Fungal Contamination in Microalgal Cultivation: Biological and Biotechnological Aspects of Fungi-Microalgae Interaction
Abstract
:1. Introduction
2. Overview on Biological Contaminants in Microalgal Cultivation Systems
3. Fungi in Aquatic Environment
4. How Fungi Interact with Other Organisms in Aquatic Habitats
5. Fungi in Microalgae Cultures
6. Co-Culture of Fungi-Microalgae: The Biotechnological Use
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Muller-Feuga, A. The role of microalgae in aquaculture: Situation and trends. J. Appl. Phycol. 2000, 12, 527–534. [Google Scholar] [CrossRef]
- Salbitani, G.; Cipolletta, S.; Vona, V.; Di Martino, C.; Carfagna, S. Heterotrophic Cultures of Galdieria phlegrea Shift to Autotrophy in the Presence or Absence of Glycerol. J. Plant Growth Regul. 2021, 40, 371–378. [Google Scholar] [CrossRef]
- Vona, V.; Di Martino Rigano, V.; Andreoli, C.; Lobosco, O.; Caiazzo, M.; Martello, A.; Carfagna, S.; Salbitani, G.; Rigano, C. Comparative analysis of photosynthetic and respiratory parameters in the psychrophilic unicellular green alga Koliella antarctica, cultured in indoor and outdoor photo-bioreactors. Physiol. Mol. Biol. Plants 2018, 24, 1139–1146. [Google Scholar] [CrossRef]
- Carfagna, S.; Bottone, C.; Cataletto, P.R.; Petriccione, M.; Pinto, G.; Salbitani, G.; Vona, V.; Pollio, A.; Ciniglia, C. Impact of Sulfur Starvation in Autotrophic and Heterotrophic Cultures of the Extremophilic Microalga Galdieria phlegrea (Cyanidiophyceae). Plant. Cell. Physiol. 2016, 57, 1890–1898. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Shin, H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef]
- Wang, Z.; Wen, X.; Xu, Y.; Ding, Y.; Geng, Y.; Li, Y. Maximizing CO2 biofixation and lipid productivity of oleaginous microalga Graesiella sp. WBG-1 via CO2-regulated pH in indoor and outdoor open reactors. Sci. Total. Environ. 2018, 619–620, 827–833. [Google Scholar] [CrossRef]
- Ronga, D.; Biazzi, E.; Parati, K.; Carminati, D.; Carminati, E.; Tava, A. Microalgal biostimulants and biofertilisers in crop productions. Agron. J. 2019, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Salbitani, G.; Carfagna, S. Ammonium Utilization in Microalgae: A Sustainable Method for Wastewater Treatment. Sustainability 2021, 13, 956. [Google Scholar] [CrossRef]
- Siciliano, A.; Guida, M.; Serafini, S.; Micillo, M.; Galdiero, E.; Carfagna, S.; Salbitani, G.; Tommasi, F.; Lofrano, G.; Suarez, E.G.P.; et al. Long-term multi-endp1oint exposure of the microalga Raphidocelis subcapitata to lanthanum and cerium. Sci. Total. Environ. 2021, 790, 148229. [Google Scholar] [CrossRef]
- Raja, R.; Anbazhagan, C.; Ganesan, V.; Rengasamy, R. Efficacy of Dunaliella salina (Volvocales, Chlorophyta) in salt effluent treatment. Asian J. Chem. 2004, 16, 1081–1088. [Google Scholar]
- Mutale-joan, C.; Redouane, B.; Najib, E.; Yassine, K.; Lyamloul, K.; Laila, S.; Zeroual, Y.; Hicham, E.A. Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Sci. Rep. 2020, 10, 2820. [Google Scholar] [CrossRef]
- Caradonia, F.; Ronga, D.; Tava, A.; Francia, E. Plant Biostimulants in Sustainable Potato Production: An Overview. Potato Res. 2022, 65, 83–104. [Google Scholar] [CrossRef]
- Ferreira, A.; Melkonyan, L.; Carapinha, S.; Ribeiro, B.; Figueiredo, D.; Avetisova, G.; Gouveia, L. Biostimulant and biopesticide potential of microalgae growing in piggery wastewater. Environ. Advanc. 2021, 4, 100062. [Google Scholar] [CrossRef]
- Gonçalves, A.L. The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Appl. Sci. 2021, 11, 871. [Google Scholar] [CrossRef]
- González-Pérez, B.K.; Rivas-Castillo, A.M.; Valdez-Calderón, A.; Gayosso-Morales, A. Microalgae as biostimulants: A new approach in agriculture. World J. Microbiol. Biotechnol. 2022, 38, 4. [Google Scholar] [CrossRef]
- Salbitani, G.; Carillo, P.; Di Martino, C.; Bolinesi, F.; Mangoni, O.; Loreto, F.; Carfagna, S. Microalgae cross-fertilization: Short-term effects of Galdieria phleg extract on growth, photosynthesis and enzyme activity of Chlorella sorokiniana cells. J. Appl. Phycol. 2022, 34, 1957–1966. [Google Scholar] [CrossRef]
- Carfagna, S.; Landi, V.; Coraggio, F.; Salbitani, G.; Vona, V.; Pinto, G.; Pollio, A.; Ciniglia, C. Different characteristics of C-phycocyanin (C-PC) in two strains of the extremophilic Galdieria phlegrea. Algal Res. 2018, 31, 406–412. [Google Scholar] [CrossRef]
- Du Preez, R.; Majzoub, M.E.; Thomas, T.; Panchal, S.K.; Brown, L. Nannochloropsis oceanica as microalgal food intervention in diet-induced metabolic syndrome in rats. Nutrients 2021, 13, 3991. [Google Scholar] [CrossRef]
