DhDIT2 Encodes a Debaryomyces hansenii Cytochrome P450 Involved in Benzo(a)pyrene Degradation—A Proposal for Mycoremediation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains and Growth Conditions
2.2. Growth Assays
2.3. Cell Viability
2.4. Benzo(a)pyrene Degradation
2.5. Genetic Analysis and Heterologous Expression of a D. hansenii CYP Linked to benzo(a)pyrene Degradation
2.6. Cytochrome P450 Reductase (CPR) Activity
3. Results
3.1. Growth in BaP as Carbon Source
3.2. BaP Degradation and Selective Inhibition of Cytochrome P450 (CYP) by Piperonyl Butoxide (PBO)
3.3. Genetic and Expression Analysis of the CYP Enzymes Linked to BaP Metabolism
3.4. Plasmid Construction and the Expression of DhDIT2 in S. cerevisiae
3.5. BaP Degradation after 24 h Using a Higher Amount of Biomass
3.6. NADPH-Cytochrome C Reductase Activity after BaP Exposure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Department of Health and Human Services. ATSDR Toxicological Profile for Polycyclic Aromatic Hydrocarbons; U.S. Department of Health and Human Services: Atlanta, GA, USA, 1995; pp. 209–222.
- Ghosal, D.; Ghosh, S.; Dutta, T.K.; Ahn, Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A Review. Front. Microbiol. 2016, 7, 1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerniglia, C.E. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol. 1984, 30, 31–71. [Google Scholar] [CrossRef] [PubMed]
- Ostrem Loss, E.M.; Yu, J.H. Bioremediation and microbial metabolism of benzo(a)pyrene. Mol. Microbiol. 2018, 109, 433–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]pyrene—Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef] [PubMed]
- Bezza, F.A.; Chirwa, E.M.N. The Role of Lipopeptide Biosurfactant on Microbial Remediation of Aged Polycyclic Aromatic Hydrocarbons (PAHs)-Contaminated Soil. Chem. Eng. J. 2017, 309, 563–576. [Google Scholar] [CrossRef]
- Verma, N.; Pink, M.; Rettenmeier, A.W.; Schmitz-Spanke, S. Review on proteomic analyses of benzo[a]pyrene toxicity. Proteomics 2012, 12, 1731–1755. [Google Scholar] [CrossRef]
- Research Committee Report, 1984-Epa Nepis. Available online: https://nepis.epa.gov (accessed on 1 August 2022).
- Eionet Report—ETC/ATNI Benzo(a)Pyrene (B[a]P) Annual Mapping. Benzo(a)pyrene (BaP) annual mapping—Eionet. 2021. Available online: https://www.eionet.europa.eu (accessed on 1 August 2022).
- Saleh, S.A.K.; Adly, H.M.; Aljahdali, I.A.; Khafagy, A.A. Correlation of Occupational Exposure to Carcinogenic Polycyclic Aromatic Hydrocarbons (CPAHs) and Blood Levels of P53 and P21 Proteins. Biomolecules 2022, 12, 260. [Google Scholar] [CrossRef]
- Singare, P.U. Carcinogenic and Endocrine-Disrupting PAHs in the Aquatic Ecosystem of India. Environ. Monit. Assess. 2016, 188, 599. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency—IRIS. Toxicological Review of Benzo[a]pyrene [CASRN 50-32-8]. 2017. Available online: https://nepis.epa.gov (accessed on 1 August 2022).
