Sesquiterpenoids and Xanthones from the Kiwifruit-Associated Fungus Bipolaris sp. and Their Anti-Pathogenic Microorganism Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Fermentation, Extraction, and Isolation
2.3. ECD Calculations
2.4. NMR Calculations
2.5. Antibacterial Activity Assay
2.6. Anti-Phytopathogens Assay
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dolly, S.; Kaur, J.; Bhadariya, V.; Sharma, K. Actinidia deliciosa (Kiwi fruit): A comprehensive review on the nutritional composition, health benefits, traditional utilization and commercialization. J. Food Process. Preserv. 2021, 45, e15588. [Google Scholar] [CrossRef]
- Wang, S.N.; Qiu, Y.; Zhu, F. Kiwifruit (Actinidia spp.): A review of chemical diversity and biological activities. Food Chem. 2021, 350, 128469. [Google Scholar] [CrossRef]
- Richardson, D.P.; Ansell, J.; Drummond, L.N. The nutritional and health attributes of kiwifruit: A review. Eur. J. Nutr. 2018, 57, 2659–2676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhang, C.; Long, Y.; Wu, X.; Su, Y.; Lei, Y.; Ai, Q. Bioactivity and control efficacy of the novel antibiotic tetramycin against various kiwifruit diseases. Antibiotics 2021, 10, 289. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Jung, J.S.; Koh, Y.J. Occurrence and epidemics of bacterial canker of kiwifruit in Korea. Plant Pathol. J. 2017, 33, 351–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhang, C.; Wu, X.; Long, Y.; Su, Y. Chitosan augments tetramycin against soft rot in kiwifruit and enhances its improvement for kiwifruit growth, quality and aroma. Biomolecules 2021, 11, 1257. [Google Scholar] [CrossRef]
- Lee, Y.S.; Han, H.S.; Kim, G.H.; Koh, Y.J.; Hur, J.S.; Jung, J.S. Causal agents of blossom blight of kiwifruit in Korea. Plant Pathol. J. 2009, 25, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Balestra, G.M.; Mazzaglia, A.; Rossetti, A. Outbreak of bacterial blossom blight caused by Pseudomonas viridiflava on Actinidia chinensis kiwifruit plants in Italy. Plant Dis. 2008, 92, 1707. [Google Scholar] [CrossRef]
- Jeong, I.H.; Lim, M.T.; Kim, G.H.; Han, T.W.; Kim, H.C.; Kim, M.J.; Park, H.S.; Shin, S.H.; Hur, J.S.; Shin, J.S.; et al. Incidences of leaf spots and blights on kiwifruit in Korea. Plant Pathol. J. 2008, 24, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Li, H.H.; Tang, W.; Liu, K.; Zhang, L.; Tang, X.F.; Miao, M.; Liu, Y.S. First report of Fusarium fujikuroi causing brown leaf spot on kiwifruit. Plant Dis. 2020, 104, 1560. [Google Scholar] [CrossRef]
- Polat, Z.; Awan, Q.N.; Hussain, M.; Akgul, D.S. First report of Phytopythium vexans causing root and collar rot of kiwifruit in Turkey. Plant Dis. 2017, 101, 1058. [Google Scholar] [CrossRef]
- Wang, K.X.; Xie, Y.L.; Yuan, G.Q.; Li, Q.Q.; Lin, W. First report of root and collar rot caused by Phytopythium helicoides on kiwifruit (Actinidia chinensis). Plant Dis. 2015, 99, 725. [Google Scholar] [CrossRef]
- McCann, H.C.; Li, L.; Liu, Y.F.; Li, D.W.; Pan, H.; Zhong, C.H.; Rikkerink, E.H.A.; Templeton, M.D.; Straub, C.; Colombi, E.; et al. Origin and evolution of the kiwifruit canker pandemic. Genome Biol. Evol. 2017, 9, 932–944. [Google Scholar] [CrossRef]
