Nature’s Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms
Abstract
:1. Introduction
Yeasts | Plants | Insects | References |
---|---|---|---|
Candida ipomoeae | Ipomoea spp. and Convolvulaceae | Conotelus sp. | [22] |
Candida kunwiensis | Ipomoea batatas | Bombus terrestris | [36] |
Candida powellii and Candida tilneyi | Ipomoea carnea | Conotelus sp. | [26] |
Cryptococcus albidus | Helleborus foetidus | Bombus spp. | [15] |
Cryptococcus victoriae | Helleborus foetidus | Bombus spp. | [15] |
Cystofilobasidium capitatum | Helleborus foetidus | Bombus spp. | [15] |
Kodamaea transpacifica | Ipomoea alba | Beetles (Nitidulidae) | [37] |
Metschnikowia amazonensis | Passiflora edulis | Conotelus sp. | [25] |
Metschnikowia bowlesiae | Ipomoea indica | Conotelus mexicanus | [27] |
Metschnikowia caudata | Protea roupelliae, Protea dracomontana, and Protea subvestida | Apis mellifera | [30] |
Metschnikowia cerradonensis | Ipomoeae carnea | Beetles (Conotelus) | [31] |
Metschnikowia cubensis | Ipomoea acuminata | Conotelus spp. | [38] |
Metschnikowia drakenbergensis | Protea dracomontana | Heterochelus sp. | [30] |
Metschnikowia drosophilae | Ipomoea sp. | Drosophila bromeliae | [26] |
Metschnikowia lochheadii | Ipomoea indica | Conotelus mexicanus | [26] |
Metschnikowia maroccana | Teucrium polio | NR * | [23] |
Metschnikowia miensis | Brassica rapa | NR * | [24] |
Metschnikowia proteae | Protea caffra | Atrichelaphinis tigrina, Cyrtothyrea marginalis, and Heterochelus sp. | [29] |
Metschnikowia reukaufii | Helleborus foetidus | Bombus terrestris | [39] |
Metschnikowia santaceciliae, Candida hawaiiana, and Candida kipukae | Ipomoea indica | Conotelus spp. | [40] |
Metschnikowia vanudenii | Asclepias syriaca | Flies (Muscidae) | [20] |
Pseudohyphozyma bogoriensis | Lamprococcus chlorocarpus | Bees | [41] |
Pseudozyma hubeiensis | Cryptanthus dianae | Bees | [41] |
Sporobolomyces carnicolor | Aechmea froesii | Bees | [41] |
Teunia rosae | Rosa chinensis | NR * | [42] |
Teunia rudbeckiae | Rudbeckia bicolor | NR * | [42] |
2. Yeasts at Work: Nectar Fermentation and VOC Production
2.1. Nectar Composition
2.2. Main Metabolic Routes for Nectar-Based VOC Production
2.2.1. Carbohydrate Metabolism
2.2.2. What Else, Besides Sugar, May Nectaries Offer to Yeast-Based VOC Production?
3. Double Agent Yeasts
4. Prospecting Yeasts for Biotechnological Purposes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lovell, J.H. Conspicuous Flowers Rarely Visited by Insects. J. Anim. Behav. 1914, 4, 147–175. [Google Scholar] [CrossRef]
- Becher, P.G.; Hagman, A.; Verschut, V.; Chakraborty, A.; Rozpędowska, E.; Lebreton, S.; Bengtsson, M.; Flick, G.; Witzgall, P.; Piškur, J. Chemical Signaling and Insect Attraction Is a Conserved Trait in Yeasts. Ecol. Evol. 2018, 8, 2962–2974. [Google Scholar] [CrossRef]
- Raguso, R.A. Why are some floral nectars scented? Ecology 2004, 85, 1486–1494. [Google Scholar] [CrossRef]
- Pozo, M.J.; de Vega, C.; Canto, A.; Herrera, C.M. Presence of Yeasts in Floral Nectar Is Consistent with the Hypothesis of Microbial-Mediated Signaling in Plant-Pollinator Interactions. Plant Signal. Behav. 2009, 4, 1102–1104. [Google Scholar] [CrossRef]
- Brundrett, M.C. Coevolution of Roots and Mycorrhizas of Land Plants. New Phytol. 2002, 154, 275–304. [Google Scholar] [CrossRef]
- Nel, A.; Roques, P.; Nel, P.; Prokin, A.A.; Bourgoin, T.; Prokop, J.; Szwedo, J.; Azar, D.; Desutter-Grandcolas, L.; Wappler, T.; et al. The Earliest Known Holometabolous Insects. Nature 2013, 503, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Dujon, B. Yeasts Illustrate the Molecular Mechanisms of Eukaryotic Genome Evolution. Trends Genet. 2006, 22, 375–387. [Google Scholar] [CrossRef]
- Kurtzman, C.; Robnett, C. Phylogenetic Relationships among Yeasts of the “Saccharomyces complex” Determined from Multigene Sequence Analyses. FEMS Yeast Res. 2003, 3, 417–432. [Google Scholar] [CrossRef]
- Heckman, D.S.; Geiser, D.M.; Eidell, B.R.; Stauffer, R.L.; Kardos, N.L.; Hedges, S.B. Molecular Evidence for the Early Colonization of Land by Fungi and Plants. Science 2001, 293, 1129–1133. [Google Scholar] [CrossRef]
- Boekhout, T. Gut Feeling for Yeasts. Nature 2005, 434, 449–451. [Google Scholar] [CrossRef]
- Sun, G.; Dilcher, D.L.; Wang, H.; Chen, Z. A Eudicot from the Early Cretaceous of China. Nature 2011, 471, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Piskur, J.; Rozpedowska, E.; Polakova, S.; Merico, A.; Compagno, C. How Did Saccharomyces Evolve to Become a Good Brewer? Trends Genet. 2006, 22, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Schiestl, F.P.; Steinebrunner, F.; Schulz, C.; von Reuß, S.; Francke, W.; Weymuth, C.; Leuchtmann, A. Evolution of ‘Pollinator’-Attracting Signals in Fungi. Biol. Lett. 2006, 2, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, R. Flowers and Fungi Use Scents to Mimic Each Other. Science 2006, 311, 806–807. [Google Scholar] [CrossRef]
- Brysch-Herzberg, M. Ecology of Yeasts in Plant-Bumblebee Mutualism in Central Europe. FEMS Microbiol. Ecol. 2004, 50, 87–100. [Google Scholar] [CrossRef]
- Pozo, M.I.; Bartlewicz, J.; van Oystaeyen, A.; Benavente, A.; van Kemenade, G.; Wäckers, F.; Jacquemyn, H. Surviving in the Absence of Flowers: Do Nectar Yeasts Rely on Overwintering Bumblebee Queens to Complete Their Annual Life Cycle? FEMS Microbiol. Ecol. 2018, 94, fiy196. [Google Scholar] [CrossRef]
- Herrera, C.M.; Pozo, M.I.; Bazaga, P. Nonrandom Genotype Distribution among Floral Hosts Contributes to Local and Regional Genetic Diversity in the Nectar-Living Yeast Metschnikowia reukaufii. FEMS Microbiol. Ecol. 2014, 87, 568–575. [Google Scholar] [CrossRef]
- Hong, S.G.; Chun, J.; Oh, H.W.; Bae, K.S. Metschnikowia koreensis sp. nov., a Novel Yeast Species Isolated from Flowers in Korea. Int. J. Syst. Evol. Microbiol. 2001, 51, 1927–1931. [Google Scholar] [CrossRef]
- Guzmán, B.; Lachance, M.-A.; Herrera, C.M. Phylogenetic Analysis of the Angiosperm-Floricolous Insect–Yeast Association: Have Yeast and Angiosperm Lineages Co-Diversified? Mol. Phylogenet. Evol. 2013, 68, 161–175. [Google Scholar] [CrossRef]