- Stiefvatter, L.; Lehnert, K.; Frick, K.; Montoya-Arroyo, A.; Frank, J.; Vetter, W.; Schmid-Staiger, U.; Bischoff, S.C. Oral bioavailability of omega-3 fatty acids and carotenoids from microalgae Phaeodactylum tricornutum in healthy young adults. Mar. Drugs 2021, 19, 700. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Liu, D.; Yin, Z.; Hu, D.; Yu, Y.; Li, Z.; Zhu, L. Response of fungi-microalgae pellets to copper regulation in the removal of sulfonamides and release of dissolved organic matters. J. Hazar. Mater. 2022, 434, 128932. [Google Scholar] [CrossRef]
- Mellor, C.; Embling, R.; Neilson, L.; Randall, T.; Wakeham, C.; Lee, M.C.; Wilkinson, L.L. Consumer knowledge and acceptance of “algae” as a protein alternative: A UK-based qualitative study. Foods 2022, 11, 1703. [Google Scholar] [CrossRef]
- Mendes, M.C.; Navalho, S.; Ferreira, A.; Paulino, C.; Figueiredo, D.; Silva, D.; Gao, F.; Gama, F.; Bombo, G.; Jacinto, R.; et al. Algae as food in Europe: An overview of species diversity and their application. Foods 2022, 11, 1871. [Google Scholar] [CrossRef]
- Molfetta, M.; Morais, E.G.; Barreira, L.; Bruno, G.L.; Porcelli, F.; Dugat-Bony, E.; Bonnarme, P.; Minervini, F. Protein sources alternative to meat: State of art and involvement of fermentation. Foods 2022, 11, 2065. [Google Scholar] [CrossRef]
- Santiago-Díaz, P.; Rico, M.; Rivero, A.; Santana-Casiano, M. Bioactive metabolites of microalgae from Canary Islands for functional food and feed uses. Chem. Biodivers. 2022, 19, e202200230. [Google Scholar] [CrossRef]
- Bottone, C.; Camerlingo, R.; Miceli, R.; Salbitani, G.; Sessa, G.; Pirozzi, G.; Carfagna, S. Antioxidant and anti-proliferative properties of extracts from heterotrophic cultures of Galdieria sulphuraria. Nat. Prod. Res. 2019, 33, 1659–1663. [Google Scholar] [CrossRef]
- Napolitano, G.; Fasciolo, G.; Salbitani, G.; Venditti, P. Chlorella sorokiniana Dietary Supplementation Increases Antioxidant Capacities and Reduces ROS Release in Mitochondria of Hyperthyroid Rat Liver. Antioxidants 2020, 9, 883. [Google Scholar] [CrossRef]
- Liu, C.; Hu, B.; Cheng, Y.; Guo, Y.; Yao, W.; Qian, H. Carotenoids from fungi and microalgae: A review on their recent production, extraction, and developments. Bioresour. Technol. 2021, 337, 125398. [Google Scholar] [CrossRef]
- Srivastava, A.; Kalwani, M.; Chakdar, H.; Pabbi, S.; Shukla, P. Biosynthesis and biotechnological interventions for commercial production of microalgal pigments: A review. Bioresour. Technol. 2022, 352, 127071. [Google Scholar] [CrossRef]
- Day, J.G.; Slocombe, S.P.; Stanley, M.S. Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour. Technol. 2012, 109, 245–251. [Google Scholar] [CrossRef]
- Hue, N.T.K.; Deruyck, B.; Decaestecker, E.; Vandamme, D.; Muylaert, K. Natural chemicals produced by marine microalgae as predator deterrents can be used to control ciliates contamination in microalgal cultures. Algal Res. 2018, 29, 297–303. [Google Scholar]
- Deruyck, B.; Nguyen, K.H.T.; Decaestecker, E.; Muylaert, K. Modeling the impact of rotifer contamination on microalgal production in open pond, photobioreactor and thin layer cultivation system. Algal Res. 2019, 38, 101398. [Google Scholar] [CrossRef]
- Pulgarin, A.; Giannakis, S.; Pulgarin, C.; Ludwig, C.; Refardt, D. A novel proposition for a citrate-modified photo-Fenton process against bacterial contamination of microalgae culture. Appl. Catal. B Environ. 2020, 265, 118615. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, J.; Fa, Y. Overcoming the biological contamination in microalgae and cyanobacteria mass cultivations for photosynthetic biofuel production. Molecules 2020, 25, 5220. [Google Scholar] [CrossRef]
- Grivalský, T.; Střížek, A.; Přibyl, P.; Lukavský, J.; Čegan, R.; Hobza, R.; Hrouzek, P. Comparison of various approaches to detect algal culture contamination: A case study of Chlorella sp. Contamination in a Phaeodactylum tricornutum culture. Appl. Microbiol. Biotechnol. 2021, 105, 5189–5200. [Google Scholar] [CrossRef]
- Di Caprio, F.; Proietti Tocca, G.; Stoller, M.; Pagnanelli, F.; Altimaria, P. Control of bacterial contamination in microalgae cultures integrated with wastewater treatment by applying feast and famine conditions. J. Environ. Chem. Eng. 2022, 10, 108262. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Chen, L.; Wang, J.; Liu, T. The contamination and control of biological pollutants in mass cultivation of microalgae. Biores. Technol. 2013, 128, 745–750. [Google Scholar] [CrossRef]
- Alam, M.A.; Vandamme, D.; Chun, W.; Zhao, X.; Foubert, I.; Wang, Z.; Muylaert, K.; Yuan, Z. Bioflocculation as an innovative harvesting strategy for microalgae. Rev. Environ. Sci. Biotechnol. 2016, 15, 573–583. [Google Scholar] [CrossRef]
- Katam, K.; Bhattacharyya, D. Simultaneous treatment of domestic wastewater and bio-lipid synthesis using immobilized and suspended cultures of microalgae and activated sludge. J. Ind. Eng. Chem. 2019, 69, 295–303. [Google Scholar] [CrossRef]