- Vanneste, J.L. The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). Annu. Rev. Phytopathol. 2017, 55, 377–399. [Google Scholar] [CrossRef]
- Wicaksono, W.A.; Jones, E.E.; Casonato, S.; Monk, J.; Ridgway, H.J. Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biol. Control 2018, 116, 103–112. [Google Scholar] [CrossRef]
- Scortichini, M. Aspects still to solve for the management of kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae biovar 3. Eur. J. Hortic. Sci. 2018, 83, 205–211. [Google Scholar] [CrossRef]
- Bardas, G.A.; Veloukas, T.; Koutita, O.; Karaoglanidis, G.S. Multiple resistance of botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Manag. Sci. 2010, 66, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Colombi, E.; Straub, C.; Kunzel, S.; Templeton, M.D.; McCann, H.C.; Rainey, P.B. Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids. Environ. Microbiol. 2017, 19, 819–832. [Google Scholar] [CrossRef]
- Gupta, S.; Chaturvedi, P.; Kulkarni, M.G.; van Staden, J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol. Adv. 2020, 39, 107462. [Google Scholar] [CrossRef]
- Kusari, S.; Hertweck, C.; Spitellert, M. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. Biol. 2012, 19, 792–798. [Google Scholar] [CrossRef] [Green Version]
- Strobel, G.; Daisy, B.; Castillo, U.; Harper, J. Natural products from endophytic microorganisms. J. Nat. Prod. 2004, 67, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Helaly, S.E.; Thongbai, B.; Stadler, M. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat. Prod. Rep. 2018, 35, 992–1014. [Google Scholar] [CrossRef]
- Zhang, J.Y.; He, J.; Li, Z.H.; Feng, T.; Liu, J.K. Zopfiellasins A–D, two pairs of epimeric cytochalasins from kiwi-associated fungus Zopfiella sp. and their antibacterial assessment. Molecules 2021, 26, 5611. [Google Scholar] [CrossRef]
- Yi, X.W.; He, J.; Sun, L.T.; Liu, J.K.; Wang, G.K.; Feng, T. 3-Decalinoyltetramic acids from kiwi-associated fungus Zopfiella sp. and their antibacterial activity against Pseudomonas syringae. RSC Adv. 2021, 11, 18827–18831. [Google Scholar] [CrossRef]
- Ma, J.T.; Du, J.X.; Zhang, Y.; Liu, J.K.; Feng, T.; He, J. Natural imidazole alkaloids as antibacterial agents against Pseudomonas syringae pv. actinidiae isolated from kiwi endophytic fungus Fusarium tricinctum. Fitoterapia 2022, 156, 105070. [Google Scholar] [CrossRef]
- Frisch, M.J.T.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision D. 01; Gaussian Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Shao, Y.; Molnar, L.F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S.T.; Gilbert, A.T.B.; Slipchenko, L.V.; Levchenko, S.V.; O’Neill, D.P.; et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 2006, 8, 3172–3191. [Google Scholar] [CrossRef] [PubMed]
- Hehre, W.J. A Guide to Molecular Mechanics and Quantum Chemical Calculations; Wavefunction Inc.: Irvine, CA, USA, 2003; Volume 51, pp. 1–812. [Google Scholar] [CrossRef]
- Bruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 2013, 25, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond DP4: An improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 2015, 80, 12526–12534. [Google Scholar] [CrossRef] [PubMed]