- Giménez-Jurado, G.; Kurtzman, C.P.; Starmer, W.T.; Spencer-Martins, I. Metschnikowia vanudenii sp. nov. and Metschnikowia lachancei sp. nov., from Flowers and Associated Insects in North America. Int. J. Syst. Evol. Microbiol. 2003, 53, 1665–1670. [Google Scholar] [CrossRef] [Green Version]
- Lachance, M.-A.; Rosa, C.A.; Starmer, W.T.; Schlag-Edler, B.; Baker, J.S.F.; Bowles, J.M. Metschnikowia continentalis Var. borealis, Metschnikowia continentalis Var. continentalis, and Metschnikowia hibisci, New Heterothallic Haploid Yeasts from Ephemeral Flowers and Associated Insects. Can. J. Microbiol. 1998, 44, 279–288. [Google Scholar] [CrossRef]
- Lachance, M.-A.; Rosa, C.A.; Starmer, W.T.; Schlag-Edler, B.; Barker, J.S.F.; Bowles, J.M. Wickerhamiella australiensis, Wickerhamiella cacticola, Wickerhamiella occidentalis, Candida drosophilae and Candida lipophila, Five New Related Yeast Species from Flowers and Associated Insects. Int. J. Syst. Bacteriol. 1998, 48, 1431–1443. [Google Scholar] [CrossRef] [PubMed]
- de Vega, C.; Albaladejo, R.G.; Lachance, M.-A. Metschnikowia Maroccana f.a., Sp. Nov., a New Yeast Species Associated with Floral Nectar from Morocco. Int. J. Syst. Evol. Microbiol. 2018, 68, 2028–2035. [Google Scholar] [CrossRef] [PubMed]
- Shibayama, K.; Otoguro, M.; Nakashima, C.; Yanagida, F. Metschnikowia miensis f.a., sp. nov., Isolated from Flowers in Mie Prefecture, Japan. Antonie Van Leeuwenhoek 2020, 113, 321–329. [Google Scholar] [CrossRef]
- de Santos, A.R.O.; Lee, D.K.; Ferreira, A.G.; Carmo, M.C.; Rondelli, V.M.; Barros, K.O.; Hsiang, T.; Rosa, C.A.; Lachance, M. The Yeast Community of Conotelus Sp. (Coleoptera: Nitidulidae) in Brazilian Passionfruit Flowers (Passiflora Edulis) and Description of Metschnikowia amazonensis sp. nov., a Large-spored Clade Yeast. Yeast 2020, 37, 253–260. [Google Scholar] [CrossRef]
- Lachance, M.; Starmer, W.; Rosa, C.; Bowles, J.; Barker, J.; Janzen, D. Biogeography of the Yeasts of Ephemeral Flowers and Their Insects. FEMS Yeast Res. 2001, 1, 1–8. [Google Scholar] [CrossRef]
- Lachance, M.-A.; Fedor, A.N. Catching Speciation in the Act: Metschnikowia bowlesiae sp. nov., a Yeast Species Found in Nitidulid Beetles of Hawaii and Belize. Antonie Leeuwenhoek 2014, 105, 541–550. [Google Scholar] [CrossRef]
- Lachance, M.-A.; Ewing, C.P.; Bowles, J.M.; Starmer, W.T. Metschnikowia hamakuensis sp. nov., Metschnikowia kamakouana sp. nov. and Metschnikowia mauinuiana sp. nov., Three Endemic Yeasts from Hawaiian Nitidulid Beetles. Int. J. Syst. Evol. Microbiol. 2005, 55, 1369–1377. [Google Scholar] [CrossRef]
- de Vega, C.; Guzmán, B.; Lachance, M.-A.; Steenhuisen, S.-L.; Johnson, S.D.; Herrera, C.M. Metschnikowia proteae Sp. Nov., a Nectarivorous Insect-Associated Yeast Species from Africa. Int. J. Syst. Evol. Microbiol. 2012, 62, 2538–2545. [Google Scholar] [CrossRef]
- de Vega, C.; Guzmán, B.; Steenhuisen, S.-L.; Johnson, S.D.; Herrera, C.M.; Lachance, M.-A. Metschnikowia drakensbergensis Sp. Nov. and Metschnikowia caudata Sp. Nov., Endemic Yeasts Associated with Protea Flowers in South Africa. Int. J. Syst. Evol. Microbiol. 2014, 64, 3724–3732. [Google Scholar] [CrossRef] [Green Version]
- Rosa, C.A.; Lachance, M.-A.; Teixeira, L.C.R.S.; Pimenta, R.S.; Morais, P.B. Metschnikowia cerradonensis Sp. Nov., a Yeast Species Isolated from Ephemeral Flowers and Their Nitidulid Beetles in Brazil. Int. J. Syst. Evol. Microbiol. 2007, 57, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Boby, V.U.; Balakrishna, A.N.; Bagyaraj, D.J. Interaction between Glomus mosseae and Soil Yeasts on Growth and Nutrition of Cowpea. Microbiol. Res. 2008, 163, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.; Cable, R.N.; Mueller, U.G.; Bacci, M.; Pagnocca, F.C. Antagonistic Interactions between Garden Yeasts and Microfungal Garden Pathogens of Leaf-Cutting Ants. Antonie Leeuwenhoek 2009, 96, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Herrera, C.M.; García, I.M.; Pérez, R. Invisible floral larcenies: Microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology 2008, 89, 2369–2376. [Google Scholar] [CrossRef] [PubMed]
- de Vega, C.; Herrera, C.M.; Johnson, S.D. Yeasts in Floral Nectar of Some South African Plants: Quantification and Associations with Pollinator Type and Sugar Concentration. S. Afr. J. Bot. 2009, 75, 798–806. [Google Scholar] [CrossRef]
- Hong, S.G.; Bae, K.S.; Herzberg, M.; Titze, A.; Lachance, M.-A. Candida kunwiensis Sp. Nov., a Yeast Associated with Flowers and Bumblebees. Int. J. Syst. Evol. Microbiol. 2003, 53, 367–372. [Google Scholar] [CrossRef]
- Freitas, L.F.D.; Barriga, E.J.C.; Barahona, P.P.; Lachance, M.-A.; Rosa, C.A. Kodamaea transpacifica f.a., Sp. Nov., a Yeast Species Isolated from Ephemeral Flowers and Insects in the Galápagos Islands and Malaysia: Further Evidence for Ancient Human Transpacific Contacts. Int. J. Syst. Evol. Microbiol. 2013, 63, 4324–4329. [Google Scholar] [CrossRef]
- Fidalgo-Jimenez, A.; Daniel, H.-M.; Evrard, P.; Decock, C.; Lachance, M.-A. Metschnikowia cubensis Sp. Nov., a Yeast Species Isolated from Flowers in Cuba. Int. J. Syst. Evol. Microbiol. 2008, 58, 2955–2961. [Google Scholar] [CrossRef]
- Herrera, C.M.; Pozo, M.I.; Medrano, M. Yeasts in Nectar of an Early-Blooming Herb: Sought by Bumble Bees, Detrimental to Plant Fecundity. Ecology 2013, 94, 273–279. [Google Scholar] [CrossRef]
- Lachance, M.-A.; Bowles, J.M.; Starmer, W.T. Metschnikowia santaceciliae, Candida hawaiiana, and Candida kipukae, Three New Yeast Species Associated with Insects of Tropical Morning Glory. FEMS Yeast Res. 2003, 3, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Félix, C.R.; Navarro, H.M.C.; Paulino, G.V.B.; Almeida, J.H.; Landell, M.F. Behind the Nectar: The Yeast Community in Bromeliads Inflorescences after the Exudate Removal. Mycol. Prog. 2021, 20, 1191–1202. [Google Scholar] [CrossRef]
