Screening of Pandemic Response Box Library Reveals the High Activity of Olorofim against Pathogenic Sporothrix Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolates and Culture Conditions
2.2. Cells Line and Culture Conditions
2.3. Compounds
2.4. Screening the Pandemic Response Box
2.5. Determination of Minimum Inhibitory Concentration
2.6. Killing Assay
2.7. Effect of Olorofim on Mature Biofilms
2.8. Fluorimetry Assays
2.9. Zeta Potential (ζ) and Conductance
2.10. Scanning Electron Microscopy
2.11. Transmission Electron Microscopy
2.12. Cytotoxicity Assays
2.13. Interaction between Keratinocytes and Treated Yeasts
2.14. Statistical Analyses
3. Results
3.1. The Most Promising Molecules from the Pandemic Response Box Library Were Known Antifungals
3.2. Olorofim Killed Yeasts and Exhibited Antibiofilm Activity at Concentrations Lower than Itraconazole
3.3. Olorofim Was Highly Selective towards Sporothrix Cells
3.4. Olorofim Led to DNA Accumulation and Superficial Changes in S. brasiliensis Yeasts
3.5. The Ability of S. brasiliensis Yeasts to Adhere Keratinocytes Decreased after Olorofim Exposure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef]
- Rauseo, A.M.; Coler-Reilly, A.; Larson, L.; Spec, A. Hope on the Horizon: Novel Fungal Treatments in Development. Open Forum Infect. Dis. 2020, 7, ofaa016. [Google Scholar] [CrossRef]
- Liu, N.; Wang, C.; Su, H.; Zhang, W.; Sheng, C. Strategies in the discovery of novel antifungal scaffolds. Future Med. Chem. 2016, 8, 1435–1454. [Google Scholar] [CrossRef]
- The Pandemic Response Box. Available online: https://www.mmv.org/mmv-open/pandemic-response-box (accessed on 4 August 2022).
- Goughenour, K.D.; Rappleye, C.A. Antifungal therapeutics for dimorphic fungal pathogens. Virulence 2017, 8, 211–221. [Google Scholar] [CrossRef]
- de Carvalho, J.A.; Beale, M.A.; Hagen, F.; Fisher, M.C.; Kano, R.; Bonifaz, A.; Toriello, C.; Negroni, R.; Rego, R.S.M.; Gremião, I.D.F.; et al. Trends in the molecular epidemiology and population genetics of emerging Sporothrix species. Stud. Mycol. 2021, 100, 100129. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Gonçalves, S.S.; de Carvalho, J.A.; Borba-Santos, L.P.; Rozental, S.; Camargo, Z.P. Current Progress on Epidemiology, Diagnosis, and Treatment of Sporotrichosis and Their Future Trends. J. Fungi 2022, 8, 776. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Hagen, F.; de Camargo, Z.P. A Spotlight on Sporothrix and Sporotrichosis. Mycopathologia 2022, 187, 407–411. [Google Scholar] [CrossRef]
- Orofino-Costa, R.; Macedo, P.M.; Rodrigues, A.M.; Bernardes-Engemann, A.R. Sporotrichosis: An update on epidemiology, etiopathogenesis, laboratory and clinical therapeutics. An. Bras. Dermatol. 2017, 92, 606–620. [Google Scholar] [CrossRef]
- Pandemic Response Box Supporting Information. Available online: https://www.mmv.org/mmv-open/pandemic-response-box/pandemic-response-box-supporting-information (accessed on 4 August 2022).
- EUCAST-AFST. Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts—Document E.DEF 7.3.2; European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2020; pp. 1–21. [Google Scholar]
- Araujo, G.S.; Fonseca, F.L.; Pontes, B.; Torres, A.; Cordero, R.J.; Zancopé-Oliveira, R.M.; Casadevall, A.; Viana, N.B.; Nimrichter, L.; Rodrigues, M.L.; et al. Capsules from pathogenic and non-pathogenic Cryptococcus spp. manifest significant differences in structure and ability to protect against phagocytic cells. PLoS ONE 2012, 7, e29561. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Mendoza, S.R.; Gonçales, D.S.; Rodiguez-de la Nova, C.; Honorato, L.; Nimrichter, L.; Ramos, L.F.C.; Nogueira, F.C.S.; Domont, G.B.; Peralta, J.M.M.; et al. Recognition of cell wall mannosylated components as a conserved feature for fungal entrance, adaptation and suvival within trophozoites of Acanthamoeba castellanii and muine macrophages. Front. Cell. Infect. Microbiol. 2022, 12, 858979. [Google Scholar] [CrossRef]
- Luliconazole. Available online: https://www.cortellis.com/drugdiscovery/entity/drug/248183 (accessed on 4 August 2022).
