The Role of the Cutaneous Mycobiome in Atopic Dermatitis
Abstract
:1. Introduction
2. Materials and Methods
3. Methods of Identifying the Cutaneous Mycobiome
4. Mycobiome in Normal Skin
5. Cutaneous Mycobiome in Patients with Atopic Dermatitis
Cutaneous Mycobiome in Head and Neck Dermatitis
6. The Role of the Cutaneous Mycobiome in Atopic Dermatitis: Possible Pathways
6.1. Malassezia
6.1.1. Malassezia-Derived Allergens
6.1.2. Molecular Base for Malassezia Role in Head and Neck Dermatitis
6.2. Other Fungal Species
7. Therapeutic Implications
7.1. Baseline Therapy of Atopic Dermatitis
7.2. Antifungal Medications
7.3. Novel Treatments
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Langan, S.M.; Irvine, A.D.; Weidinger, S. Atopic Dermatitis. Lancet Lond. Engl. 2020, 396, 345–360. [Google Scholar] [CrossRef]
- Bieber, T. Atopic Dermatitis: An Expanding Therapeutic Pipeline for a Complex Disease. Nat. Rev. Drug Discov. 2022, 21, 21–40. [Google Scholar] [CrossRef] [PubMed]
- Gori, N.; Chiricozzi, A.; Marsili, F.; Ferrucci, S.M.; Amerio, P.; Battarra, V.; Campitiello, S.; Castelli, A.; Congedo, M.; Corazza, M.; et al. National Information Campaign Revealed Disease Characteristic and Burden in Adult Patients Suffering from Atopic Dermatitis. J. Clin. Med. 2022, 11, 5204. [Google Scholar] [CrossRef] [PubMed]
- Bieber, T.; Paller, A.S.; Kabashima, K.; Feely, M.; Rueda, M.J.; Ross Terres, J.A.; Wollenberg, A. Atopic Dermatitis: Pathomechanisms and Lessons Learned from Novel Systemic Therapeutic Options. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1432–1449. [Google Scholar] [CrossRef]
- Leyden, J.J.; Marples, R.R.; Kligman, A.M. Staphylococcus Aureus in the Lesions of Atopic Dermatitis. Br. J. Dermatol. 1974, 90, 525–530. [Google Scholar] [CrossRef]
- Leyden, J.J.; Marples, R.R. Ecologic Principles and Antibiotic Therapy in Chronic Dermatoses. Arch. Dermatol. 1973, 107, 208–211. [Google Scholar] [CrossRef]
- Kobayashi, T.; Glatz, M.; Horiuchi, K.; Kawasaki, H.; Akiyama, H.; Kaplan, D.H.; Kong, H.H.; Amagai, M.; Nagao, K. Dysbiosis and Staphylococcus Aureus Colonization Drives Inflammation in Atopic Dermatitis. Immunity 2015, 42, 756–766. [Google Scholar] [CrossRef] [Green Version]
- Blicharz, L.; Rudnicka, L.; Samochocki, Z. Staphylococcus Aureus: An Underestimated Factor in the Pathogenesis of Atopic Dermatitis? Postep. Dermatol. Alergol. 2019, 36, 11–17. [Google Scholar] [CrossRef]
- Hannigan, G.D.; Grice, E.A. Microbial Ecology of the Skin in the Era of Metagenomics and Molecular Microbiology. Cold Spring Harb. Perspect. Med. 2013, 3, a015362. [Google Scholar] [CrossRef] [Green Version]
- Ebihara, M.; Makimura, K.; Sato, K.; Abe, S.; Tsuboi, R. Molecular Detection of Dermatophytes and Nondermatophytes in Onychomycosis by Nested Polymerase Chain Reaction Based on 28S Ribosomal RNA Gene Sequences. Br. J. Dermatol. 2009, 161, 1038–1044. [Google Scholar] [CrossRef]
- Sugita, T.; Suto, H.; Unno, T.; Tsuboi, R.; Ogawa, H.; Shinoda, T.; Nishikawa, A. Molecular Analysis of Malassezia Microflora on the Skin of Atopic Dermatitis Patients and Healthy Subjects. J. Clin. Microbiol. 2001, 39, 3486–3490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobi, S.; Cafarchia, C.; Romano, V.; Barrs, V.R. Malassezia: Zoonotic Implications, Parallels and Differences in Colonization and Disease in Humans and Animals. J. Fungi 2022, 8, 708. [Google Scholar] [CrossRef] [PubMed]