- Wang, G.-S.; Zhou, Y.; Xue, L.; Li, A.-H.; Wangmu; Wang, Q.-M. Teunia rosae Sp. Nov. and Teunia rudbeckiae Sp. Nov. (Cryptococcaceae, Tremellales), Two Novel Basidiomycetous Yeast Species Isolated from Flowers. Int. J. Syst. Evol. Microbiol. 2020, 70, 5394–5400. [Google Scholar] [CrossRef] [PubMed]
- Jacquemyn, H.; Pozo, M.I.; Álvarez-Pérez, S.; Lievens, B.; Fukami, T. Yeast–Nectar Interactions: Metacommunities and Effects on Pollinators. Curr. Opin. Insect. Sci. 2021, 44, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Schmitt, A.J.; Thomas, J.B.; Carter, C.J. Review: Nectar Biology: From Molecules to Ecosystems. Plant Sci. 2017, 262, 148–164. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.J.; Irwin, R.E.; Flanagan, R.J.; Karron, J.D. Ecology and Evolution of Plant–Pollinator Interactions. Ann. Bot. 2009, 103, 1355–1363. [Google Scholar] [CrossRef]
- Jones, G.D.; Jones, S.D. The Uses of Pollen and Its Implication for Entomology. Neotrop. Entomol. 2001, 30, 314–349. [Google Scholar] [CrossRef]
- Cusumano, A.; Bella, P.; Peri, E.; Rostás, M.; Guarino, S.; Lievens, B.; Colazza, S. Nectar-Inhabiting Bacteria Affect Olfactory Responses of an Insect Parasitoid by Altering Nectar Odors. Microb. Ecol. 2022, 1–13. [Google Scholar] [CrossRef]
- Schaeffer, R.N.; Rering, C.C.; Maalouf, I.; Beck, J.J.; Vannette, R.L. Microbial Metabolites Elicit Distinct Olfactory and Gustatory Preferences in Bumblebees. Biol. Lett. 2019, 15, 20190132. [Google Scholar] [CrossRef]
- Wehner, J.; Mittelbach, M.; Rillig, M.C.; Verbruggen, E. Specialist Nectar-Yeasts Decline with Urbanization in Berlin. Sci. Rep. 2017, 7, 45315. [Google Scholar] [CrossRef]
- Percival, M.S. Types of Nectar in Angiosperms. New Phytol. 1961, 60, 235–281. [Google Scholar] [CrossRef]
- Bernardello, G. A Systematic Survey of Floral Nectaries. In Nectaries and Nectar; Springer: Dordrecht, The Netherlands, 2007; pp. 19–128. [Google Scholar]
- Antoń, S.; Denisow, B. Nectar Production and Carbohydrate Composition across Floral Sexual Phases: Contrasting Patterns in Two Protandrous Aconitum Species (Delphinieae, Ranunculaceae). Flora Morphol. Distrib. Funct. Ecol. Plants 2014, 209, 464–470. [Google Scholar] [CrossRef]
- Canto, A.; Perez, R.; Medrano, M.; Castellanos, M.C.; Herrera, C.M. Intra-Plant Variation in Nectar Sugar Composition in Two Aquilegia Species (Ranunculaceae): Contrasting Patterns under Field and Glasshouse Conditions. Ann. Bot. 2006, 99, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Herrera, C.M.; Perez, R.; Alonso, C. Extreme Intraplant Variation in Nectar Sugar Composition in an Insect-Pollinated Perennial Herb. Am. J. Bot. 2006, 93, 575–581. [Google Scholar] [CrossRef]
- Nicolson, S.W.; Thornburg, R.W. Nectar Chemistry. In Nectaries and Nectar; Springer: Dordrecht, The Netherlands, 2007; pp. 215–264. [Google Scholar]
- Álvarez-Pérez, S.; Tsuji, K.; Donald, M.; van Assche, A.; Vannette, R.L.; Herrera, C.M.; Jacquemyn, H.; Fukami, T.; Lievens, B. Nitrogen Assimilation Varies Among Clades of Nectar- and Insect-Associated Acinetobacters. Microb. Ecol. 2021, 81, 990–1003. [Google Scholar] [CrossRef] [PubMed]
- Goulson, D. Foraging Strategies of Insects for Gathering Nectar and Pollen, and Implications for Plant Ecology and Evolution. Perspect. Plant Ecol. Evol. Syst. 1999, 2, 185–209. [Google Scholar] [CrossRef]
- Herrera, C.M. Scavengers That Fit beneath a Microscope Lens. Ecology 2017, 98, 2725–2726. [Google Scholar] [CrossRef]
- Palmer-Young, E.C.; Farrell, I.W.; Adler, L.S.; Milano, N.J.; Egan, P.A.; Junker, R.R.; Irwin, R.E.; Stevenson, P.C. Chemistry of Floral Rewards: Intra- and Interspecific Variability of Nectar and Pollen Secondary Metabolites across Taxa. Ecol. Monogr. 2019, 89, e01335. [Google Scholar] [CrossRef]
- Pozo, M.I.; Jacquemyn, H. Addition of Pollen Increases Growth of Nectar-Living Yeasts. FEMS Microbiol. Lett. 2019, 366, fnz191. [Google Scholar] [CrossRef]
- Pozo, M.I.; Herrera, C.M.; van den Ende, W.; Verstrepen, K.; Lievens, B.; Jacquemyn, H. The Impact of Nectar Chemical Features on Phenotypic Variation in Two Related Nectar Yeasts. FEMS Microbiol. Ecol. 2015, 91, fiv055. [Google Scholar] [CrossRef]
- Zambon, V.; Agostini, K.; Nepi, M.; Rossi, M.L.; Martinelli, A.P.; Sazima, M. The Role of Nectar Traits and Nectary Morphoanatomy in the Plant-Pollinator Interaction between Billbergia Distachia (Bromeliaceae) and the Hermit Phaethornis Eurynome (Trochilidae). Bot. J. Linn. Soc. 2020, 192, 816–827. [Google Scholar] [CrossRef]
- Dmitruk, M.; Strzałkowska-Abramek, M.; Bożek, M.; Denisow, B. Plants Enhancing Urban Pollinators: Nectar Rather than Pollen Attracts Pollinators of Cotoneaster Species. Urban Urban Green 2022, 74, 127651. [Google Scholar] [CrossRef]
- Peay, K.G.; Belisle, M.; Fukami, T. Phylogenetic Relatedness Predicts Priority Effects in Nectar Yeast Communities. Proc. R. Soc. B Biol. Sci. 2012, 279, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Bogo, G.; Fisogni, A.; Rabassa-Juvanteny, J.; Bortolotti, L.; Nepi, M.; Guarnieri, M.; Conte, L.; Galloni, M. Nectar Chemistry Is Not Only a Plant’s Affair: Floral Visitors Affect Nectar Sugar and Amino Acid Composition. Oikos 2021, 130, 1180–1192. [Google Scholar] [CrossRef]
- Brzosko, E.; Bajguz, A.; Chmur, M.; Burzyńska, J.; Jermakowicz, E.; Mirski, P.; Zieliński, P. How Are the Flower Structure and Nectar Composition of the Generalistic Orchid Neottia Ovata Adapted to a Wide Range of Pollinators? Int. J. Mol. Sci. 2021, 22, 2214. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.A.; Chatt, E.C.; Mahalim, S.-N.; Guirgis, A.; Guo, X.; Nettleton, D.S.; Nikolau, B.J.; Thornburg, R.W. Metabolomic Profiling of Nicotiana spp. Nectars Indicate That Pollinator Feeding Preference Is a Stronger Determinant Than Plant Phylogenetics in Shaping Nectar Diversity. Metabolites 2020, 10, 214. [Google Scholar] [CrossRef]
- Ryniewicz, J.; Skłodowski, M.; Chmur, M.; Bajguz, A.; Roguz, K.; Roguz, A.; Zych, M. Intraspecific Variation in Nectar Chemistry and Its Implications for Insect Visitors: The Case of the Medicinal Plant, Polemonium caeruleum L. Plants 2020, 9, 1297. [Google Scholar] [CrossRef]