- Nukina, M.; Hattori, H.; Marumo, S. Cis-Sativenediol, a plant growth promotor, produced by fungi. J. Am. Chem. Soc. 1975, 97, 2542–2543. [Google Scholar] [CrossRef]
- Osterhage, C.; König, G.M.; Höller, U.; Wright, A.D. Rare sesquiterpenes from the algicolous fungus Drechslera dematioidea. J. Nat. Prod. 2002, 65, 306–313. [Google Scholar] [CrossRef]
- Dorn, F.; Arigoni, D. Ein bicyclischer Abkömmling von (−) longifolen aus Helminthosporium sativum und H. victoriae. Experientia 1974, 30, 851–852. [Google Scholar] [CrossRef]
- Han, J.; Zhang, J.; Song, Z.; Liu, M.; Hu, J.; Hou, C.; Zhu, G.; Jiang, L.; Xia, X.; Quinn, R.; et al. Genome- and MS-based mining of antibacterial chlorinated chromones and xanthones from the phytopathogenic fungus Bipolaris sorokiniana strain 11134. Appl. Microbiol. Biotechnol. 2019, 103, 5167–5181. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yang, M.S.; Wang, W.X.; Li, Z.H.; Elkhateeb, W.; Wen, T.C.; Ai, H.L.; Feng, T. Anti-phytopathogenic sesquiterpenoid-xanthone adducts from potato endophytic fungus Bipolaris eleusines. RSC Adv. 2019, 9, 128–131. [Google Scholar] [CrossRef] [Green Version]
No. | 1 a | 2 a | 3 b | |||
---|---|---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 54.3, CH | 2.71, s | 55.4, CH | 2.59, br s | 140,0, C | |
2 | 156.8, C | 155.7, C | 167.0, C | |||
3 | 43.0, C | 42.8, C | 58.0, C | |||
4a | 39.9, CH2 | 1.50, m | 36.7, CH2 | 1.23, m | 29.6, CH2 | 1.42, dd (13.2, 6.0) |
4b | 1.36, m | 1.74, m | 1.55, dd (12.8, 6.0) | |||
5a | 25.2, CH2 | 1.58, m | 32.3, CH2 | 1.44, m | 25.9, CH2 | 0.90, m |
5b | 1.24, m | 1.55, m | 1.80, m | |||
6 | 37.6, CH | 1.65, m | 73.7, C | 46.4, CH | 1.05, m | |
7 | 42.2, CH | 2.46, s | 47.8, CH | 2.44, br s | 42.7, CH | 3.06, br s |
8a | 20.8, CH3 | 1.05, s | 20.8, CH3 | 1.06, s | 64.6, CH2 | 3.63, d (11.6) |
8b | 3.71, d (11.6) | |||||
9 | 40.5, CH | 1.46, m | 36.9, CH | 1.57, m | 32.9, CH | 1.02, m |
10 | 15.4, CH3 | 0.92, d (6.8) | 16.2, CH3 | 0.88, d (6.9) | 21.1, CH3 | 0.78, d (6.4) |
11 | 66.9, CH2 | 3.64, overlap | 16.4, CH3 | 0.94, d (6.9) | 22.1, CH3 | 1.06, d (6.4) |
12a | 103.5, CH2 | 4.94, s | 105, CH2 | 4.69, s | 11.0, CH3 | 2.13, s |
12b | 4.62, s | 4.97, s | ||||
13 | 58.2, CH | 1.70, br s | 54.7, CH | 1.97, br s | 60.8, CH | 1.82, m |
14a | 69.6, CH | 4.02, d (5.9) | 69.5, CH | 4.07, d (6.1) | 62.9, CH2 | 3.34, dd (11.0, 6.8) |
14b | 3.61, dd (11.2, 6.8) | |||||
15 | 74.9, CH | 3.65, overlap | 74.8, CH | 3.68, d (6.1) | 190.0, CH | 10.02, s |
No. | 4 b | 5 b | 6 a | |||
---|---|---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 140.5, C | 124.2, CH | 5.56, br s | 212.0, C | ||
2 | 170.4, C | 147.2, C | 50.7, CH | 2.10, m | ||
3 | 52.0, C | 47.7, C | 41.8, C | |||
4a | 32.4, CH2 | 1.38, m | 35.2, CH2 | 1.34, m | 36.1, CH2 | 1.44, m |
4b | 1.71, m | 1.41, dd (12.5, 5.2) | 1.66, dd (13.7,5.7) | |||
5a | 32.8, CH2 | 1.25, m | 26.0, CH2 | 1.56, m | 26.0, CH2 | 1.80, m |
5b | 1.61, m | 0.87, m | ||||
6 | 73.5, C | 45.2, CH | 2.03, m | 50.1, CH | 1.33, m | |
7 | 47.9, CH | 3.16, br s | 45.3, CH | 2.74, br s | 51.3, CH | 2.70, brs |