- Gaitanis, G.; Magiatis, P.; Hantschke, M.; Bassukas, I.D.; Velegraki, A. The Malassezia Genus in Skin and Systemic Diseases. Clin. Microbiol. Rev. 2012, 25, 106–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kano, R.; Aizawa, T.; Nakamura, Y.; Watanabe, S.; Hasegawa, A. Chitin Synthase 2 Gene Sequence of Malassezia Species. Microbiol. Immunol. 1999, 43, 813–815. [Google Scholar] [CrossRef]
- Castellá, G.; Coutinho, S.D.A.; Cabañes, F.J. Phylogenetic Relationships of Malassezia Species Based on Multilocus Sequence Analysis. Med. Mycol. 2014, 52, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Halwachs, B.; Madhusudhan, N.; Krause, R.; Nilsson, R.H.; Moissl-Eichinger, C.; Högenauer, C.; Thallinger, G.G.; Gorkiewicz, G. Critical Issues in Mycobiota Analysis. Front. Microbiol. 2017, 8, 180. [Google Scholar] [CrossRef] [Green Version]
- Hoggard, M.; Vesty, A.; Wong, G.; Montgomery, J.M.; Fourie, C.; Douglas, R.G.; Biswas, K.; Taylor, M.W. Characterizing the Human Mycobiota: A Comparison of Small Subunit RRNA, ITS1, ITS2, and Large Subunit RRNA Genomic Targets. Front. Microbiol. 2018, 9, 2208. [Google Scholar] [CrossRef] [Green Version]
- Findley, K.; Oh, J.; Yang, J.; Conlan, S.; Deming, C.; Meyer, J.A.; Schoenfeld, D.; Nomicos, E.; Park, M.; NIH Intramural Sequencing Center Comparative Sequencing Program; et al. Topographic Diversity of Fungal and Bacterial Communities in Human Skin. Nature 2013, 498, 367–370. [Google Scholar] [CrossRef] [Green Version]
- Walters, W.; Hyde, E.R.; Berg-Lyons, D.; Ackermann, G.; Humphrey, G.; Parada, A.; Gilbert, J.A.; Jansson, J.K.; Caporaso, J.G.; Fuhrman, J.A.; et al. Improved Bacterial 16S RRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems 2016, 1, e00009-15. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-X.; Qin, Y.; Chen, T.; Lu, M.; Qian, X.; Guo, X.; Bai, Y. A Practical Guide to Amplicon and Metagenomic Analysis of Microbiome Data. Protein Cell 2021, 12, 315–330. [Google Scholar] [CrossRef]
- Cafarchia, C.; Gasser, R.B.; Figueredo, L.A.; Latrofa, M.S.; Otranto, D. Advances in the Identification of Malassezia. Mol. Cell. Probes 2011, 25, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hamm, P.S.; Mueller, R.C.; Kuske, C.R.; Porras-Alfaro, A. Keratinophilic Fungi: Specialized Fungal Communities in a Desert Ecosystem Identified Using Cultured-Based and Illumina Sequencing Approaches. Microbiol. Res. 2020, 239, 126530. [Google Scholar] [CrossRef] [PubMed]
- Berkow, E.L.; Lockhart, S.R.; Ostrosky-Zeichner, L. Antifungal Susceptibility Testing: Current Approaches. Clin. Microbiol. Rev. 2020, 33, e00069-19. [Google Scholar] [CrossRef] [PubMed]
- Leong, C.; Buttafuoco, A.; Glatz, M.; Bosshard, P.P. Antifungal Susceptibility Testing of Malassezia Spp. with an Optimized Colorimetric Broth Microdilution Method. J. Clin. Microbiol. 2017, 55, 1883–1893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaney, M.H.; Sandstrom, S.; Kalan, L.R. Cobamide Sharing Is Predicted in the Human Skin Microbiome. mSystems 2022, 7, e0067722. [Google Scholar] [CrossRef]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The Human Skin Microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Jo, J.-H.; Kennedy, E.A.; Kong, H.H. Topographical and Physiological Differences of the Skin Mycobiome in Health and Disease. Virulence 2017, 8, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Akaza, N.; Akamatsu, H.; Sasaki, Y.; Takeoka, S.; Kishi, M.; Mizutani, H.; Sano, A.; Hirokawa, K.; Nakata, S.; Matsunaga, K. Cutaneous Malassezia Microbiota of Healthy Subjects Differ by Sex, Body Part and Season. J. Dermatol. 2010, 37, 786–792. [Google Scholar] [CrossRef]