- Gonçalves, C.; Marques, M.; Gonçalves, P. Contrasting Strategies for Sucrose Utilization in a Floral Yeast Clade. mSphere 2022, 7, e00035-22. [Google Scholar] [CrossRef]
- Gonçalves, C.; Ferreira, C.; Gonçalves, L.G.; Turner, D.L.; Leandro, M.J.; Salema-Oom, M.; Santos, H.; Gonçalves, P. A New Pathway for Mannitol Metabolism in Yeasts Suggests a Link to the Evolution of Alcoholic Fermentation. Front. Microbiol. 2019, 10, 2510. [Google Scholar] [CrossRef]
- Gonçalves, C.; Wisecaver, J.H.; Kominek, J.; Oom, M.S.; Leandro, M.J.; Shen, X.-X.; Opulente, D.A.; Zhou, X.; Peris, D.; Kurtzman, C.P.; et al. Evidence for Loss and Reacquisition of Alcoholic Fermentation in a Fructophilic Yeast Lineage. Elife 2018, 7, 33034. [Google Scholar] [CrossRef]
- Amorim, J.C.; Schwan, R.F.; Duarte, W.F. Sugar Cane Spirit (Cachaça): Effects of Mixed Inoculum of Yeasts on the Sensory and Chemical Characteristics. Food Res. Int. 2016, 85, 76–83. [Google Scholar] [CrossRef]
- Arrizon, J.; Fiore, C.; Acosta, G.; Romano, P.; Gschaedler, A. Fermentation Behaviour and Volatile Compound Production by Agave and Grape Must Yeasts in High Sugar Agave Tequilana and Grape Must Fermentations. Antonie Van Leeuwenhoek 2006, 89, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Perrusquía-Luévano, S.; Cano-Herrera, M.S.; Guigón-López, C.; del Avitia-Talamantes, M.C.; Torres-Torres, C.; Villalpando, I. Microbiology of high-sugar must fermentation by novel yeasts from the chihuahuan desert. FEMS Yeast Res. 2018, 19, foy099. [Google Scholar] [CrossRef] [PubMed]
- Brat, D.; Weber, C.; Lorenzen, W.; Bode, H.B.; Boles, E. Cytosolic Re-Localization and Optimization of Valine Synthesis and Catabolism Enables Increased Isobutanol Production with the Yeast Saccharomyces cerevisiae. Biotechnol. Biofuels 2012, 5, 65. [Google Scholar] [CrossRef]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, Ecology and Industrial Applications of Aroma Formation in Yeast. FEMS Microbiol. Rev. 2017, 41, S95–S128. [Google Scholar] [CrossRef] [PubMed]
- Ida, K.; Ishii, J.; Matsuda, F.; Kondo, T.; Kondo, A. Eliminating the Isoleucine Biosynthetic Pathway to Reduce Competitive Carbon Outflow during Isobutanol Production by Saccharomyces cerevisiae. Microb. Cell Fact. 2015, 14, 62. [Google Scholar] [CrossRef] [PubMed]
- Kruis, A.J.; Levisson, M.; Mars, A.E.; van der Ploeg, M.; Garcés Daza, F.; Ellena, V.; Kengen, S.W.M.; van der Oost, J.; Weusthuis, R.A. Ethyl Acetate Production by the Elusive Alcohol Acetyltransferase from Yeast. Metab. Eng. 2017, 41, 92–101. [Google Scholar] [CrossRef]
- Romano, P.; Suzzi, G. Origin and Production of Acetoin during Wine Yeast Fermentation. Appl. Environ. Microbiol. 1996, 62, 309–315. [Google Scholar] [CrossRef]
- Seo, H.; Giannone, R.J.; Yang, Y.-H.; Trinh, C.T. Proteome Reallocation Enables the Selective de Novo Biosynthesis of Non-Linear, Branched-Chain Acetate Esters. Metab. Eng. 2022, 73, 38–49. [Google Scholar] [CrossRef]
- Pacini, E.; Nepi, M. Nectar Production and Presentation. In Nectaries and Nectar; Springer: Dordrecht, The Netherlands, 2007; pp. 167–214. [Google Scholar]
- Badotti, F.; Dário, M.G.; Alves, S.L.; Cordioli, M.L.A.; Miletti, L.C.; de Araujo, P.S.; Stambuk, B.U. Switching the Mode of Sucrose Utilization by Saccharomyces cerevisiae. Microb. Cell Fact. 2008, 7, 4. [Google Scholar] [CrossRef]
- Serra Colomer, M.; Funch, B.; Solodovnikova, N.; Hobley, T.J.; Förster, J. Biotransformation of Hop Derived Compounds by Brettanomyces Yeast Strains. J. Inst. Brew. 2020, 126, 280–288. [Google Scholar] [CrossRef]
- Ecroyd, C.E.; Franich, R.A.; Kroese, H.W.; Steward, D. Volatile Constituents of Dactylanthus Taylorii Flower Nectar in Relation to Flower Pollination and Browsing by Animals. Phytochemistry 1995, 40, 1387–1389. [Google Scholar] [CrossRef]
- Cabaroglu, T.; Selli, S.; Canbas, A.; Lepoutre, J.-P.; Günata, Z. Wine Flavor Enhancement through the Use of Exogenous Fungal Glycosidases. Enzyme Microb. Technol. 2003, 33, 581–587. [Google Scholar] [CrossRef]
- Jerković, I.; Prđun, S.; Marijanović, Z.; Zekić, M.; Bubalo, D.; Svečnjak, L.; Tuberoso, C. Traceability of Satsuma mandarin (Citrus Unshiu Marc.) Honey through Nectar/Honey-Sac/Honey Pathways of the Headspace, Volatiles, and Semi-Volatiles: Chemical Markers. Molecules 2016, 21, 1302. [Google Scholar] [CrossRef]
- Primante, C.; Dötterl, S. A Syrphid Fly Uses Olfactory Cues to Find a Non-Yellow Flower. J. Chem. Ecol. 2010, 36, 1207–1210. [Google Scholar] [CrossRef] [PubMed]
- Rering, C.C.; Beck, J.J.; Hall, G.W.; McCartney, M.M.; Vannette, R.L. Nectar-inhabiting Microorganisms Influence Nectar Volatile Composition and Attractiveness to a Generalist Pollinator. New Phytol. 2018, 220, 750–759. [Google Scholar] [CrossRef]
- Wu, D.; Li, X.; Sun, J.; Cai, G.; Xie, G.; Lu, J. Effect of Citrulline Metabolism in Saccharomyces cerevisiae on the Formation of Ethyl Carbamate during Chinese Rice Wine Fermentation. J. Inst. Brew. 2018, 124, 77–84. [Google Scholar] [CrossRef]
- Pérez, A.G.; Cert, A.; Ríos, J.J.; Olías, J.M. Free and Glycosidically Bound Volatile Compounds from Two Banana Cultivars: Valery and Pequeña Enana. J. Agric. Food Chem. 1997, 45, 4393–4397. [Google Scholar] [CrossRef]
- Aurore, G.; Ginies, C.; Ganou-parfait, B.; Renard, C.M.G.C.; Fahrasmane, L. Comparative Study of Free and Glycoconjugated Volatile Compounds of Three Banana Cultivars from French West Indies: Cavendish, Frayssinette and Plantain. Food Chem. 2011, 129, 28–34. [Google Scholar] [CrossRef]
- Krammer, G.; Winterhalter, P.; Schwab, M.; Schreier, P. Glycosidically Bound Aroma Compounds in the Fruits of Prunus Species: Apricot (P. Armeniaca, L.), Peach (P. Persica, L.), Yellow Plum (P. Domestica, L. Ssp. Syriaca). J. Agric. Food Chem. 1991, 39, 778–781. [Google Scholar] [CrossRef]