- Mansour, E.A.; El-Enin, S.A.A.; Hamouda, A.S.; Mahmoud, H.M. Efficacy of extraction techniques and solvent polarity on lipid recovery from domestic wastewater microalgae. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100271. [Google Scholar] [CrossRef]
- Zhu, L.; Shuangxi, L.; Hu, T.; Nugroho, Y.K.; Yin, Z.; Hu, D.; Chu, R.; Mo, F.; Liu, C.; Hiltunen, E. Effects of nitrogen source heterogeneity on nutrient removal and biodiesel production of mono- and mix-cultured microalgae. Energy Convers. Manag. 2019, 201, 112144. [Google Scholar] [CrossRef]
- Yu, H.; Kim, J.; Lee, C. Potential of mixed-culture microalgae enriched from aerobic and anaerobic sludges for nutrient removal and biomass production from anaerobic effluents. Bioresour. Technol. 2019, 280, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Vassalle, L.; Sunyer-Caldù, A.; Uggetti, E.; Dìez-Montero, R.; Dìaz-Cruz, M.S.; Garcìa, J.; García-Galán, M.J. Bioremediation of emerging micropollutants in irrigation water. The alternative of microalgae-based treatments. J. Environ. Manag. 2020, 274, 111081. [Google Scholar] [CrossRef] [PubMed]
- Toyama, T.; Hanaoka, T.; Yamada, K.; Suzuki, K.; Tanaka, Y.; Morikawa, M.; Mori, K. Enhanced production of biomass and lipids by Euglena gracilis via co-culturing with microalga growth-promoting bacterium, Emticicia sp. EG3. Biotechnol. Biofuels. 2019, 12, 205. [Google Scholar] [CrossRef]
- Kumsiri, B.; Pekkoh, J.; Pathom-aree, W.; Lumyong, S.; Phinyo, K.; Pumas, C.; Srinuanpan, S. Enhanced production of microalgal biomass and lipid as an environmentally friendly biodiesel feedstock through actinomycete co-culture in biogas digestate. Bioresour. Technol. 2021, 337, 125446. [Google Scholar] [CrossRef]
- Leng, L.; Li, L.; Chen, J.; Leng, S.; Chen, J.; Wei, L.; Peng, H.; Li, J.; Zhou, W.; Huang, H. Co-culture of fungi-microalgae consortium for wastewater treatment: A review. Bioresour. Technol. 2021, 330, 125008. [Google Scholar] [CrossRef]
- Li, W.; Zhang, T.; Tang, X.; Wang, B. Oomycetes and fungi: Important parasites on marine algae. Acta Oceanol. Sin. 2010, 29, 74–81. [Google Scholar] [CrossRef]
- Lam, T.P.; Lee, T.M.; Chen, C.Y.; Chang, J.S. Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresour. Technol. 2018, 252, 180–187. [Google Scholar] [CrossRef]
- Wang, M.; Kuo-Dahab, W.C.; Dolan, S.; Park, C. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. Bioresour. Technol. 2014, 154, 131–137. [Google Scholar] [CrossRef]
- Egede, E.J.; Jones, H.; Cook, B.; Purchase, D.; Mouradov, A. Application of microalgae and fungal-microalgal associations for wastewater treatment. Fungal Appl. Sustain. Environ. Biotechnol. 2016, 143–181. [Google Scholar]
- Kumsiri, B.; Pekkoh, J.; Pathom-aree, W.; Lumyong, S.; Pumas, C. Synergistic effect of co-culture of microalga and actinomycete in diluted chicken manure digestate for lipid production. Algal Res. 2018, 33, 239–247. [Google Scholar] [CrossRef]
- Yang, L.; Li, H.; Wang, Q. A novel one-step method for oil-rich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater. Bioresour. Technol. 2019, 275, 35–43. [Google Scholar] [CrossRef]
- Wang, J.; Chen, R.; Fan, L.; Cui, L.; Zhang, Y.; Cheng, J.; Wu, X.; Zeng, W.; Tian, Q.; Shen, L. Construction of fungi-microalgae symbiotic system and adsorption study of heavy metal ions. Sep. Pur. Technol. 2021, 268, 118689. [Google Scholar] [CrossRef]
- Padri, M.; Boontian, N.; Teaumroong, N.; Piromyou, P.; Piasai, C. Co-culture of microalga Chlorella sorokiniana with syntrophic Streptomyces thermocarboxydus in cassava wastewater for wastewater treatment and biodiesel production. Bioresour. Technol. 2022, 347, 126732. [Google Scholar] [CrossRef]
- Xu, M.; Xue, Z.; Liu, J.; Sun, S.; Zhao, Y.; Zhang, H. Observation of few GR24 induced fungal-microalgal pellets performance for higher pollutants removal and biogas quality improvement. Energy 2022, 244, 123171. [Google Scholar] [CrossRef]
- Tate, J.J.; Gutierrez-Wing, M.T.; Rusch, K.A.; Benton, M.G. The effects of plant growth substances and mixed cultures on growth and metabolite production of green algae Chlorella sp.: A review. J. Plant Growth Regul. 2013, 32, 417–428. [Google Scholar] [CrossRef]
- Wrede, D.; Taha, M.; Miranda, A.F.; Kadali, K.; Stevenson, T.; Ball, A.S.; Mouradov, A. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLoS ONE 2014, 9, 113497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ummalyma, S.B.; Gnansounou, E.; Sukumaran, R.K.; Sindhu, R.; Pandey, A.; Sahoo, D. Bioflocculation: An alternative strategy for harvesting of microalgae—An overview. Bioresour. Technol. 2017, 242, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Matter, A.I.; Bui, V.J.H.; Jung, M.; Seo, J.Y.; Kim, Y.E.; Lee, Y.C.; Oh, Y.K. Flocculation harvesting techniques for microalgae: A review. Appl. Sci. 2019, 9, 3069. [Google Scholar] [CrossRef] [Green Version]