- Aranda, E. Promising Approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr. Opin. Biotechnol. 2016, 38, 1–8. [Google Scholar] [CrossRef]
- Ward, O.; Singh, A.; van Hamme, J. Accelerated biodegradation of petroleum hydrocarbon waste. J. Ind. Microbiol. Biotechnol. 2003, 30, 260–270. [Google Scholar] [CrossRef]
- Cerniglia, C.E.; Sutherland, J.B. Degradation of polycyclic aromatic hydrocarbons by fungi. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 2079–2110. [Google Scholar]
- Ali, I.; Khaliq, S.; Sajid, S.; Akbar, A. Biotechnological applications of halophilic fungi: Past, present and future. In Fungi in Extreme Environments: Ecological Role and Biotechnological Significance; Springer International Publishing: Cham, Switzerland, 2019; pp. 291–306. [Google Scholar]
- Marco-Urrea, E.; García-Romera, I.; Aranda, E. Potential of non-ligninolytic Fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. N. Biotechnol. 2015, 32, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Ostrem Loss, E.M.; Lee, M.-K.; Wu, M.-Y.; Martien, J.; Chen, W.; Amador-Noguez, D.; Jefcoate, C.; Remucal, C.; Jung, S.; Kim, S.-C.; et al. Cytochrome P450 monooxygenase-mediated metabolic utilization of benzo[a]pyrene by Aspergillus species. mBio 2019, 10, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ide-Pérez, M.R.; Fernández-López, M.G.; Sánchez-Reyes, A.; Leija, A.; Batista-García, R.A.; Folch-Mallol, J.L.; Sánchez-Carbente, M.d.R. Aromatic hydrocarbon removal by novel extremotolerant Exophiala and Rhodotorula spp. from an oil polluted site in Mexico. J. Fungi. 2020, 6, 135. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ávila, L.; Peidro-Guzmán, H.; Pérez-Llano, Y.; Moreno-Perlín, T.; Sánchez-Reyes, A.; Aranda, E.; Ángeles de Paz, G.; Fernández-Silva, A.; Folch-Mallol, J.L.; Cabana, H.; et al. Tracking gene expression, metabolic profiles, and biochemical analysis in the halotolerant basidiomycetous yeast Rhodotorula mucilaginosa EXF-1630 during benzo[a]pyrene and phenanthrene biodegradation under hypersaline conditions. Environ. Pollut. 2021, 271, 116358. [Google Scholar] [CrossRef]
- Peidro-Guzmán, H.; Pérez-Llano, Y.; González-Abradelo, D.; Fernández-López, M.G.; Dávila-Ramos, S.; Aranda, E.; Hernández, D.R.O.; García, A.O.; Lira-Ruan, V.; Pliego, O.R.; et al. Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions. Environ. Microbiol. 2021, 23, 3435–3459. [Google Scholar] [CrossRef]
- Dehnen, W.; Tomingas, R.; Roos, J. A modified method for the assay of benzo[a]pyrene hydroxylase. Anal. Biochem. 1973, 53, 373–383. [Google Scholar] [CrossRef]
- Syed, K.; Doddapaneni, H.; Subramanian, V.; Lam, Y.W.; Yadav, J.S. Genome to function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem. Biophys. Res. Commun. 2010, 399, 492–497. [Google Scholar] [CrossRef] [Green Version]
- Morel, M.; Meux, E.; Mathieu, Y.; Thuillier, A.; Chibani, K.; Harvengt, L.; Jacquot, J.-P.; Gelhaye, E. Xenomic networks variability and adaptation traits in wood decaying fungi. Microb. Biotechnol. 2013, 6, 248–263. [Google Scholar] [CrossRef]
- Durairaj, P.; Hur, J.-S.; Yun, H. Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microb. Cell Factories 2016, 15, 125. [Google Scholar] [CrossRef] [Green Version]
- Prista, C.; Loureiro-Dias, M.C. Debaryomyces hansenii, a salt loving spoilage yeast. In A Portrait of State-of-the-Art Research at the Technical University of Lisbon; Springer: Dordrecht, The Netherlands, 2007; pp. 457–464. [Google Scholar]
- Bonugli-Santos, R.C.; dos Santos Vasconcelos, M.R.; Passarini, M.R.Z.; Vieira, G.A.L.; Lopes, V.C.P.; Mainardi, P.H.; dos Santos, J.A.; de Azevedo Duarte, L.; Otero, I.V.R.; da Silva Yoshida, A.M.; et al. Marine-derived fungi: Diversity of enzymes and biotechnological applications. Front. Microbiol. 2015, 6, 269. [Google Scholar] [CrossRef]