- Jakubska-Busse, A.; Czeluśniak, I.; Kobyłka, M.J.; Hojniak, M. Why Does an Obligate Autogamous Orchid Produce Insect Attractants in Nectar? A Case Study on Epipactis Albensis (Orchidaceae). BMC Plant. Biol. 2022, 22, 196. [Google Scholar] [CrossRef]
- dos Santos, A.C.; Biluca, F.C.; Braghini, F.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Phenolic Composition and Biological Activities of Stingless Bee Honey: An Overview Based on Its Aglycone and Glycoside Compounds. Food Res. Int. 2021, 147, 110553. [Google Scholar] [CrossRef] [PubMed]
- Cna’ani, A.; Shavit, R.; Ravid, J.; Aravena-Calvo, J.; Skaliter, O.; Masci, T.; Vainstein, A. Phenylpropanoid Scent Compounds in Petunia x Hybrida Are Glycosylated and Accumulate in Vacuoles. Front. Plant Sci. 2017, 8, 1898. [Google Scholar] [CrossRef] [PubMed]
- Hampel, D.; Robinson, A.L.; Johnson, A.J.; Ebeler, S.E. Direct Hydrolysis and Analysis of Glycosidically Bound Aroma Compounds in Grapes and Wines: Comparison of Hydrolysis Conditions and Sample Preparation Methods. Aust. J. Grape Wine Res. 2014, 20, 361–377. [Google Scholar] [CrossRef]
- Liang, Z.; Fang, Z.; Pai, A.; Luo, J.; Gan, R.; Gao, Y.; Lu, J.; Zhang, P. Glycosidically Bound Aroma Precursors in Fruits: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 215–243. [Google Scholar] [CrossRef]
- Yazaki, K.; Arimura, G.; Ohnishi, T. ‘Hidden’ Terpenoids in Plants: Their Biosynthesis, Localization and Ecological Roles. Plant Cell Physiol. 2017, 58, 1615–1621. [Google Scholar] [CrossRef]
- Lehnen, M.; Ebert, B.E.; Blank, L.M. A Comprehensive Evaluation of Constraining Amino Acid Biosynthesis in Compartmented Models for Metabolic Flux Analysis. Metab. Eng. Commun. 2017, 5, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Chen, X.; Xu, N.; Liu, L.; Chen, J. Urea Enhances Cell Growth and Pyruvate Production in Torulopsis glabrata. Biotechnol. Prog. 2014, 30, 19–27. [Google Scholar] [CrossRef]
- Broadhead, G.T.; Raguso, R.A. Associative Learning of Non-Sugar Nectar Components: Amino Acids Modify Nectar Preference in a Hawkmoth. J. Exp. Biol. 2021, 224, 234633. [Google Scholar] [CrossRef]
- Nepi, M. Beyond Nectar Sweetness: The Hidden Ecological Role of Non-Protein Amino Acids in Nectar. J. Ecol. 2014, 102, 108–115. [Google Scholar] [CrossRef]
- Dhami, M.K.; Hartwig, T.; Fukami, T. Genetic Basis of Priority Effects: Insights from Nectar Yeast. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161455. [Google Scholar] [CrossRef] [Green Version]
- Eleutério dos Santos, C.M.; de Pietrowski, G.A.M.; Braga, C.M.; Rossi, M.J.; Ninow, J.; Machado dos Santos, T.P.; Wosiacki, G.; Jorge, R.M.M.; Nogueira, A. Apple Aminoacid Profile and Yeast Strains in the Formation of Fusel Alcohols and Esters in Cider Production. J. Food Sci. 2015, 80, C1170–C1177. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Mendes, D.; Dias, T.; Garcia, R.; da Silva, M.G.; Cabrita, M.J. Revealing the Yeast Modulation Potential on Amino Acid Composition and Volatile Profile of Arinto White Wines by a Combined Chromatographic-Based Approach. J. Chromatogr. A 2021, 1641, 461991. [Google Scholar] [CrossRef] [PubMed]
- Baker, H.G.; Baker, I. The Occurrence and Significance of Amino Acids in Floral Nectar. Plant Syst. Evol. 1986, 151, 175–186. [Google Scholar] [CrossRef]
- Nepi, M.; von Aderkas, P.; Wagner, R.; Mugnaini, S.; Coulter, A.; Pacini, E. Nectar and Pollination Drops: How Different Are They? Ann. Bot. 2009, 104, 205–219. [Google Scholar] [CrossRef]
- Zych, M.; Stpiczyńska, M.; Roguz, K. Reproductive Biology of the Red List Species Polemonium caeruleum (Polemoniaceae). Bot. J. Linn. Soc. 2013, 173, 92–107. [Google Scholar] [CrossRef]
- Ardö, Y. Flavour Formation by Amino Acid Catabolism. Biotechnol. Adv. 2006, 24, 238–242. [Google Scholar] [CrossRef]
- Filannino, P.; di Cagno, R.; Gambacorta, G.; Tlais, A.Z.A.; Cantatore, V.; Gobbetti, M. Volatilome and Bioaccessible Phenolics Profiles in Lab-Scale Fermented Bee Pollen. Foods 2021, 10, 286. [Google Scholar] [CrossRef]
- Chua, J.-Y.; Tan, S.J.; Liu, S.-Q. Understanding the Interaction of Isoleucine Paired with Other Amino Acids in Soy Whey Alcohol Fermentation Using Torulaspora delbrueckii. Int. J. Food Microbiol. 2020, 333, 108802. [Google Scholar] [CrossRef]
- Sobhy, I.S.; Baets, D.; Goelen, T.; Herrera-Malaver, B.; Bosmans, L.; van den Ende, W.; Verstrepen, K.J.; Wäckers, F.; Jacquemyn, H.; Lievens, B. Sweet Scents: Nectar Specialist Yeasts Enhance Nectar Attraction of a Generalist Aphid Parasitoid Without Affecting Survival. Front. Plant Sci. 2018, 9, 1009. [Google Scholar] [CrossRef]
- Fairbairn, S.; McKinnon, A.; Musarurwa, H.T.; Ferreira, A.C.; Bauer, F.F. The Impact of Single Amino Acids on Growth and Volatile Aroma Production by Saccharomyces cerevisiae Strains. Front. Microbiol. 2017, 8, 2554. [Google Scholar] [CrossRef] [Green Version]
- Vranova, V.; Rejsek, K.; Skene, K.R.; Formanek, P. Non-Protein Amino Acids: Plant, Soil and Ecosystem Interactions. Plant Soil 2011, 342, 31–48. [Google Scholar] [CrossRef]
- Hébert, A.; Forquin-Gomez, M.-P.; Roux, A.; Aubert, J.; Junot, C.; Heilier, J.-F.; Landaud, S.; Bonnarme, P.; Beckerich, J.-M. New Insights into Sulfur Metabolism in Yeasts as Revealed by Studies of Yarrowia lipolytica. Appl. Environ. Microbiol. 2013, 79, 1200–1211. [Google Scholar] [CrossRef] [PubMed]
- Andersen, G.; Andersen, B.; Dobritzsch, D.; Schnackerz, K.D.; Piškur, J. A Gene Duplication Led to Specialized γ-Aminobutyrate and β-Alanine Aminotransferase in Yeast. FEBS J. 2007, 274, 1804–1817. [Google Scholar] [CrossRef] [PubMed]
- Linder, T. Phenotypical Characterisation of a Putative ω-Amino Acid Transaminase in the Yeast Scheffersomyces stipitis. Arch. Microbiol. 2019, 201, 185–192. [Google Scholar] [CrossRef]
- Leça, J.M.; Pereira, V.; Miranda, A.; Vilchez, J.L.; Malfeito-Ferreira, M.; Marques, J.C. Impact of Indigenous Non-Saccharomyces Yeasts Isolated from Madeira Island Vineyards on the Formation of Ethyl Carbamate in the Aging of Fortified Wines. Processes 2021, 9, 799. [Google Scholar] [CrossRef]
