pfaller, M.A. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 2013, 56, 1724–1732. [Google Scholar] [CrossRef] [Green Version]
- Barber, A.E.; Weber, M.; Kaerger, K.; Linde, J.; Golz, H.; Duerschmied, D.; Markert, A.; Guthke, R.; Walther, G.; Kurzai, O. Comparative genomics of serial Candida glabrata isolates and the rapid acquisition of echinocandin resistance during therapy. Antimicrob. Agents Chemother. 2019, 63, e01628-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivero-Menendez, O.; Navarro-Rodriguez, P.; Bernal-Martinez, L.; Martin-Cano, G.; Lopez-Perez, L.; Sanchez-Romero, I.; Perez-Ayala, A.; Capilla, J.; Zaragoza, O.; Alastruey-Izquierdo, A. Clinical and laboratory development of echinocandin resistance in Candida glabrata: Molecular characterization. Front. Microbiol. 2019, 10, 1585. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.R., 3rd; Wiederhold, N.P.; Vallor, A.C.; Villareal, N.C.; Lewis, J.S., 2nd; Patterson, T.F. Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection. Antimicrob. Agents Chemother. 2008, 52, 3783–3785. [Google Scholar] [CrossRef] [Green Version]
- Jensen, R.H.; Johansen, H.K.; Soes, L.M.; Lemming, L.E.; Rosenvinge, F.S.; Nielsen, L.; Olesen, B.; Kristensen, L.; Dzajic, E.; Astvad, K.M.; et al. Posttreatment antifungal resistance among colonizing Candida isolates in candidemia patients: Results from a systematic multicenter study. Antimicrob. Agents Chemother. 2015, 60, 1500–1508. [Google Scholar] [CrossRef] [Green Version]
- Arikan-Akdagli, S.; Gulmez, D.; Dogan, O.; Cerikcioglu, N.; Doluca Dereli, M.; Birinci, A.; Yildiran, S.T.; Ener, B.; Oz, Y.; Metin, D.Y.; et al. First multicentre report of in vitro resistance rates in candidaemia isolates in Turkey. J. Glob. Antimicrob. Resist. 2019, 18, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Arastehfar, A.; Daneshnia, F.; Salehi, M.; Yasar, M.; Hosbul, T.; Ilkit, M.; Pan, W.; Hagen, F.; Arslan, N.; Turk-Dagi, H.; et al. Low level of antifungal resistance of Candida glabrata blood isolates in Turkey: Fluconazole minimum inhibitory concentration and FKS mutations can predict therapeutic failure. Mycoses 2020, 63, 911–920. [Google Scholar] [CrossRef]
- Vural, A.; Arslan, S.; Erol, T.; İnkaya, A.Ç.; Karlı Oğuz, K.; Uzun, Ö. Acute loss-of-consciousness in patient with relapsing candidemia and bacteremia. Infect. Dis. Clin. Microbiol. 2020, 2, 52–53. [Google Scholar] [CrossRef]
- Walsh, T.J.; Hayden, R.T.; Larone, D.H. Larone’s Medically Important Fungi: A Guide to Identification; John Wiley & Sons: Hobokn, NJ, USA, 2018. [Google Scholar]
- Fujita, S.I.; Senda, Y.; Nakaguchi, S.; Hashimoto, T. Multiplex PCR using internal transcribed spacer 1 and 2 regions for rapid detection and identification of yeast strains. J. Clin. Microbiol. 2001, 39, 3617–3622. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Diekema, D.J. Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J. Clin. Microbiol. 2012, 50, 2846–2856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinel-Ingroff, A.; Arendrup, M.C.; Pfaller, M.A.; Bonfietti, L.X.; Bustamante, B.; Canton, E.; Chryssanthou, E.; Cuenca-Estrella, M.; Dannaoui, E.; Fothergill, A.; et al. Interlaboratory variability of caspofungin MICs for Candida spp. using CLSI and EUCAST methods: Should the clinical laboratory be testing this agent? Antimicrob. Agents Chemother. 2013, 57, 5836–5842. [Google Scholar] [CrossRef] [Green Version]
- Pham, C.D.; Iqbal, N.; Bolden, C.B.; Kuykendall, R.J.; Harrison, L.H.; Farley, M.M.; Schaffner, W.; Beldavs, Z.G.; Chiller, T.M.; Park, B.J.; et al. Role of FKS Mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob. Agents Chemother. 2014, 58, 4690–4696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudiuk, C.; Gamarra, S.; Leonardeli, F.; Jimenez-Ortigosa, C.; Vitale, R.G.; Afeltra, J.; Perlin, D.S.; Garcia-Effron, G. Set of classical PCRs for detection of mutations in Candida glabrata FKS genes linked with echinocandin resistance. J. Clin. Microbiol. 2014, 52, 2609–2614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019.