- Prista, C.; Michán, C.; Miranda, I.M.; Ramos, J. The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast 2016, 33, 523–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, D.R. The cytochrome P450 homepage. Hum. Genomics. 2009, 4, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Lee, S.; Choi, J.; Ahn, K.; Park, B.; Park, J.; Kang, S.; Lee, Y.-H. Fungal cytochrome P450 database. BMC Genom. 2008, 9, 402–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinsella, R.J.; Kahari, A.; Haider, S.; Zamora, J.; Proctor, G.; Spudich, G.; Almeida-King, J.; Staines, D.; Derwent, P.; Kerhornou, A.; et al. Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database 2011, 2011, bar030. [Google Scholar] [CrossRef] [PubMed]
- Cherry, J. SGD: Saccharomyces Genome Database. Nucleic Acids Res. 1998, 26, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Higgins, D.G. The Clustal Omega multiple alignment package. In Methods in Molecular Biology; Humana: New York, NY, USA, 2021; Volume 2231, pp. 3–16. [Google Scholar]
- Hittinger, C.T.; Rokas, A.; Bai, F.-Y.; Boekhout, T.; Gonçalves, P.; Jeffries, T.W.; Kominek, J.; Lachance, M.-A.; Libkind, D.; Rosa, C.A.; et al. Genomics and the making of yeast biodiversity. Curr. Opin. Genet. Dev. 2015, 35, 100–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel-Gietz, R.; Woods, R.A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2002; pp. 87–96. [Google Scholar]
- Kawai, S.; Hashimoto, W.; Murata, K. Transformation of Saccharomyces cerevisiae and other fungi. Bioeng. Bugs. 2010, 1, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Oliver, H.L.; Nira, J.R.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Markwell, M.A.K.; Haas, S.M.; Bieber, L.L.; Tolbert, N.E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 1978, 87, 206–210. [Google Scholar] [CrossRef]
- Cerniglia, C.E.; Crow, S.A. Metabolism of aromatic hydrocarbons by yeasts. Arch. Microbiol. 1981, 129, 9–13. [Google Scholar] [CrossRef]
- Papouskova, K.; Sychrova, H. The co-action of osmotic and high temperature stresses results in a growth improvement of Debaryomyces hansenii cells. Int. J. Food Microbiol. 2007, 118, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Berrocal, C.A.; Rivera-Vicens, R.E.; Nadathur, G.S. Draft genome sequence of the heavy metal tolerant marine yeast Debaryomyces hansenii J6. Genome Announc. 2016, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keserü, G.M.; Kolossváry, I.; Bertók, B. Piperonyl butoxide-mediated inhibition of cytochrome P450-catalysed insecticide metabolism: A rational approach. Pest. Sci. 1999, 55, 1004–1006. [Google Scholar] [CrossRef]
- Martinkova, M.; Kubickova, B.; Stiborova, M. Effects of cytochrome P450 inhibitors on peroxidase activity. Neuro Endocrinol. Lett. 2012, 33, 33–40. [Google Scholar] [PubMed]
- Chen, W.; Lee, M.-K.; Jefcoate, C.; Kim, S.-C.; Chen, F.; Yu, J.-H. Fungal cytochrome P450 monooxygenases: Their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol. Evol. 2014, 6, 1620–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Črešnar, B.; Petrič, Š. Cytochrome P450 Enzymes in the fungal kingdom. Biochim. Biophys. Acta Prot. Proteom. 2011, 1814, 29–35. [Google Scholar] [CrossRef]
- van den Brink, H.M.; van Gorcom, R.F.; van den Hondel, C.A.; Punt, P.J. Cytochrome P450 enzyme systems in fungi. Fungal Genet. Biol. 1998, 23, 1–17. [Google Scholar] [CrossRef]
- Guengerich, F.P.; Martin, M.V.; Sohl, C.D.; Cheng, Q. Measurement of cytochrome P450 and NADPH–Cytochrome P450 reductase. Nat. Protoc. 2009, 4, 1245–1251. [Google Scholar] [CrossRef] [Green Version]