- Wiederhold, N.P. Review of the Novel Investigational Antifungal Olorofim. J. Fungi 2020, 6, 122. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ending the Neglect to Attain the Sustainable Development Goals: A Road Map for Neglected Tropical Diseases 2021–2030; World Health Organization: Geneva, Switzerland, 2020; pp. 1–196.
- Alexidine. Available online: https://www.cortellis.com/drugdiscovery/entity/drug/435860 (accessed on 4 August 2022).
- Mamouei, Z.; Alqarihi, A.; Singh, S.; Xu, S.; Mansour, M.K.; Ibrahim, A.S.; Uppuluri, P. Alexidine Dihydrochloride Has Broad-Spectrum Activities against Diverse Fungal Pathogens. mSphere 2018, 3, e00539-18. [Google Scholar] [CrossRef] [PubMed]
- Rubitecan. Available online: https://www.cortellis.com/drugdiscovery/entity/drug/241383 (accessed on 4 August 2022).
- Pantazis, P.; Han, Z.; Balan, K.; Wang, Y.; Wyche, J.H. Camptothecin and 9-nitrocamptothecin (9NC) as anti-cancer, anti-HIV and cell-differentiation agents. Development of resistance, enhancement of 9NC-induced activities and combination treatments in cell and animal models. Anticancer Res. 2003, 23, 3623–3638. [Google Scholar]
- Borba-Santos, L.P.; Vila, T.; Rozental, S. Identification of two potential inhibitors of Sporothrix brasiliensis and Sporothrix schenckii in the Pathogen Box collection. PLoS ONE 2020, 15, e0240658. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.; Nyuykonge, B.; Eadie, K.; Konings, M.; Smeets, J.; Fahal, A.; Bonifaz, A.; Todd, M.; Perry, B.; Samby, K.; et al. Screening the pandemic response box identified benzimidazole carbamates, Olorofim and ravuconazole as promising drug candidates for the treatment of eumycetoma. PLoS Negl. Trop. Dis. 2022, 16, e0010159. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, H.C.; Castelli, R.F.; Reis, F.C.G.; Samby, K.; Nosanchuk, J.D.; Alves, L.R.; Rodrigues, M.L. Screening of the Pandemic Response Box Reveals an Association between Antifungal Effects of MMV1593537 and the Cell Wall of Cryptococcus neoformans, Cryptococcus deuterogattii, and Candida auris. Microbiol. Spectr. 2022, 10, e0060122. [Google Scholar] [CrossRef]
- Aspergillus Infection Study. Available online: https://clinicaltrials.gov/ct2/show/NCT05101187 (accessed on 10 August 2022).
- Olorofim. Available online: https://www.cortellis.com/drugdiscovery/entity/drug/850033 (accessed on 4 August 2022).
- Hoenigl, M.; Sprute, R.; Egger, M.; Arastehfar, A.; Cornely, O.A.; Krause, R.; Lass-Flörl, C.; Prattes, J.; Spec, A.; Thompson, G.R., 3rd; et al. The Antifungal Pipeline: Fosmanogepix, Ibrexafungerp, Olorofim, Opelconazole, and Rezafungin. Drugs 2021, 81, 1703–1729. [Google Scholar] [CrossRef]
- Du Pré, S.; Beckmann, N.; Almeida, M.C.; Sibley, G.E.M.; Law, D.; Brand, A.C.; Birch, M.; Read, N.D.; Oliver, J.D. Effect of the Novel Antifungal Drug F901318 (Olorofim) on Growth and Viability of Aspergillus fumigatus. Antimicrob. Agents Chemother. 2018, 62, e00231-18. [Google Scholar] [CrossRef]
- Kirchhoff, L.; Dittmer, S.; Furnica, D.T.; Buer, J.; Steinmann, E.; Rath, P.M.; Steinmann, J. Inhibition of azole-resistant Aspergillus fumigatus biofilm at various formation stages by antifungal drugs, including olorofim. J. Antimicrob. Chemother. 2022, 77, 1645–1654. [Google Scholar] [CrossRef]
- Chang, Y.F.; Carman, G.M. CTP synthetase and its role in phospholipid synthesis in the yeast Saccharomyces cerevisiae. Prog. Lipid Res. 2008, 47, 333–339. [Google Scholar] [CrossRef]