8 | 18.7, CH3 | 1.07, s | 18.9, CH3 | 0.99, s | 22.1, CH3 | 1.09, s |
9 | 37.2, CH | 1.28, m | 150.3, C | 29.9, CH | 1.55, m | |
10 | 17.1, CH3 | 1.02, d (6.6) | 109.2, CH2 | 4.69, d (5.1) | 20.3, CH3 | 1.03, d (6.5) |
11 | 16.4, CH3 | 0.80, d (6.6) | 22.7, CH3 | 1.74, s | 21.4, CH3 | 0.86, d (6.5) |
12 | 11.3, CH2 | 2.06, s | 59.8, CH2 | 4.06, m | 6.3, CH3 | 0.96, d (7.2) |
13 | 55.3, CH | 2.43, dd (9.1, 5.4) | 64.3, CH | 1.64, dd (9.6, 4.9) | 54.9, C | 1.72, dd (7.9, 5.0) |
14a | 62.3, CH2 | 3.19, dd (10.5, 9.1) | 62.5, CH2 | 3.38, m | 62.0, CH2 | 3.85, dd (10.7, 5.0) |
14b | 3.61, dd (10.5, 5.4) | 3.65, dd (10.5, 5.0) | 3.50, dd (10.7, 7.9) | |||
15 | 189.7, CH | 9.97, s |
No. | 7 a | 8 b | 9 b | |||
---|---|---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 137.5, C | 137.4, C | 57.5, CH | 2.54, br s | ||
2 | 165.3, C | 165.3, C | 163.7, C | |||
3 | 52.6, C | 52.5, C | 41.8, C | |||
4a | 33.7, CH2 | 1.41, dd (13.4, 5.9) | 33.6, CH2 | 1.40, dd (13.3, 5.9) | 53.2, CH2 | 1.66, dd (13.2, 10.4) |
4b | 1.50, dd (13.4, 6.4) | 1.48, dd (13.3, 6.5) | 2.10, dd (13.2, 10.4) | |||
5a | 25.2, CH2 | 0.91, m | 25.2, CH2 | 0.90, m | 67.0, CH | 3.84, m |
5b | 1.80, m | 1.78, m | ||||
6a | 44.3, CH | 1.06, m | 44.2, CH | 1.06, m | 47.2, CH2 | 1.21, m |
6b | 1.98, m | |||||
7 | 44.7, CH | 3.06, br s | 44.5, CH | 3.04, br s | 32.2, C | |
8 | 19.7, CH3 | 0.97, s | 19.6, CH3 | 0.96, s | 28.7, CH3 | 0.99, s |
9 | 31.6, CH | 1.03, m | 31.6, CH | 1.03, m | 55.0, CH | 2.02, br s |
10 | 21.7, CH3 | 1.06, d (5.9) | 21.7, CH3 | 1.04, d (5.8) | 30.3, CH3 | 1.09, s |
11 | 20.8, CH3 | 0.77, d (5.9) | 20.8, CH3 | 0.76, d (5.8) | 31.7, CH3 | 0.95, s |
12a | 11.0, CH3 | 2.06, s | 10.9, CH3 | 2.04, s | 103.9, CH2 | 4.75, br s |
12b | 4.97, br s | |||||
13 | 63.6, CH | 2.22, d (9.6) | 63.4, CH | 2.23, d (9.8) | 53.2, CH | 2.01, br s |
14 | 147.9, CH | 6.55, dd (15.9, 9.6) | 151.5, CH | 6.80, dd (15.4, 9.9) | 70.5, CH | 4.13, d (6.2) |
15 | 188.1, CH | 10.08, s | 188.1, CH | 10.05, s | 74.9, CH | 3.59, d (6.2) |
16 | 132.2, CH | 6.08, d (15.9) | 122.1, CH | 5.81, d (15.5) | ||
17 | 198.6, C | 171.1, C | ||||
18 | 27.5, CH3 | 2.20, s |
No. | 10 a | 11 a | ||
---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 161.1, C | 161.1, C | ||
2 | 113.7, CH | 6.68, s | 113.7, CH | 6.69, s |
3 | 147.7, C | 147.8, C | ||
4 | 108.1, CH | 6.75, s | 108.1, CH | 6.76, s |
4a | 157.4, C | 157.4, C | ||
5 | 78.2, CH | 5.73, ddd (6.6, 4.4, 3.9) | 78.6, CH | 5.62, ddd (8.4, 3.8, 1.7) |
6a | 37.7, CH2 | 3.01, dd (16.2, 4.4) | 39.3, CH2 | 3.10, dd (16.3, 8.4) |
6b | 2.85, dd (16.2, 6.6) | 2.99, dd (16.3, 3.8) | ||
7 | 170.0, C | 170.2, C | ||
8 | 79.4, CH | 5.64, d (3.9) | 79.8, CH | 5.63, d (1.7) |
8a | 114.7, C | 114.6, C | ||
9 | 178.3, C | 178.2, C | ||
9a | 109.0, C | 109.0, C | ||
10a | 167.7, C | 167.4, C | ||
1′ | 22.5, CH3 | 2.41, s | 22.5, CH3 | 2.42, s |
2′ | 169.5, C | 170.1, C | ||
3′ | 52.4, CH3 | 3.73, s | 52.5, CH3 | 3.78, s |
4′ | 53.0, CH3 | 3.81, s | 53.1, CH3 | 3.83, s |
1-OH | 12.06, s | 12.01, s |
No. | 12 a | 13 a | ||
---|---|---|---|---|
δC, Type | δH (J in Hz) | δC, Type | δH (J in Hz) | |