- Nielsen, J. Yeast Cells Handle Stress by Reprogramming Their Metabolism. Nature 2019, 572, 184–185. [Google Scholar] [CrossRef]
- Ji, H.; Lu, X.; Zong, H.; Zhuge, B. γ-Aminobutyric Acid Accumulation Enhances the Cell Growth of Candida glycerinogenes under Hyperosmotic Conditions. J. Gen. Appl. Microbiol. 2018, 64, 84–89. [Google Scholar] [CrossRef]
- Palavecino-Ruiz, M.; Bermudez-Moretti, M.; Correa-Garcia, S. Unravelling the Transcriptional Regulation of Saccharomyces cerevisiae UGA Genes: The Dual Role of Transcription Factor Leu3. Microbiology 2017, 163, 1692–1701. [Google Scholar] [CrossRef]
- PARK, M.; KANG, K.; PARK, S.; BACK, K. Conversion of 5-Hydroxytryptophan into Serotonin by Tryptophan Decarboxylase in Plants, Escherichia coli, and Yeast. Biosci. Biotechnol. Biochem. 2008, 72, 2456–2458. [Google Scholar] [CrossRef]
- Bierla, K.; Bianga, J.; Ouerdane, L.; Szpunar, J.; Yiannikouris, A.; Lobinski, R. A Comparative Study of the Se/S Substitution in Methionine and Cysteine in Se-Enriched Yeast Using an Inductively Coupled Plasma Mass Spectrometry (ICP MS)-Assisted Proteomics Approach. J. Proteom. 2013, 87, 26–39. [Google Scholar] [CrossRef]
- Sideri, T.C.; Willetts, S.A.; Avery, S.V. Methionine Sulphoxide Reductases Protect Iron–Sulphur Clusters from Oxidative Inactivation in Yeast. Microbiology 2009, 155, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Muñiz-Calvo, S.; Bisquert, R.; Fernández-Cruz, E.; García-Parrilla, M.C.; Guillamón, J.M. Deciphering the Melatonin Metabolism in Saccharomyces cerevisiae by the Bioconversion of Related Metabolites. J. Pineal. Res. 2019, 66, e12554. [Google Scholar] [CrossRef]
- Yılmaz, C.; Gökmen, V. Formation of Amino Acid Derivatives in White and Red Wines during Fermentation: Effects of Non-Saccharomyces Yeasts and Oenococcus oeni. Food Chem. 2021, 343, 128415. [Google Scholar] [CrossRef]
- Banwart, W.L.; Bremner, J.M. Formation of Volatile Sulfur Compounds by Microbial Decomposition of Sulfur-Containing Amino Acids in Soils. Soil Biol. Biochem. 1975, 7, 359–364. [Google Scholar] [CrossRef]
- Boutroux L Conservation Des Ferments Alcooliques Dans La Nature. Ann. Sci. Nat. 1884, 17, 144–209.
- Herrera, C.M.; de Vega, C.; Canto, A.; Pozo, M.I. Yeasts in Floral Nectar: A Quantitative Survey. Ann. Bot. 2009, 103, 1415–1423. [Google Scholar] [CrossRef]
- Kevan, P.G.; Eisikowitch, D.; Fowle, S.; Thomas, K. Yeast-Contaminated Nectar and Its Effects on Bee Foraging. J. Apic. Res. 1988, 27, 26–29. [Google Scholar] [CrossRef]
- Sandhu, D.K.; Waraich, M.K. Yeasts Associated with Pollinating Bees and Flower Nectar. Microb. Ecol. 1985, 11, 51–58. [Google Scholar] [CrossRef]
- Ljunggren, J.; Borrero-Echeverry, F.; Chakraborty, A.; Lindblom, T.U.T.; Hedenström, E.; Karlsson, M.; Witzgall, P.; Bengtsson, M. Yeast Volatomes Differentially Affect Larval Feeding in an Insect Herbivore. Appl. Environ. Microbiol. 2019, 85, e01761-19. [Google Scholar] [CrossRef]
- Crowley-Gall, A.; Rering, C.C.; Rudolph, A.B.; Vannette, R.L.; Beck, J.J. Volatile Microbial Semiochemicals and Insect Perception at Flowers. Curr. Opin. Insect. Sci. 2021, 44, 23–34. [Google Scholar] [CrossRef]
- Zakir, A.; Khallaf, M.A.; Hansson, B.S.; Witzgall, P.; Anderson, P. Herbivore-Induced Changes in Cotton Modulates Reproductive Behavior in the Moth Spodoptera littoralis. Front. Ecol. Evol. 2017, 5, 49. [Google Scholar] [CrossRef] [Green Version]
- Blackwell, M. Made for Each Other: Ascomycete Yeasts and Insects. Microbiol. Spectr. 2017, 5, 945–962. [Google Scholar] [CrossRef] [PubMed]
- Stefanini, I. Yeast-Insect Associations: It Takes Guts. Yeast 2018, 35, 315–330. [Google Scholar] [CrossRef]
- Eisdcowitch, D.; Kevan, P.G.; Lachance, M.-A. The nectar-inhabiting yeasts and their effect on pollen germination in common milkweed, Asclepias syriaca L. Isr. J. Bot. 1990, 39, 217–225. [Google Scholar] [CrossRef]
- Eisikowitch, D.; Lachance, M.A.; Kevan, P.G.; Willis, S.; Collins-Thompson, D.L. The Effect of the Natural Assemblage of Microorganisms and Selected Strains of the Yeast Metschnikowia reukaufii in Controlling the Germination of Pollen of the Common Milkweed Asclepias syriaca. Can. J. Bot. 1990, 68, 1163–1165. [Google Scholar] [CrossRef]
- de Vega, C.; Herrera, C.M. Relationships among Nectar-Dwelling Yeasts, Flowers and Ants: Patterns and Incidence on Nectar Traits. Oikos 2012, 121, 1878–1888. [Google Scholar] [CrossRef]
- Zhou, J.; Jin, Q.; Peng, H.; Ye, H.; Qi, Q.; Zhu, T. Delaying the Decline of Germination Ability of Pecan Pollen by Yeast Pichia fermentans 15B1. Sci. Hortic. 2022, 304, 111301. [Google Scholar] [CrossRef]
- Colda, A.; Bossaert, S.; Verreth, C.; Vanhoutte, B.; Honnay, O.; Keulemans, W.; Lievens, B. Inoculation of Pear Flowers with Metschnikowia reukaufii and Acinetobacter nectaris Enhances Attraction of Honeybees and Hoverflies, but Does Not Increase Fruit and Seed Set. PLoS ONE 2021, 16, e0250203. [Google Scholar] [CrossRef]
- de Vega, C.; Albaladejo, R.G.; Álvarez-Pérez, S.; Herrera, C.M. Contrasting Effects of Nectar Yeasts on the Reproduction of Mediterranean Plant Species. Am. J. Bot. 2022, 109, 393–405. [Google Scholar] [CrossRef]
- Cooney, M.J.; Marison, I.W.; van Gulik, W.M.; von Stockar, U. Calorimetric and Stoichiometric Analysis of Growth of Kluyveromices fragilis in Continuous Culture: Nitrogen Limitation Imposed upon Carbon-Limited Growth. Appl. Microbiol. Biotechnol. 1996, 44, 643–653. [Google Scholar] [CrossRef]
- Lamprecht, I. Calorimetry and Thermodynamics of Living Systems. Thermochim. Acta 2003, 405, 1–13. [Google Scholar] [CrossRef]
- Herrera, C.M.; Pozo, M.I. Nectar Yeasts Warm the Flowers of a Winter-Blooming Plant. Proc. R. Soc. B Biol. Sci. 2010, 277, 1827–1834. [Google Scholar] [CrossRef] [PubMed]
- van der Kooi, C.J.; Kevan, P.G.; Koski, M.H. The Thermal Ecology of Flowers. Ann. Bot. 2019, 124, 343–353. [Google Scholar] [CrossRef] [PubMed]
- IndustryARCTM—Market Research Reports, Business Consulting Services & Analytics. Available online: https://www.industryarc.com/ (accessed on 19 August 2022).