- Nazari, M.T.; Freitag, J.F.; Cavanhi, V.A.F.; Colla, L.M. Microalgae harvesting by fungal-assisted bioflocculation. Rev. Environ. Sci. Biotechnol. 2020, 19, 369–388. [Google Scholar] [CrossRef]
- Dzurendova, S.; Losada, C.B.; Dupuy-Galet, B.X.; Fjær, K.; Shapaval, V. Mucoromycota fungi as powerful cell factories for modern biorefinery. Appl. Microbiol. Biotechnol. 2021, 106, 101–115. [Google Scholar] [CrossRef]
- Pei, X.; Ren, H.; Liu, B. Flocculation performance and mechanism of fungal pellets on harvesting of microalgal biomass. Bioresour. Technol. 2021, 321, 124463. [Google Scholar] [CrossRef]
- Yu, B.S.; Lee, S.Y.; Sim, S.J. Effective contamination control strategies facilitating axenic cultivation of Haematococcus pluvialis: Risks and challenges. Bioresour. Technol. 2022, 344, 126289. [Google Scholar] [CrossRef] [PubMed]
- Zuccaro, G.; Yousuf, A.; Pollio, A.; Steyer, J.P. Microalgae Cultivation for Biofuels Production; Academic Press: Cambridge, MA, USA, 2019; pp. 11–29. [Google Scholar]
- Pleissner, D.; Lindner, A.; Ambati, R.R. Techniques to Control Microbial Contaminants in Nonsterile Microalgae Cultivation. Appl. Biochem. Biotechnol. 2020, 192, 1376–1385. [Google Scholar] [CrossRef]
- Yao, S.; Lyu, S.A.Y.; Lu, J.; Gjermansen, C.; Schramm, A. Microalgae-bacteria symbiosis in microalgal growth and biofuel production: A review. J. Appl. Microbiol. 2019, 126, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Amin, S.A.; Parker, M.S.; Armbrust, E.V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 2012, 76, 667–684. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Ho, S.-H.; Li, A.; Fu, L.; Zhou, D. Co-culture of Chlorella and Scenedesmus could enhance total lipid production under bacteria quorum sensing molecule stress. J. Water Proc. Eng. 2021, 39, 101739. [Google Scholar] [CrossRef]
- Molina-Grima, E.; García-Camacho, F.; Acién-Fernández, F.G.; Sánchez-Mirón, A.; Plouviez, M.; Shene, C.; Chisti, Y. Pathogens and predators impacting commercial production of microalgae and cyanobacteria. Biotechnol. Adv. 2022, 55, 107884. [Google Scholar] [CrossRef]
- Xue, L.; Shang, H.; Ma, P.; Wang, X.; He, X.; Niu, J.; Wu, J. Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria. J. Basic Microbio. 2018, 58, 358–367. [Google Scholar] [CrossRef]
- Scognamiglio, V.; Giardi, M.T.; Zappi, D.; Touloupakis, E.; Antonacci, A. Photoautotrophs-Bacteria Co-Cultures: Advances, Challenges and Applications. Materials 2021, 14, 3027. [Google Scholar] [CrossRef] [PubMed]
- Fukami, K.; Yuzawa, A.; Nishijima, T.; Hata, Y. Isolation and Properties of a Bacterium Inhibiting the Growth of Gymnodinium nagasakiense. Nippon. Suisan Gakkaishi 1992, 58, 1073–1077. [Google Scholar] [CrossRef] [Green Version]
- Imai, I.; Ishida, Y.; Sakaguchi, K.; Hata, Y. Algicidal marine bacteria isolated from northern Hiroshima Bay. Jpn. Fish Sci. 1995, 61, 628–636. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.D.; Kim, B.; Lee, C. Alga-lytic activity of Pseudomonas fluorescens against the red tide causing marine alga Heterosigma akashiwo (Raphidophyceae). Biol. Control 2007, 41, 296–303. [Google Scholar] [CrossRef]
- Sakai, H.; Oguma, K.; Katayama, H.; Ohgaki, S. Effects of low- or medium- pressure ultraviolet lamp irradiation on Microcystis aeruginosa and Anabaena variablili. Water Res. 2007, 41, 11–18. [Google Scholar] [CrossRef]
- Mooij, P.R.; Stouten, G.R.; Van Loosdrecht, M.C.; Kleerebezem, R. Ecology-based selective environments as solution to contamination in microalgal cultivation. Curr. Opin. Biotechnol. 2015, 33, 46–51. [Google Scholar] [CrossRef]
- Carney, L.T.; Lane, T.W. Parasites in algae mass culture. Front. Microbiol. 2014, 5, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longcore, J.E. Morphology and zoospore ultrastructure of Entophlyctis luteolus sp. nov. (Chytridiales): Implications for chytrid taxonomy. Mycologia 1995, 87, 25–33. [Google Scholar] [CrossRef]
- Bueno, D.J.; Silva, J.O. Fungi: The Fungal Hypha. In Encyclopedia of Food Microbiology; Batt, C.A., Tortorello, M.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 11–19. [Google Scholar]
- Gow, N.A.R.; Latge, J.P.; Munro, C.A. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol. Spectr. 2017, 5, 28513415. [Google Scholar] [CrossRef] [Green Version]
- Gessner, M.O.; Gulis, V.; Kuehn, K.A.; Chauvet, E.; Suberkropp, K. Fungal Decomposers of Plant Litter in Aquatic Ecosystems. Mycota 2007, 301–324. [Google Scholar]
- Graça, M.A.S. The Role of Invertebrates on Leaf Litter Decomposition in Streams—A Review. Int. Rev. Hydrobiol. 2001, 86, 383–393. [Google Scholar] [CrossRef]