- Leong, C.; Schmid, B.; Toi, M.J.; Wang, J.; Irudayaswamy, A.S.; Goh, J.P.Z.; Bosshard, P.P.; Glatz, M.; Dawson, T.L. Geographical and Ethnic Differences Influence Culturable Commensal Yeast Diversity on Healthy Skin. Front. Microbiol. 2019, 10, 1891. [Google Scholar] [CrossRef] [Green Version]
- Faergemann, J. Atopic Dermatitis and Fungi. Clin. Microbiol. Rev. 2002, 15, 545–563. [Google Scholar] [CrossRef]
- Guého, E.; Midgley, G.; Guillot, J. The Genus Malassezia with Description of Four New Species. Antonie Leeuwenhoek 1996, 69, 337–355. [Google Scholar] [CrossRef] [PubMed]
- Boekhout, T.; Gueidan, C.; de Hoog, S.; Samson, R.; Varga, J.; Walther, G. Fungal Taxonomy: New Developments in Medically Important Fungi. Curr. Fungal Infect. Rep. 2009, 3, 170–178. [Google Scholar] [CrossRef]
- Gao, Z.; Perez-Perez, G.I.; Chen, Y.; Blaser, M.J. Quantitation of Major Human Cutaneous Bacterial and Fungal Populations. J. Clin. Microbiol. 2010, 48, 3575–3581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triana, S.; de Cock, H.; Ohm, R.A.; Danies, G.; Wösten, H.A.B.; Restrepo, S.; González Barrios, A.F.; Celis, A. Lipid Metabolic Versatility in Malassezia Spp. Yeasts Studied through Metabolic Modeling. Front. Microbiol. 2017, 8, 1772. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, D.; Nawrot, U. Tinea Pedis-An Embarrassing Problem for Health and Beauty-A Narrative Review. Mycoses 2021, 64, 1140–1150. [Google Scholar] [CrossRef]
- Nouripour-Sisakht, S.; Mirhendi, H.; Shidfar, M.R.; Ahmadi, B.; Rezaei-Matehkolaei, A.; Geramishoar, M.; Zarei, F.; Jalalizand, N. Aspergillus Species as Emerging Causative Agents of Onychomycosis. J. Mycol. Med. 2015, 25, 101–107. [Google Scholar] [CrossRef]
- Wójcik, A.; Kurnatowski, P.; Błaszkowska, J. Potentially Pathogenic Yeasts from Soil of Children’s Recreational Areas in the City of Łódź (Poland). Int. J. Occup. Med. Environ. Health 2013, 26, 477–487. [Google Scholar] [CrossRef]
- Li, X.; Wang, T.; Fu, B.; Mu, X. Improvement of Aquaculture Water Quality by Mixed Bacillus and Its Effects on Microbial Community Structure. Environ. Sci. Pollut. Res. Int. 2022, 29, 69731–69742. [Google Scholar] [CrossRef]
- Kim, H.-J.; Oh, H.N.; Park, T.; Kim, H.; Lee, H.G.; An, S.; Sul, W.J. Aged Related Human Skin Microbiome and Mycobiome in Korean Women. Sci. Rep. 2022, 12, 2351. [Google Scholar] [CrossRef]
- Sugita, T.; Suzuki, M.; Goto, S.; Nishikawa, A.; Hiruma, M.; Yamazaki, T.; Makimura, K. Quantitative Analysis of the Cutaneous Malassezia Microbiota in 770 Healthy Japanese by Age and Gender Using a Real-Time PCR Assay. Med. Mycol. 2010, 48, 229–233. [Google Scholar] [CrossRef]
- Zampino, M.R.; Osti, F.; Corazza, M.; Virgili, A. Prevalence of Pityriasis Versicolor in a Group of Italian Pregnant Women. J. Eur. Acad. Dermatol. Venereol. 2007, 21, 1249–1252. [Google Scholar] [CrossRef] [PubMed]
- Ward, T.L.; Dominguez-Bello, M.G.; Heisel, T.; Al-Ghalith, G.; Knights, D.; Gale, C.A. Development of the Human Mycobiome over the First Month of Life and across Body Sites. mSystems 2018, 3, e00140-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, T.; Duan, Y.-Y.; Kong, F.-Q.; Galzote, C.; Quan, Z.-X. Dynamics of Skin Mycobiome in Infants. Front. Microbiol. 2020, 11, 1790. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.-H.; Deming, C.; Kennedy, E.A.; Conlan, S.; Polley, E.C.; Ng, W.-I.; NISC Comparative Sequencing Program; Segre, J.A.; Kong, H.H. Diverse Human Skin Fungal Communities in Children Converge in Adulthood. J. Investig. Dermatol. 2016, 136, 2356–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.E.; Kim, H.S. Microbiome of the Skin and Gut in Atopic Dermatitis (AD): Understanding the Pathophysiology and Finding Novel Management Strategies. J. Clin. Med. 2019, 8, 444. [Google Scholar] [CrossRef] [Green Version]