- Acetaldehyde Market Value Worldwide 2015–2029 | Statista. Available online: https://www.statista.com/statistics/1244409/global-market-value-acetaldehyde/ (accessed on 19 August 2022).
- Martins, G.M.; Bocchini-Martins, D.A.; Bezzerra-Bussoli, C.; Pagnocca, F.C.; Boscolo, M.; Monteiro, D.A.; da Silva, R.; Gomes, E. The Isolation of Pentose-Assimilating Yeasts and Their Xylose Fermentation Potential. Braz. J. Microbiol. 2018, 49, 162–168. [Google Scholar] [CrossRef]
- Ethanol Market Size, Share & Trends Report, 2020–2027. Available online: https://www.grandviewresearch.com/industry-analysis/ethanol-market (accessed on 19 August 2022).
- Golonka, A.; Johnson, B.; Freeman, J.; Hinson, D.W. Impact of Nectarivorous Yeasts on Silene Caroliniana’s Scent. East. Biol. 2014, 3, 1–26. [Google Scholar]
- 2-Ethyl Hexanol Market | 2022—27 | Industry Share, Size, Growth—Mordor Intelligence. Available online: https://www.mordorintelligence.com/industry-reports/2-ethyl-hexanol-market (accessed on 19 August 2022).
- Quintana-Rodríguez, E.; Ramírez-Rodríguez, A.G.; Ramírez-Chávez, E.; Molina-Torres, J.; Camacho-Coronel, X.; Esparza-Claudio, J.; Heil, M.; Orona-Tamayo, D. Biochemical Traits in the Flower Lifetime of a Mexican Mistletoe Parasitizing Mesquite Biomass. Front Plant. Sci. 2018, 9, 1031. [Google Scholar] [CrossRef]
- Janisiewicz, W.J.; Tworkoski, T.J.; Kurtzman, C.P. Biocontrol Potential of Metchnikowia pulcherrima Strains Against Blue Mold of Apple. Phytopathology 2001, 91, 1098–1108. [Google Scholar] [CrossRef]
- Sanzani, S.M.; Sgaramella, M.; Mosca, S.; Solfrizzo, M.; Ippolito, A. Control of Penicillium expansum by an Epiphytic Basidiomycetous Yeast. Horticulturae 2021, 7, 473. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Droby, S. Metschnikowia Fructicola, a New Ascosporic Yeast with Potential for Biocontrol of Postharvest Fruit Rots. Syst. Appl. Microbiol. 2001, 24, 395–399. [Google Scholar] [CrossRef]
- Rering, C.C.; Gaffke, A.M.; Rudolph, A.B.; Beck, J.J.; Alborn, H.T. A Comparison of Collection Methods for Microbial Volatiles. Front. Sustain. Food Syst. 2020, 4, 598967. [Google Scholar] [CrossRef]
- Sobhy, I.S.; Goelen, T.; Herrera-Malaver, B.; Verstrepen, K.J.; Wäckers, F.; Jacquemyn, H.; Lievens, B. Associative Learning and Memory Retention of Nectar Yeast Volatiles in a Generalist Parasitoid. Anim. Behav. 2019, 153, 137–146. [Google Scholar] [CrossRef]
- Patrignani, F.; Vannini, L.; Gardini, F.; Guerzoni, M.E.; Lanciotti, R. Variability of the Lipolytic Activity and Volatile Molecules Production by a Strain of Yarrowia lipolytica in Pork Fat and Its Dependence on Environmental Conditions. Meat. Sci. 2011, 89, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wang, Z.; Yang, L.; Zhang, S.; Jia, K. YALI0C22088g from Yarrowia lipolytica Catalyses the Conversion of L-methionine into Volatile Organic Sulfur-containing Compounds. Microb. Biotechnol. 2021, 14, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Deng, G.-C.; Gong, Y.-B.; Huang, S.-Q. Nectar Yeasts Enhance the Interaction between Clematis akebioides and Its Bumblebee Pollinator. Plant Biol. 2019, 21, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Peach, D.A.H.; Carroll, C.; Meraj, S.; Gomes, S.; Galloway, E.; Balcita, A.; Coatsworth, H.; Young, N.; Uriel, Y.; Gries, R.; et al. Nectar-Dwelling Microbes of Common Tansy Are Attractive to Its Mosquito Pollinator, Culex pipiens L. BMC Ecol. Evol. 2021, 21, 29. [Google Scholar] [CrossRef]
- Lee, L.W.; Tay, G.Y.; Cheong, M.W.; Curran, P.; Yu, B.; Liu, S.Q. Modulation of the Volatile and Non-Volatile Profiles of Coffee Fermented with Yarrowia lipolytica: I. Green Coffee. LWT 2017, 77, 225–232. [Google Scholar] [CrossRef]
- Gul Jan, F.; Hamayun, M.; Hussain, A.; Jan, G.; Iqbal, A.; Khan, A.; Lee, I.-J. An Endophytic Isolate of the Fungus Yarrowia lipolytica Produces Metabolites That Ameliorate the Negative Impact of Salt Stress on the Physiology of Maize. BMC Microbiol. 2019, 19, 3. [Google Scholar] [CrossRef]
- Stegmann, P.; Londo, M.; Junginger, M. The Circular Bioeconomy: Its Elements and Role in European Bioeconomy Clusters. Resour. Conserv. Recycl. X 2020, 6, 100029. [Google Scholar] [CrossRef]
- Álvarez-Pérez, S.; Dhami, M.K.; Pozo, M.I.; Crauwels, S.; Verstrepen, K.J.; Herrera, C.M.; Lievens, B.; Jacquemyn, H. Genetic Admixture Increases Phenotypic Diversity in the Nectar Yeast Metschnikowia reukaufii. Fungal. Ecol. 2021, 49, 101016. [Google Scholar] [CrossRef]
- Lievens, B.; Hallsworth, J.E.; Pozo, M.I.; ben Belgacem, Z.; Stevenson, A.; Willems, K.A.; Jacquemyn, H. Microbiology of Sugar-Rich Environments: Diversity, Ecology and System Constraints. Environ. Microbiol. 2015, 17, 278–298. [Google Scholar] [CrossRef]
- Pozo, M.I.; Lachance, M.-A.; Herrera, C.M. Nectar Yeasts of Two Southern Spanish Plants: The Roles of Immigration and Physiological Traits in Community Assembly. FEMS Microbiol. Ecol. 2012, 80, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Pozo, M.I.; Herrera, C.M.; Lachance, M.-A.; Verstrepen, K.; Lievens, B.; Jacquemyn, H. Species Coexistence in Simple Microbial Communities: Unravelling the Phenotypic Landscape of Co-Occurring Metschnikowia Species in Floral Nectar. Environ. Microbiol. 2016, 18, 1850–1862. [Google Scholar] [CrossRef] [PubMed]