- Barros, J.; Seena, S. Fungi in Freshwaters: Prioritising Aquatic Hyphomycetes in Conservation Goals. Water 2022, 14, 605. [Google Scholar] [CrossRef]
- Li, X.; Xia, Z.; Tang, J.; Wu, J.; Tong, J.; Li, M.; Ju, J.; Chen, H.; Wang, L. Identification and biological evaluation of secondary metabolites from marine derived fungi-Aspergillus sp. SCSIOW3, cultivated in the presence of epigenetic modifying agents. Molecules 2017, 22, 1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, O.; Briand, E.; Bagot, A.; Chaigne, M.; Meslet-Cladière, L.; Wang, J.; Grovel, O.; Jansen, J.J.; Ruiz, N.; Robiou du Pont, T.; et al. Deciphering microbiome impacts on fungal-microalgal interaction in a marine environment using metabolomics. bioRxiv 2021. [Google Scholar]
- Becker, J.G.; Shaw, C.G. Fungi in domestic sewage-treatment plants. Appl. Microbiol. 1955, 3, 173–180. [Google Scholar] [CrossRef]
- Letcher, P.M.; Longcore, J.E.; Quandt, C.A.; Da Silvia Leite, D.; James, T.Y.; Powell, M.J. Morphological, molecular, and ultrastructural characterization of Rozella rhizoclosmatii, a new species in Cryptomycota. Fungal Biol. 2017, 121, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossart, H.P.; Van den Wyngaert, S.; Kagami, M.; Wurzbacher, C.; Cunliffe, M.; Rojas-Jimenez, K. Fungi in aquatic ecosystems. Nat. Rev. Microbiol. 2019, 17, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Fischer, R. Light sensing and responses in fungi. Nat. Rev. Genet. 2019, 17, 25–36. [Google Scholar] [CrossRef]
- Fuller, K.K.; Loros, J.J.; Dunlap, J.C. Fungal photobiology: Visible light as a signal for stress, space and time. Curr. Genet. 2015, 61, 275–288. [Google Scholar] [CrossRef] [Green Version]
- De Lucca, A.J.; Carter-Wientjes, C.; Williams, K.A.; Bhatnagar, D. Blue light (470 nm) effectively inhibits bacterial and fungal growth. Lett. Appl. Microbiol. 2012, 55, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Fanelli, F.; Geisen, R.; Schmidt-Heydt, M.; Logrieco, A.; Mule, G. Light regulation of mycotoxin biosynthesis: New perspectives for food safety. World Mycotoxin J. 2016, 9, 129–146. [Google Scholar] [CrossRef]
- Ali, S.R.M.; Fradi, A.J.; Al-Aaraji, A.M. Effect of some physical factors on growth of five fungal species. Eur. Acad. Res. 2017, 5, 1069–1078. [Google Scholar]
- Pardo, E.; Marín, S.; Ramos, A.J.; Sanchis, V. Ecophysiology of ochratoxigenic Aspergillus ochraceus and Penicillium verrucosum isolates. Predictive models for fungal spoilage prevention—A review. Food Addit. Contam. 2006, 23, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Vylkova, S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog. 2017, 13, 1006149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, F.; Barad, S.; Ment, D.; Luria, N.; Dubey, A.; Casado, V.; Glam, N.; Minguez, J.D.; Espeso, E.A.; Fluhr, R.; et al. Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi. Mol. Plant Pathol. 2016, 17, 1178–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krauss, G.J.; Solé, M.; Krauss, G.; Schlosser, D.; Wesenberg, D.; Bärlocher, F. Fungi in freshwaters: Ecology, physiology and biochemical potential. FEMS Microbiol. Rev. 2011, 35, 620–651. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.; Fernandes, I.; Nogueira, M.J.; Cássio, F.; Pascoal, C. Temperature alters interspecific relationships among aquatic fungi. Fungal Ecol. 2013, 6, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Miki, T.; Takimoto, G.; Kagami, M. Roles of parasitic fungi in aquatic food webs: A theoretical approach. Freshwater Biol. 2011, 56, 1173–1183. [Google Scholar] [CrossRef]
- Jobard, M.; Rasconi, S.; Sime-Ngando, T. Diversity and functions of microsporic fungi: A missing component in pelagic food webs. Aquat. Sci. 2010, 72, 255–268. [Google Scholar] [CrossRef]
- Notz, R.; Maurhofer, M.; Dubach, H.; Haas, D.; Defago, G. Fusaric acid–producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Appl. Environ. Microbiol. 2002, 68, 2229–2235. [Google Scholar] [CrossRef] [Green Version]
- Schroeckh, V.; Scherlach, K.; Nützmann, H.W.; Shelest, E.; Schmidt-Heck, W.; Schuemann, J.; Martin, K.; Hertweck, C.; Brakhage, A.A. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 2009, 106, 14558–14563. [Google Scholar] [CrossRef] [Green Version]
- Baudy, P.; Zubrod, J.C.; Konschak, M.; Kolbenshlag, S.; Pollit, A.; Baschien, C.; Schulz, R.; Bundschuh, M. Fungal-Fungal and fungal-bacterial interactions in acquatic decomposer communities: Bacteria promote fungal diversity. Ecology 2021, 102, 03471. [Google Scholar] [CrossRef]