- du Pré, S.; Birch, M.; Law, D.; Beckmann, N.; Sibley, G.E.M.; Bromley, M.J.; Read, N.D.; Oliver, J.D. The Dynamic Influence of Olorofim (F901318) on the Cell Morphology and Organization of Living Cells of Aspergillus fumigatus. J. Fungi 2020, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Bezerra, L.M.; Walker, L.A.; Niño-Veja, G.; Mora-Montes, H.M.; Neves, G.W.P.; Villalobos-Duno, H.; Barreto, L.; Garcia, K.; Franco, B.; Martínez-Álvarez, J.A.; et al. Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers. PLoS Negl. Trop. Dis. 2018, 12, e0006169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compounds | Minimum Inhibitory Concentration (µm) a | ||
---|---|---|---|
S. brasiliensis | S. globosa | S. schenckii | |
Reference antifungal | |||
Itraconazole | 0.125 | 0.03 | 0.25 |
Antifungals | |||
Commercial drugs | |||
Abafungin | 0.5 | 0.5 | 1 |
Amorolfine | 0.125 | 0.5 | 1 |
Butenafine | 0.25 | 1 | 0.25 |
Ciclopirox | 0.5 | 0.03 | 1 |
Deferasirox | 0.5 | 0.5 | >1 |
Eberconazole | 0.125 | 0.03 | 0.5 |
Isavuconazonium | 0.5 | 0.03 | 0.5 |
Ketoconazole | 0.25 | 0.125 | 0.125 |
Luliconazole | 0.004 | 0.004 | 0.004 |
Miconazole | 0.125 | 0.03 | 0.125 |
Ravuconazole | 1 | 0.03 | 0.125 |
Terbinafine | 0.5 | 0.5 | 0.125 |
New drugs b | |||
Olorofim | 0.06 | 0.03 | 0.06 |
New molecules | |||
MMV1634360 | 1 | >1 | 0.25 |
MMV1634491 | 1 | 0.03 | >1 |
Antibacterials | |||
Commercial drugs | |||
Alexidine | 1 | 0.5 | 0.25 |
New molecules | |||
MMV1579784 | 0.5 | >1 | >1 |
MMV1579786 | 0.25 | 0.03 | >1 |
MMV1579788 | 0.5 | >1 | >1 |
MMV1782140 | 0.25 | >1 | 1 |
Antivirals | |||
New drugs b | |||
Rubitecan | 0.25 | >1 | 1 |
New molecules | |||
MMV019724 | 0.25 | >1 | 1 |
MMV642550 | 0.25 | >1 | >1 |
Compounds | Sporothrix spp. | HaCaT | RAW 264.7 | Selectivity Index |
---|---|---|---|---|
MICmedian (µm) | CC50 (µm) | CC50 (µm) | ||
Olorofim | 0.06 | >100 | >100 | >1666.7 |
Itraconazole | 0.125 | >100 | >100 | >800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borba-Santos, L.P.; Rollin-Pinheiro, R.; da Silva Fontes, Y.; dos Santos, G.M.P.; de Sousa Araújo, G.R.; Rodrigues, A.M.; Guimarães, A.J.; de Souza, W.; Frases, S.; Ferreira-Pereira, A.; et al. Screening of Pandemic Response Box Library Reveals the High Activity of Olorofim against Pathogenic Sporothrix Species. J. Fungi 2022, 8, 1004. https://doi.org/10.3390/jof8101004
Borba-Santos LP, Rollin-Pinheiro R, da Silva Fontes Y, dos Santos GMP, de Sousa Araújo GR, Rodrigues AM, Guimarães AJ, de Souza W, Frases S, Ferreira-Pereira A, et al. Screening of Pandemic Response Box Library Reveals the High Activity of Olorofim against Pathogenic Sporothrix Species. Journal of Fungi. 2022; 8(10):1004. https://doi.org/10.3390/jof8101004
Chicago/Turabian StyleBorba-Santos, Luana Pereira, Rodrigo Rollin-Pinheiro, Yasmin da Silva Fontes, Giulia Maria Pires dos Santos, Glauber Ribeiro de Sousa Araújo, Anderson Messias Rodrigues, Allan J. Guimarães, Wanderley de Souza, Susana Frases, Antonio Ferreira-Pereira, and et al. 2022. "Screening of Pandemic Response Box Library Reveals the High Activity of Olorofim against Pathogenic Sporothrix Species" Journal of Fungi 8, no. 10: 1004. https://doi.org/10.3390/jof8101004
APA StyleBorba-Santos, L. P., Rollin-Pinheiro, R., da Silva Fontes, Y., dos Santos, G. M. P., de Sousa Araújo, G. R., Rodrigues, A. M., Guimarães, A. J., de Souza, W., Frases, S., Ferreira-Pereira, A., Barreto-Bergter, E., & Rozental, S. (2022). Screening of Pandemic Response Box Library Reveals the High Activity of Olorofim against Pathogenic Sporothrix Species. Journal of Fungi, 8(10), 1004. https://doi.org/10.3390/jof8101004