Strain No. | Antifungal | EUCAST (mg/L) | CLSI (mg/L) | Mutation FKS2 HS1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MIC | ECOFF | CBP | Interpretation | MIC | ECOFF | CBP | Interpretation | |||
1 * | Amphotericin B | 0.5 | 1 | 1 | S | 1 | NA | D666V | ||
Fluconazole | 32 | 32 | 0.002 | SDD | 8 | 32 | - | SDD | ||
Voriconazole | 1 | 1 | NA | WT | 0.25 | 0.5 | NA | WT | ||
Anidulafungin | 0.5 | 0.064 | 0.064 | R | 0.5 | 0.25 | 0.125 | R | ||
Micafungin | 0.125 | 0.032 | 0.032 | R | 0.25 | 0.032 | 0.064 | R | ||
2 | Amphotericin B | 0.125 | 1 | 1 | S | 0.25 | NA | S663P | ||
Fluconazole | 2 | 32 | 0.002 | SDD | 4 | 32 | - | SDD | ||
Voriconazole | 0.06 | 1 | NA | WT | 0.06 | 0.5 | NA | WT | ||
Anidulafungin | 2 | 0.064 | 0.064 | R | 4 | 0.25 | 0.125 | R | ||
Micafungin | 4 | 0.032 | 0.032 | R | 2 | 0.032 | 0.064 | R | ||
3 | Amphotericin B | 0.25 | 1 | 1 | S | 0.5 | NA | delF659 | ||
Fluconazole | 2 | 32 | 0.002 | SDD | 4 | 32 | - | SDD | ||
Voriconazole | 0.06 | 1 | NA | WT | 0.06 | 0.5 | NA | WT | ||
Anidulafungin | 1 | 0.064 | 0.064 | R | 4 | 0.25 | 0.125 | R | ||
Micafungin | 4 | 0.032 | 0.032 | R | 2 | 0.032 | 0.064 | R |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sig, A.K.; Sonmezer, M.C.; Gülmez, D.; Duyan, S.; Uzun, Ö.; Arikan-Akdagli, S. The Emergence of Echinocandin-Resistant Candida glabrata Exhibiting High MICs and Related FKS Mutations in Turkey. J. Fungi 2021, 7, 691. https://doi.org/10.3390/jof7090691
Sig AK, Sonmezer MC, Gülmez D, Duyan S, Uzun Ö, Arikan-Akdagli S. The Emergence of Echinocandin-Resistant Candida glabrata Exhibiting High MICs and Related FKS Mutations in Turkey. Journal of Fungi. 2021; 7(9):691. https://doi.org/10.3390/jof7090691
Chicago/Turabian StyleSig, Ali Korhan, Meliha Cagla Sonmezer, Dolunay Gülmez, Serhat Duyan, Ömrüm Uzun, and Sevtap Arikan-Akdagli. 2021. "The Emergence of Echinocandin-Resistant Candida glabrata Exhibiting High MICs and Related FKS Mutations in Turkey" Journal of Fungi 7, no. 9: 691. https://doi.org/10.3390/jof7090691
APA StyleSig, A. K., Sonmezer, M. C., Gülmez, D., Duyan, S., Uzun, Ö., & Arikan-Akdagli, S. (2021). The Emergence of Echinocandin-Resistant Candida glabrata Exhibiting High MICs and Related FKS Mutations in Turkey. Journal of Fungi, 7(9), 691. https://doi.org/10.3390/jof7090691