- Péter, G.; Takashima, M.; Čadež, N. Yeast habitats: Different but global. In Yeasts in Natural Ecosystems: Ecology; Springer International Publishing: Cham, Switzerland, 2017; pp. 39–71. [Google Scholar]
- Juhasz, A.L.; Naidu, R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. Int. Biodeterior. Biodegrad. 2000, 45, 57–88. [Google Scholar] [CrossRef]
- Peng, R.-H.; Xiong, A.-S.; Xue, Y.; Fu, X.-Y.; Gao, F.; Zhao, W.; Tian, Y.-S.; Yao, Q.-H. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 2008, 32, 927–955. [Google Scholar] [CrossRef]
- Haritash, A.K.; Kaushik, C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kadri, T.; Rouissi, T.; Kaur Brar, S.; Cledon, M.; Sarma, S.; Verma, M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J Environ Sci. 2017, 51, 52–74. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, N.S.; Calahorra, M.; González, J.; Defosse, T.; Papon, N.; Peña, A.; Coria, R. Contribution of the mitogen-activated protein kinase Hog1 to the halotolerance of the marine yeast Debaryomyces hansenii. Curr. Genet. 2020, 66, 1135–1153. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, I.; Nagai, J.; Katsuki, H. Formation and metabolism of acetoacetate in yeast. J. Biochem. 1974, 75, 69–76. [Google Scholar] [CrossRef]
- Varjani, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Bezalel, L.; Hadar, Y.; Cerniglia, C.E. Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 1997, 63, 2495–2501. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.K.; Selvi, A.; Das, N. A Novel approach on degradation of benzo[a]pyrene by yeast consortium isolated from contaminated soil. Pharm. Lett. 2016, 8, 80–93. [Google Scholar]
- Hesham, A.E.-L.; Alrumman, S.A.; ALQahtani, A.D.S. Degradation of toluene hydrocarbon by isolated yeast strains: Molecular genetic approaches for identification and characterization. Russ. J. Genet. 2018, 54, 933–943. [Google Scholar] [CrossRef]
- O’Connor, S.T.F.; Lan, J.; North, M.; Loguinov, A.; Zhang, L.; Smith, M.T.; Gu, A.Z.; Vulpe, C. Genome-wide functional and stress response profiling reveals toxic mechanism and genes required for tolerance to benzo[a]pyrene in S. cerevisiae. Front. Genet. 2013, 3, 316. [Google Scholar] [CrossRef] [Green Version]
- Das, N.; Chandran, P. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011, 2011, 941810. [Google Scholar] [CrossRef] [Green Version]
- Yadav, J.S.; Loper, J.C. Multiple P450alk (cytochrome P450 alkane hydroxylase) genes from the halotolerant yeast Debaryomyces hansenii. Gene 1999, 226, 139–146. [Google Scholar] [CrossRef]
- Smit, M.S.; Mokgoro, M.M.; Setati, E.; Nicaud, J.-M. Preparation of dodecanol-tolerant strains of Yarrowia lipolytica. Biotechnol. Lett. 2004, 26, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.K.; Das, N. Biodegradation of perylene and benzo[ghi]perylene (5-6 rings) using yeast consortium: Kinetic study, enzyme analysis and degradation pathway. J Environ Biol. 2018, 39, 5–15. [Google Scholar] [CrossRef]
- Mandal, S.K.; Ojha, N.; Das, N. Optimization of process parameters for the yeast mediated degradation of benzo[a]pyrene in Presence of ZnO nanoparticles and produced biosurfactant using 3-level Box-Behnken design. Ecol. Eng. 2018, 120, 497–503. [Google Scholar] [CrossRef]
- Ahearn, D.G.; Roth, F.J.; Meyers, S.P. Ecology and characterization of yeasts from aquatic regions of South Florida. Mar. Biol. 1968, 1, 291–308. [Google Scholar] [CrossRef]
- Phaff, H.J. Ecology of yeasts with actual and potential value in biotechnology. Microb. Ecol. 1986, 12, 31–42. [Google Scholar] [CrossRef]
- Fedorak, P.M.; Semple, K.M.; Westlake, D.W.S. Oil-degrading capabilities of yeasts and fungi isolated from coastal marine environments. Can. J. Microbiol. 1984, 30, 565–571. [Google Scholar] [CrossRef]