- Selander, C.; Zargari, A.; Möllby, R.; Rasool, O.; Scheynius, A. Higher PH Level, Corresponding to That on the Skin of Patients with Atopic Eczema, Stimulates the Release of Malassezia Sympodialis Allergens. Allergy 2006, 61, 1002–1008. [Google Scholar] [CrossRef]
- Cork, M.J.; Danby, S.G.; Vasilopoulos, Y.; Hadgraft, J.; Lane, M.E.; Moustafa, M.; Guy, R.H.; Macgowan, A.L.; Tazi-Ahnini, R.; Ward, S.J. Epidermal Barrier Dysfunction in Atopic Dermatitis. J. Investig. Dermatol. 2009, 129, 1892–1908. [Google Scholar] [CrossRef]
- Sroka-Tomaszewska, J.; Trzeciak, M. Molecular Mechanisms of Atopic Dermatitis Pathogenesis. Int. J. Mol. Sci. 2021, 22, 4130. [Google Scholar] [CrossRef]
- Gupta, A.K.; Kohli, Y.; Summerbell, R.C.; Faergemann, J. Quantitative Culture of Malassezia Species from Different Body Sites of Individuals with or without Dermatoses. Med. Mycol. 2001, 39, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Jagielski, T.; Rup, E.; Ziółkowska, A.; Roeske, K.; Macura, A.B.; Bielecki, J. Distribution of Malassezia Species on the Skin of Patients with Atopic Dermatitis, Psoriasis, and Healthy Volunteers Assessed by Conventional and Molecular Identification Methods. BMC Dermatol. 2014, 14, 3. [Google Scholar] [CrossRef]
- Sandström Falk, M.H.; Tengvall Linder, M.; Johansson, C.; Bartosik, J.; Bäck, O.; Särnhult, T.; Wahlgren, C.-F.; Scheynius, A.; Faergemann, J. The Prevalence of Malassezia Yeasts in Patients with Atopic Dermatitis, Seborrhoeic Dermatitis and Healthy Controls. Acta Derm. Venereol. 2005, 85, 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faergemann, J. Pityrosporum Species as a Cause of Allergy and Infection. Allergy 1999, 54, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Johansson, C.; Sandström, M.H.; Bartosik, J.; Särnhult, T.; Christiansen, J.; Zargari, A.; Bäck, O.; Wahlgren, C.F.; Faergemann, J.; Scheynius, A.; et al. Atopy Patch Test Reactions to Malassezia Allergens Differentiate Subgroups of Atopic Dermatitis Patients. Br. J. Dermatol. 2003, 148, 479–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broberg, A.; Faergemann, J.; Johansson, S.; Johansson, S.G.; Strannegård, I.L.; Svejgaard, E. Pityrosporum Ovale and Atopic Dermatitis in Children and Young Adults. Acta Derm. Venereol. 1992, 72, 187–192. [Google Scholar] [CrossRef]
- Nakabayashi, A.; Sei, Y.; Guillot, J. Identification of Malassezia Species Isolated from Patients with Seborrhoeic Dermatitis, Atopic Dermatitis, Pityriasis Versicolor and Normal Subjects. Med. Mycol. 2000, 38, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Tajima, M.; Sugita, T.; Nishikawa, A.; Tsuboi, R. Molecular Analysis of Malassezia Microflora in Seborrheic Dermatitis Patients: Comparison with Other Diseases and Healthy Subjects. J. Investig. Dermatol. 2008, 128, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Yim, S.M.; Kim, J.Y.; Ko, J.H.; Lee, Y.W.; Choe, Y.B.; Ahn, K.J. Molecular Analysis of Malassezia Microflora on the Skin of the Patients with Atopic Dermatitis. Ann. Dermatol. 2010, 22, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Park, K.Y.; Han, H.S.; Lee, M.-K.; Seo, S.J. Comparative Analysis of Cutaneous Fungi in Atopic Dermatitis Patients and Healthy Individuals. Ann. Dermatol. 2022, 34, 118–124. [Google Scholar] [CrossRef]