- Hassett, B.T.; Borrego, E.J.; Vonnahme, T.R.; Rämä, T.; Kolomiets, M.V.; Gradinger, R. Arctic marine fungi: Biomass, functional genes, and putative ecological roles. ISME J. 2019, 13, 1484–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carreira, C.; Lønborg, C.; Kühl, M.; Lillebø, A.I.; Sandaa, R.A.; Villanueva, L.; Cruz, S. Fungi and viruses as important players in microbial mats. FEMS Microbiol. Ecol. 2020, 96, 187. [Google Scholar] [CrossRef]
- Bulai, I.M.; Venturino, E. Competition between algae and fungi in a lake: A mathematical model. CMMSE 2016 Proceedings 1. J. Vigo-Aguiar. 2016, 1, 261–272. [Google Scholar]
- Brakhage, A.A. Regulation of fungal secondary metabolism. Nat. Rev. Microbiol. 2013, 11, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.B.; Smith, A.G. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr. Opin. Plant Biol. 2015, 26, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, Y.; Aflalo, C.; Zarka, A.; Gutman, J.; James, T.Y.; Boussiba, S. Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus. Mycol. Res. 2008, 112, 70–81. [Google Scholar] [CrossRef]
- Gutman, J.; Zarka, A.; Boussiba, S. The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus pluvialis. Eur. J. Phycol. 2009, 44, 509–514. [Google Scholar] [CrossRef]
- Lin, J.; Yan, H.; Zhao, L.; Li, Y.; Nahidian, B.; Zhu, M.; Hu, Q.; Han, D. Interaction between the cell walls of microalgal host and fungal carbohydrate-activate enzymes is essential for the pathogenic parasitism process. Environ. Microbiol. 2021, 23, 5114–5130. [Google Scholar] [CrossRef]
- Papone, T.; Kookkunthod, S.; Leesing, R. Microbial oil production by monoculture and mixed cultures of microalgae and oleaginous yeasts using sugarcane juice as substrate. World Acad. Sci. Eng. Technol. 2012, 64, 1127–1131. [Google Scholar]
- Canter, H.M.; Jaworski, G. The occurrence of a hypersensitive reaction in the planktonic diatom Asterionella formosa Hassal parasitized by the chytrid Rhizophydium planktonicum Canter emend., in culture. New phytol. 1979, 82, 187–206. [Google Scholar] [CrossRef]
- Gromov, B.V.; Mamkaeva, K.A. The fine structure of Amoeboaphelidium protococcarum—An endoparasite of green alga Scenedesmus. Arch. Hydrobiol. 1970, 67, 452–459. [Google Scholar]
- Pouneva, I.D. Effect of abscisic acid and ontogenic phases of the host alga on the infection process in the pathosystem Scenedemus acutus—Phlyctidium scenedesmi. Acta Physiol. Plant. 2006, 28, 395–400. [Google Scholar] [CrossRef]
- Bruning, K.; Ringelberg, J. The influence of phosphorus limitation of the diatom Asterionella Formosa on the zoospore production of its fungal parasite Rhizophydium Planktonicum. Hydrobiol. Bull. 1987, 21, 49–54. [Google Scholar] [CrossRef]
- Du, Z.Y.; Zienkiewicz, K.; Pol, N.V.; Ostrom, N.E.; Benning, C.; Bonito, G.M. Algal-fungal symbiosis leads to photosynthetic mycelium. Elife 2019, 8, 47815. [Google Scholar] [CrossRef] [PubMed]
- Gan, Q.; Zhou, W.; Wang, S.; Li, X.; Xie, Z.; Wang, J.; Jiang, J.; Lu, Y. A customized contamination controlling approach for culturing oleaginous Nannochloropsis oceanica. Algal Res. 2017, 27, 376–382. [Google Scholar] [CrossRef]
- Gromov, B.V.; Pljusch, A.V.; Mamkaeva, K.A. Morphology and possible host range of Rhyizophydium algavorum sp. Nov. (chytridiales)-and obligate parasite of algae. Protistology. 1999, 1, 62–65. [Google Scholar]
- Xue, F.; Miao, J.; Zhang, X.; Tan, T. A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis. Appl. Biochem. Biotechnol. 2010, 160, 498–503. [Google Scholar] [CrossRef]
- Hess, S.; Sausen, N.; Melkonian, M. Shedding light on vampires: The phylogeny of vampyrellid amoebae revisited. PLoS ONE 2012, 7, 31165. [Google Scholar] [CrossRef] [Green Version]
- Fott, B. Phylyctidium scenedesmi spec. nova, a new chytrid destroying mass cultures of algae. Z. Allg. Mikrobiol. 1967, 7, 97–102. [Google Scholar] [CrossRef]
- Letcher, P.M.; Lopez, S.; Schmieder, R.; Lee, P.A.; Behnke, C.; Powell, M.J.; McBride, R.C. Characterization of Amoeboaphelidium protococcarum, an algal parasite new to the Cryptomycota isolated from an outdoor algal pond used for the production of biofuel. PLoS ONE 2013, 8, 56232. [Google Scholar] [CrossRef]
- Carney, L.T.; Reinsch, S.S.; Lane, P.D.; Solberg, O.D.; Jansen, L.S.; Williams, K.; Trent, J.D.; Lane, T.W. Microbiome analysis of a microalgal mass culture growing in municipal wastewater in a prototype OMEGA photobioreactor. Algal. Res. 2014, 4, 52–61. [Google Scholar] [CrossRef]
- McBride, R.C.; Lopez, S.; Meenach, C.; Burnett, M.; Lee, P.A.; Nohilly, F.; Behnke, C. Contamination management inlow cost open ponds for biofuel production. Industr. Biotechnol. 2014, 10, 221–227. [Google Scholar] [CrossRef]
- Ding, Y.; Wen, X.; Peng, X.; Zhang, A.; Wang, Z.; Geng, Y.; Li, Y. Surfactants as fungal parasite control agents in oleaginous microalga, Graesiella sp. WBG-1, mass culture. Algal Res. 2019, 41, 2211–9264. [Google Scholar] [CrossRef]