1 | 221.6, C | 221.4, C | ||
2 | 50.6, CH | 2.16, m | 50.6, CH | 2.13, m |
3 | 42.1, C | 42.0, C | ||
4a | 36.0, CH2 | 1.45, m | 36.1, CH2 | 1.47, m |
4b | 1.66, m | 1.67, m | ||
5a | 26.0, CH2 | 0.84, m | 26.0, CH2 | 0.83, m |
5b | 1.78, m | 1.79, m | ||
6 | 50.2, CH | 1.29, m | 50.1, CH | 1.28, m |
7 | 51.5, CH | 2.56, br s | 51.5, CH | 2.62, br s |
8 | 22.1, CH3 | 1.08, s | 22.1, CH3 | 1.09, s |
9 | 29.9, CH | 1.41, m | 30.0, CH | 1.43, m |
10 | 20.4, CH3 | 0.77, d (6.6) | 20.4, CH3 | 0.78, d (6.7) |
11 | 21.3, CH3 | 0.89, d (6.4) | 21.3, CH3 | 0.92, d (6.5) |
12 | 6.5, CH3 | 0.95, d (7.2) | 6.5, CH3 | 0.96, d (7.2) |
13 | 51.6, CH | 1.90, m | 51.6, CH | 1.94, m |
14a | 65.3, CH2 | 4.05, dd (11.3, 5.1) | 65.5, CH2 | 4.04, dd (11.3, 5.2) |
14b | 4.35, dd (11.3, 5.1) | 4.37, dd (11.3, 5.2) | ||
1′ | 161.1, C | 161.1, C | ||
2′ | 113.6, CH | 6.67, s | 113.7, CH | 6.68, s |
3′ | 147.6, C | 147.8, C | ||
4′ | 108.1, CH | 6.75, s | 108.1, CH | 6.75, s |
4a′ | 157.3, C | 157.4, C | ||
5′ | 78.2, CH | 5.67, ddd (6.4, 4.3, 3.9) | 78.5, CH | 5.59, ddd (8.2, 3.9, 1.8) |
6′a | 37.7, CH2 | 2.99, dd (16.1, 4.3) | 39.2, CH2 | 3.07, dd (16.3, 8.2) |
6′b | 2.84, dd (16.1, 6.4) | 2.99, dd (16.3, 3.9) | ||
7′ | 169.5, C | 170.0, C | ||
8′ | 79.5, CH | 5.59, d (3.9) | 79.9, CH | 5.58, d (1.8) |
8a′ | 114.5, C | 114.5, C | ||
9′ | 178.2, C | 178.2, C | ||
9a′ | 109.0, C | 109.0, C | ||
10a′ | 167.7, C | 167.3, C | ||
1″ | 22.5, CH3 | 2.40, s | 22.5, CH3 | 2.41, s |
2″ | 169.4, C | 169.7, C | ||
3″ | 52.4, CH3 | 3.72, s | 52.5, CH3 | 3.72, s |
1′-OH | 12.06, s | 12.06, s |
Compd | Psa | P. infestans | A. solani | R. solani | F. oxysporum |
---|---|---|---|---|---|
3 | 256 | NA | 128 | 256 | NA |
4 | NA c | 128 | NA | NA | NA |
7 | 128 | NA | 64 | 128 | 256 |
8 | 256 | NA | 256 | NA | NA |
9 | NA | 128 | NA | NA | NA |
10 | 64 | 128 | NA | NA | NA |
11 | 128 | 64 | NA | NA | NA |
12 | 256 | 64 | NA | 64 | NA |
13 | 128 | 32 | NA | NA | NA |
14 | NA | NA | 8 | NA | 128 |
15 | 16 | NA | 16 | NA | NA |
16 | 128 | 128 | 128 | 256 | NA |
Streptomycin b | 8 | − | − | − | − |
Hygromycin B b | − | 8 | 4 | 16 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.-J.; Jin, Y.-X.; Huang, S.-S.; He, J. Sesquiterpenoids and Xanthones from the Kiwifruit-Associated Fungus Bipolaris sp. and Their Anti-Pathogenic Microorganism Activity. J. Fungi 2022, 8, 9. https://doi.org/10.3390/jof8010009
Yu J-J, Jin Y-X, Huang S-S, He J. Sesquiterpenoids and Xanthones from the Kiwifruit-Associated Fungus Bipolaris sp. and Their Anti-Pathogenic Microorganism Activity. Journal of Fungi. 2022; 8(1):9. https://doi.org/10.3390/jof8010009
Chicago/Turabian StyleYu, Jun-Jie, Ying-Xue Jin, Shan-Shan Huang, and Juan He. 2022. "Sesquiterpenoids and Xanthones from the Kiwifruit-Associated Fungus Bipolaris sp. and Their Anti-Pathogenic Microorganism Activity" Journal of Fungi 8, no. 1: 9. https://doi.org/10.3390/jof8010009
APA StyleYu, J. -J., Jin, Y. -X., Huang, S. -S., & He, J. (2022). Sesquiterpenoids and Xanthones from the Kiwifruit-Associated Fungus Bipolaris sp. and Their Anti-Pathogenic Microorganism Activity. Journal of Fungi, 8(1), 9. https://doi.org/10.3390/jof8010009