- Giehl, A.; Scapini, T.; Treichel, H.; Alves, S.L., Jr. Production of Volatile Organic Compounds by Yeasts in Biorefineries: Ecological, Environmental, And Biotechnological Outlooks. In Ciências Ambientais e da Saúde na Atualidade: Insights para Alcançar os Objetivos para o Desenvolvimento Sustentável; Instituto de Inteligência em Pesquisa e Consultoria Cientifica Ltd.: Concórdia, SC, Brazil, 2022; pp. 64–78. [Google Scholar]
- Geijer, C.; Ledesma-Amaro, R.; Tomás-Pejó, E. Unraveling the Potential of Non-Conventional Yeasts in Biotechnology. FEMS Yeast Res. 2022, 22, foab071. [Google Scholar] [CrossRef] [PubMed]
Plant Species | Sucrose (%) a | Glucose (%) a | Fructose (%) a | Amino Acids Detected b | References |
---|---|---|---|---|---|
Aconitum spp. c | 39.9–87.6 | 0–2.9 | 9.5–60.1 | - | [52] |
Antirhinum australe | 78.2 d | 9.4 d | 12.5 d | - | [61] |
Aquilegia spp. c | 96–98.4 | 1.0–2.5 | 0.6–1.5 | - | [61] |
Billbergia distachia | 69.5 | 14.8 | 15.3 | Ala, Asp, Arg, Asn, GABA, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Ser, Thr, Tyr, Val | [62] |
Cotoneaster spp. c | 0–11.2 | 22.9–75.0 | 25.0–65.9 | - | [63] |
Diplacus (Mimulus) aurantiacus | 66.6 d | 13.3 d | 20.1 d | Ala, Arg, Asp, CIT, GABA, Glu, His, Leu, Pro, Ser, Thr, Tyr, Val | [64] |
Gladiolus illyricus | 51.3 d | 30.7 d | 18.0 d | - | [61] |
Gentiana lutea | <1.5 d | 50.0–55.0 d | 45.0–50.0 d | Ala, BALA, Arg, Cys, CIT, L-HSE, GABA | [65] |
Iris spp. c | 71.4–94.1 | 3.6–18.6 | 2.3–10.0 | - | [61] |
Lonicera spp. c | 63.5–64.6 | 22.3–22.7 | 12.7–14.2 | - | [61] |
Marrubium supinum | 43.6 d | 26.7 d | 29.7 d | - | [61] |
Neottia ovata | 18.3 | 44.0 | 37.8 | Ala, BALA, Arg, Cys, AABA, GABA | [66] |
Nicotiana spp. c | 3.8–57.0 | 2.7–38.5 | 29.8–63.2 | AABA, Ala, Asn, Asp, BALA, GABA, Gln, Glu, Gly, His, Leu, Lys, Ile, ORN, Phe, Pro, Met, Ser, Thr, Trp, Tyr, Val | [67] |
Polemonium caeruleum | 42.1 e | 21.0 e | 32.8 e | Arg, BABA, Gln, Glu, His, Ile, Leu, Lys, Met, NVA, ORN, Phe, Pro, Ser, Thr, Val | [68] |
Vicia spp. c | 54.2–56.0 | 23.9–26.2 | 19.6–20.1 | - | [61] |
VOCs | Producing Yeasts | Industrial Application | References |
---|---|---|---|
Acetaldehyde | Aureobasidium pullulans Metschnikowia reukaufii Sporobolomyces roseus Hanseniaspora uvarum Yarrowia lipolytica | Adhesive Corrosion inhibitor Flavoring agent Personal care Pesticide Solvent | [88,112,158,159] |
Dimethyl disulfide | Metschnikowia reukaufii Metschnikowia gruessii Hanseniaspora uvarum Sporobolomyces roseus Yarrowia lipolytica | Flavoring agent | [112,158,160] |
Ethyl acetate | Metschnikowiareukaufii Sporobolomyces roseus Hanseniaspora uvarum Aureobasidium pullulans | Adhesive Household care Flavoring agent Furniture Medical supplies Motor oil Personal and pet care Paint composition Pesticide Pure chemical Solvent | [88,112,158] |
Ethanol | Rhodotorula sp. Metschnikowia koreensis Metschnikowia reukaufii Aureobasidium pullulans Yarrowia lipolytica | Antifoaming agent Antimicrobial active Astringent Defoamer Drying agent Flavoring agent Hand sanitizer Laboratory supplies Personal and pet care Sealant Stabilizing agent Surfactant Solvent | [88,112,133,149,151,158,159,161] |
2-phenyl ethanol | Aureobasidium pullulans Hanseniaspora uvarum Lachancea thermotolerans Metschnikowia reukaufii Yarrowia lipolytica | Flavoring agent Household care Personal care Pesticide Preservative | [88,112,158,162,163] |
2-methyl-1-butanol | Aureobasidium pullulans Hanseniaspora uvarum Metschnikowia gruessii Metschnikowia reukaufii Sporobolomyces roseus | Flavoring agent | [88,112,151,158,161] |
2-ethyl-1-hexanol | Aureobasidium pullulans Metschnikowia reukaufii | Additive Building materials Dispersant Flavoring agent Solvent | [88,151,161] |
Indole | Lachancea thermotolerans Yarrowia lipolytica | Flavoring agent Personal care | [162,164] |
Geranyl acetone | Lachancea thermotolerans | Flavoring agent | [162] |
Hexanoic acid | Lachancea thermotolerans Yarrowia lipolytica | Household care Cleansing Emulsifying Chemical Personal care Surfactant Solvent | [159,162] |
Benzyl alcohol | Lachancea thermotolerans | Antimicrobial Adhesive removers Binder Craft supplies Chemical synthesis Cleaning agent Curing agent Emulsifier Flavoring agent Personal and pet care Solvent Surfactant Viscosity modifier | [162] |
Acetic acid | Metschnikowia reukaufii Metschnikowia koreensis Yarrowia lipolytica | Antimicrobial agent Craft supplies Buffering agent Flavoring agent Household care Laboratory supplies Pesticide Refining agents | [151,159] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fenner, E.D.; Scapini, T.; da Costa Diniz, M.; Giehl, A.; Treichel, H.; Álvarez-Pérez, S.; Alves, S.L., Jr. Nature’s Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms. J. Fungi 2022, 8, 984. https://doi.org/10.3390/jof8100984
Fenner ED, Scapini T, da Costa Diniz M, Giehl A, Treichel H, Álvarez-Pérez S, Alves SL Jr. Nature’s Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms. Journal of Fungi. 2022; 8(10):984. https://doi.org/10.3390/jof8100984
Chicago/Turabian StyleFenner, Eduardo D., Thamarys Scapini, Mariana da Costa Diniz, Anderson Giehl, Helen Treichel, Sergio Álvarez-Pérez, and Sérgio L. Alves, Jr. 2022. "Nature’s Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms" Journal of Fungi 8, no. 10: 984. https://doi.org/10.3390/jof8100984
APA StyleFenner, E. D., Scapini, T., da Costa Diniz, M., Giehl, A., Treichel, H., Álvarez-Pérez, S., & Alves, S. L., Jr. (2022). Nature’s Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms. Journal of Fungi, 8(10), 984. https://doi.org/10.3390/jof8100984