- Karpov, S.A.; Mikhailov, K.V.; Mirzaeva, G.S.; Mirabdullaev, I.M.; Mamkaeva, K.A.; Titova, N.N.; Aleoshin, V.V. Obligately Phagotrophic Aphelids Turned out to Branch with the Earliest-diverging Fungi. Protist 2013, 164, 195–205. [Google Scholar] [CrossRef]
- Allen, J.; Leflaive, J.; Bringuier, C.; Ten-Hage, L.; Chauvet, E.; Cornut, J.; Danger, M. Allelopathic inhibition of primary producer growth and photosynthesis by aquatic fungi. Fungal Ecol. 2017, 29, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Raghukumar, C. Algal-fungal interactions in the marine ecosystem: Symbiosis to parasitism. In Recent Advances on Applied Aspects of Indian Marine Algae with Reference to Global Scenario; Tewari, A., Ed.; Central Salt & Marine Chemicals Research Institute: Bhavnagar, India, 2006. [Google Scholar]
- Shin, W.; Boo, S.M.; Longcore, J.E. Entophlyctis apiculata, a chytrid parasite of Chlamydomonas sp. (Chlorophyceae). Can. J. Bot. 2001, 79, 1083–1089. [Google Scholar]
- Salbitani, G.; Bolinesi, F.; Affuso, M.; Carraturo, F.; Mangoni, O.; Carfagna, S. Rapid and positive effect of bicarbonate addition on growth and photosynthetic efficiency of the green microalgae Chlorella sorokiniana (Chlorophyta, Trebouxiophyceae). Appl. Sci. 2020, 10, 4515. [Google Scholar] [CrossRef]
- Simkvosky, R.; Daniels, E.F.; Tang, K.; Huynh, S.C.; Golden, S.S.; Brahamsha, B. Impairment of O-antigen production confers resistance to grazing in a model amoeba-cyanobacterium predator-prey system. Proc. Natl. Acad. Sci. USA 2012, 109, 16678–16683. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Xiao, S.; Taylor, T.N. Lichen-like symbiosis 600 million years ago. Science 2005, 308, 1017–1020. [Google Scholar] [CrossRef] [Green Version]
- Gultom, S.O.; Hu, B. Review of microalgae harvesting via co-pelletization with filamentous fungus. Energies 2013, 6, 5921–5939. [Google Scholar] [CrossRef] [Green Version]
- Prajapati, S.K.; Kumar, P.; Malik, A.; Choudhary, P. Exploring pellet forming filamentous fungi as tool for harvesting non-flocculating unicellular microalgae. Bioenergy Res. 2014, 7, 1430–1440. [Google Scholar] [CrossRef]
- Gultom, S.O.; Zamalloa, C.; Hu, B. Microalgae Harvest through Fungal Pelletization-Co-Culture of Chlorella vulgaris and Aspergillus niger. Energies 2014, 7, 4417–4429. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zhang, T.; Yang, Z. Immobilizing unicellular microalga on pellet-forming filamentous fungus: Can this provide new insights into the remediation of arsenic from contaminated water? Bioresour. Technol. 2019, 284, 231–239. [Google Scholar] [CrossRef]
- Chen, J.; Leng, L.; Ye, C.; Lu, Q.; Addy, M.; Wang, J.; Liu, J.; Chen, P.; Ruan, R.; Zhou, W. A comparative study between fungal pellet- and spore-assisted microalgae harvesting methods for algae bioflocculation. Bioresour. Technol. 2018, 259, 181–190. [Google Scholar] [CrossRef]
- Muradow, N.; Taha, M.; Miranda, A.; Wrede, D.; Kadali, K.; Gujar, A.; Stevenson, T.; Ball, A.; Mouradov, A. Fungal-assisted algal flocculation: Application in wastewater treatment and biofuel production. Biotechnol. Biofuels 2015, 8, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Guo, G.; Cao, W.; Sun, S.; Zhao, Y.; Hu, C. Nutrient removal and biogas upgrading by integrating fungal–microalgal cultivation with anaerobically digested swine wastewater treatment. J. Appl. Phycol. 2017, 29, 2857–2866. [Google Scholar] [CrossRef]
- Orphan, V. Methods for unveiling cryptic microbial partnerships in nature. Curr. Opin. Microbiol. 2009, 12, 231–237. [Google Scholar] [CrossRef]
- Chase, J. Community assembly: When should history matter? Oecologia 2003, 136, 489–498. [Google Scholar] [CrossRef]
- Zhan, J.; Rong, J.; Wang, Q. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. Int. J. Hydrog. Energy 2017, 42, 8505–8517. [Google Scholar] [CrossRef]
- Das, P.K.; Rani, J.; Rawat, S.; Kunmar, S. Microalgal Co-cultivation for Biofuel Production and Bioremediation: Current Status and Benefits. Bioenerg. Res. 2021, 15, 1–26. [Google Scholar] [CrossRef]
- Sitepu, I.; Sestric, R.; Ignatia, L.; Levin, D.; German, J.; Gillies, L.; Almada, L.; Boundy-Mills, K. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresour. Technol. 2013, 144, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Papagianni, M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 2004, 22, 189–259. [Google Scholar] [CrossRef] [PubMed]
- Salbitani, G.; Del Prete, S.; Bolinesi, F.; Mangoni, O.; De Luca, V.; Carginale, V.; Donald, W.A.; Supuran, C.T.; Carfagna, S.; Capasso, C. Use of an immobilized thermostable α-CA (SspCA) for enhancing the metabolic efficiency of the freshwater green microalga Chlorella sorokiniana. J. Enzyme. Inhib. Med. Chem. 2020, 35, 913–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, M.; Suh, W.; Lee, B.; Chang, Y. Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide. Energy Convers. Manag. 2018, 156, 45–52. [Google Scholar] [CrossRef]