- Middelhoven, W.J. Catabolism of benzene compounds by Ascomycetous and Basidiomycetous yeasts and yeastlike fungi. Antonie Van Leeuwenhoek 1993, 63, 125–144. [Google Scholar] [CrossRef]
- MacGillivray, A.R.; Shiaris, M.P. Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments. Appl. Environ. Microbiol. 1993, 59, 1613–1618. [Google Scholar] [CrossRef] [Green Version]
- Urban, P.; Truan, G.; Bellamine, A.; Laine, R.; Gautier, J.-C.; Pompon, D. Engineered yeasts simulating P450-dependent metabolisms: Tricks, myths and reality. Drug Metab. Drug Interac. 1994, 11, 169–200. [Google Scholar] [CrossRef]
- Doddapaneni, H.; Subramanian, V.; Yadav, J.S. Physiological regulation, xenobiotic induction, and heterologous expression of P450 monooxygenase gene Pc-3 (CYP63A3), a new member of the CYP63 gene cluster in the white-rot fungus Phanerochaete chrysosporium. Curr. Microbiol. 2005, 50, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Grigoriev, I.V.; Cullen, D.; Goodwin, S.B.; Hibbett, D.; Jeffries, T.W.; Kubicek, C.P.; Kuske, C.; Magnuson, J.K.; Martin, F.; Spatafora, J.W.; et al. Fueling the future with fungal genomics. Mycology 2011, 2, 192–209. [Google Scholar] [CrossRef]
- Grigoriev, I.V.; Nikitin, R.; Haridas, S.; Kuo, A.; Ohm, R.; Otillar, R.; Riley, R.; Salamov, A.; Zhao, X.; Korzeniewski, F.; et al. MycoCosm Portal: Gearing up for 1000 Fungal Genomes. Nucleic Acids Res. 2014, 42, D699–D704. [Google Scholar] [CrossRef]
- Yang, Y.; Yue, L.; Chen, S.; Wu, Y. Functional expression of Helicoverpa armigera CYP9A12 and CYP9A14 in Saccharomyces cerevisiae. Pestic. Biochem. Physiol. 2008, 92, 101–105. [Google Scholar] [CrossRef]
- Stamets, P. Helping the ecosystem through Mushroom Cultivation. Available online: https://fungi.com/blogs/articles/helping-the-ecosystem-through-mushroom-cultivation (accessed on 1 June 2022).
Primer | Sequence |
---|---|
dhdita | AATATGTCTACCGATAAATTAAAATCTTATGTTGAAGAAATATC |
dhditb | TATCTACTTATTTAAGGAAATAAAAACACCATCCTGATG |
dh450a | CATGGATCCAATATGTCTACCGATAAA |
dh450c | GCGGCCGCTATCTACTTATTTAAGGA |
% BaP Degradation without PBO * | % BaP Degradation with PBO * | |
---|---|---|
C. albicans | 77.0 ± 3.9 | 9.7 ± 2.5 |
D. hansenii | 84.1 ± 2.9 | 9.5 ± 1.9 |
R. mucilaginosa | 70.0 ± 4.9 | 14.9 ± 1.0 |
S. cerevisiae | 79.5 ± 2.9 | 9.7 ± 1.9 |
Strain | % BaP Degradation * |
---|---|
D. hansenii | 58.5 ± 2.7 |
S. cerevisiae BY4742 | 51.3 ± 4.2 |
S. cerevisiae dit2Δ | 9.8 ± 2.0 |
S. cerevisiae BY4742 pYES2-DhDIT2 | 66.4 ± 2.58 |
S. cerevisiae dit2Δ pYES2-DhDIT2 | 46.0 ± 3.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padilla-Garfias, F.; Sánchez, N.S.; Calahorra, M.; Peña, A. DhDIT2 Encodes a Debaryomyces hansenii Cytochrome P450 Involved in Benzo(a)pyrene Degradation—A Proposal for Mycoremediation. J. Fungi 2022, 8, 1150. https://doi.org/10.3390/jof8111150
Padilla-Garfias F, Sánchez NS, Calahorra M, Peña A. DhDIT2 Encodes a Debaryomyces hansenii Cytochrome P450 Involved in Benzo(a)pyrene Degradation—A Proposal for Mycoremediation. Journal of Fungi. 2022; 8(11):1150. https://doi.org/10.3390/jof8111150
Chicago/Turabian StylePadilla-Garfias, Francisco, Norma Silvia Sánchez, Martha Calahorra, and Antonio Peña. 2022. "DhDIT2 Encodes a Debaryomyces hansenii Cytochrome P450 Involved in Benzo(a)pyrene Degradation—A Proposal for Mycoremediation" Journal of Fungi 8, no. 11: 1150. https://doi.org/10.3390/jof8111150
APA StylePadilla-Garfias, F., Sánchez, N. S., Calahorra, M., & Peña, A. (2022). DhDIT2 Encodes a Debaryomyces hansenii Cytochrome P450 Involved in Benzo(a)pyrene Degradation—A Proposal for Mycoremediation. Journal of Fungi, 8(11), 1150. https://doi.org/10.3390/jof8111150