- Arora, N.; Patel, A.; Mehtani, J.; Pruthi, P.; Pruthi, V.; Poluri, K. Co-culturing of oleaginous microalgae and yeast: Paradigm shift towards enhanced lipid productivity. Environ. Sci. Pollut. Res. 2019, 26, 16952–16973. [Google Scholar] [CrossRef]
- Wang, X.; Bao, K.; Cao, W.; Zhao, Y.; Hu, C.W. Screening of microalgae for integral biogas slurry nutrient removal and biogas upgrading by different microalgae cultivation technology. Sci. Rep. 2017, 7, 5426. [Google Scholar] [CrossRef] [Green Version]
- Park, D.; Yun, Y.; Jo, J.; Park, J. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res. 2005, 39, 533–540. [Google Scholar] [CrossRef]
- Shen, L.; Li, Z.; Wang, J.; Liu, A.; Li, Z.; Yu, R.; Wu, X.; Liu, Y.; Li, J.; Zeng, W. Characterization of extracellular polysaccharide/protein contents during the adsorption of Cd(II) by Synechocystis sp. PCC6803. Environ. Sci. Pollut. Res. 2018, 25, 20713–20722. [Google Scholar] [CrossRef]
- Rahimi, S.; Modin, O.; Mijakovic, I. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol. Adv. 2020, 43, 107570. [Google Scholar] [CrossRef]
- Wang, S.; Yang, K.; Zhu, Y.; Zhu, X.; Nie, D.; Jiao, N.; Angelidaki, I. One-step co-cultivation and flocculation of microalgae with filamentous fungi to valorize starch wastewater into high-value biomass. Bioresour. Technol. 2022, 361, 127625. [Google Scholar] [CrossRef]
- Ward, O.; Singh, A. Omega-3/6 fatty acids: Alternative sources of production. Process Biochem. 2005, 40, 3627–3652. [Google Scholar] [CrossRef]
- Kadalg, N.; Pawar, P.; Prakash, G. Co-cultivation of Phaeodactylum tricornutum and Aurantiochytrium limacinum for polyunsaturated omega-3 fatty acids production. Bioresour. Technol. 2022, 346, 126544. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pang, Z.; Xu, S.; Wei, T.; Song, L.; Wang, G.; Zhang, J.; Yang, X. Improved Carotenoid Productivity and COD Removal Efficiency by Co-culture of Rhodotorula glutinis and Chlorella vulgaris Using Starch Wastewaters as Raw Material. Appl. Biochem. Biotechnol. 2019, 189, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Shokrkar, H.; Zamani, M.; Ebrahimi, S. Exploring strategies for the use of mixed microalgae in cellulase production and its application for bioethanol production. Biofuels. Bioprod. Biorefining 2022, 16, 816–825. [Google Scholar] [CrossRef]
System | Microalgal Host | Parasite’s Species | References |
---|---|---|---|
Laboratory culture | Haematococcus pluvialis | Paraphysoderma sedebokerensis (Chytrid) | [108,109,110] |
Chlorella vulgaris | Aspergillus niger | [69] | |
Chlorella vulgaris | Mucor sp. | [111] | |
Various diatoms | Chytriomyces sp. and Zygorhizidium sp. (Chytrid) | [112] | |
Scenedesmus sp. | Amoeboaphelidium protococcarum (Aphelid) | [113] | |
Scenedesmus sp. | Phlyctidium scenedesmi | [114] | |
Asterionella Formosa | Rhizophydium planktonicum (Chytrid) | [115] | |
Nannochloropsis oceanica | Mortierella elongata | [116] | |
Nannochloropsis oceanica | Aspergillus sydowii | [117] | |
Chlorococcorum minutum | Rhizophydium algavorum (Chytrid) | [118] | |
Spirulina platensis | Rhodotorula glutinis | [119] | |
Closterium sp. | Leptophyrs vorax (Amoebae/Endomyxa) | [120] | |
Mass culture | Scenedesmus sp. | Phlyctidium scenedesmi (Chytrid) | [114,121] |
Scenedesmus sp. | Amoeboaphelidium protococcarum (Aphelid) | [122] | |
Scenedesmus sp. | Rhizophidium sp. | [123] | |
Scenedesmus dimorphus | Amoeboaphelidium protococcarum | [124] | |
Grasiella sp. | Amoeboaphelidium protococcarum (Aphelid) and Rhizophydium scenedesmi (Chytrid) | [125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laezza, C.; Salbitani, G.; Carfagna, S. Fungal Contamination in Microalgal Cultivation: Biological and Biotechnological Aspects of Fungi-Microalgae Interaction. J. Fungi 2022, 8, 1099. https://doi.org/10.3390/jof8101099
Laezza C, Salbitani G, Carfagna S. Fungal Contamination in Microalgal Cultivation: Biological and Biotechnological Aspects of Fungi-Microalgae Interaction. Journal of Fungi. 2022; 8(10):1099. https://doi.org/10.3390/jof8101099
Chicago/Turabian StyleLaezza, Carmen, Giovanna Salbitani, and Simona Carfagna. 2022. "Fungal Contamination in Microalgal Cultivation: Biological and Biotechnological Aspects of Fungi-Microalgae Interaction" Journal of Fungi 8, no. 10: 1099. https://doi.org/10.3390/jof8101099
APA StyleLaezza, C., Salbitani, G., & Carfagna, S. (2022). Fungal Contamination in Microalgal Cultivation: Biological and Biotechnological Aspects of Fungi-Microalgae Interaction. Journal of Fungi, 8(10), 1099. https://doi.org/10.3390/jof8101099