- Abdillah, A.; Khelaifia, S.; Raoult, D.; Bittar, F.; Ranque, S. Comparison of Three Skin Sampling Methods and Two Media for Culturing Malassezia Yeast. J. Fungi 2020, 6, 350. [Google Scholar] [CrossRef]
- Arzumanyan, V.G.; Magarshak, O.O.; Semenov, B.F. Yeast Fungi in Patients with Allergic Diseases: Species Variety and Sensitivity to Antifungal Drugs. Bull. Exp. Biol. Med. 2000, 129, 601–604. [Google Scholar] [CrossRef]
- Javad, G.; Taheri Sarvtin, M.; Hedayati, M.T.; Hajheydari, Z.; Yazdani, J.; Shokohi, T. Evaluation of Candida Colonization and Specific Humoral Responses against Candida Albicans in Patients with Atopic Dermatitis. BioMed Res. Int. 2015, 2015, 849206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savolainen, J.; Lammintausta, K.; Kalimo, K.; Viander, M. Candida Albicans and Atopic Dermatitis. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 1993, 23, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Sugita, T.; Saito, M.; Ito, T.; Kato, Y.; Tsuboi, R.; Takeuchi, S.; Nishikawa, A. The Basidiomycetous Yeasts Cryptococcus Diffluens and C. Liquefaciens Colonize the Skin of Patients with Atopic Dermatitis. Microbiol. Immunol. 2003, 47, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Tajima, M.; Tsuboi, R.; Sugita, T. Sequence Diversity of the Intergenic Spacer Region of the RRNA Gene of Cryptococcus Albidus Isolated from the Skin of Patients with Atopic Dermatitis and Healthy Individuals. Microbiol. Immunol. 2013, 57, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Tanaka, T.; Tajima, M.; Tsuboi, R.; Nishikawa, A.; Sugita, T. Characterization of the Skin Fungal Microbiota in Patients with Atopic Dermatitis and in Healthy Subjects. Microbiol. Immunol. 2011, 55, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Dawson, T.L. Malassezia Globosa and Restricta: Breakthrough Understanding of the Etiology and Treatment of Dandruff and Seborrheic Dermatitis through Whole-Genome Analysis. J. Investig. Dermatol. Symp. Proc. 2007, 12, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Schmid, B.; Künstner, A.; Fähnrich, A.; Bersuch, E.; Schmid-Grendelmeier, P.; Busch, H.; Glatz, M.; Bosshard, P.P. Dysbiosis of Skin Microbiota with Increased Fungal Diversity Is Associated with Severity of Disease in Atopic Dermatitis. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1811–1819. [Google Scholar] [CrossRef]
- Han, S.H.; Cheon, H.I.; Hur, M.S.; Kim, M.J.; Jung, W.H.; Lee, Y.W.; Choe, Y.B.; Ahn, K.J. Analysis of the Skin Mycobiome in Adult Patients with Atopic Dermatitis. Exp. Dermatol. 2018, 27, 366–373. [Google Scholar] [CrossRef]
- Edslev, S.M.; Andersen, P.S.; Agner, T.; Saunte, D.M.L.; Ingham, A.C.; Johannesen, T.B.; Clausen, M.-L. Identification of Cutaneous Fungi and Mites in Adult Atopic Dermatitis: Analysis by Targeted 18S RRNA Amplicon Sequencing. BMC Microbiol. 2021, 21, 72. [Google Scholar] [CrossRef]
- Moosbrugger-Martinz, V.; Hackl, H.; Gruber, R.; Pilecky, M.; Knabl, L.; Orth-Höller, D.; Dubrac, S. Initial Evidence of Distinguishable Bacterial and Fungal Dysbiosis in the Skin of Patients with Atopic Dermatitis or Netherton Syndrome. J. Investig. Dermatol. 2021, 141, 114–123. [Google Scholar] [CrossRef]
- Chng, K.R.; Tay, A.S.L.; Li, C.; Ng, A.H.Q.; Wang, J.; Suri, B.K.; Matta, S.A.; McGovern, N.; Janela, B.; Wong, X.F.C.C.; et al. Whole Metagenome Profiling Reveals Skin Microbiome-Dependent Susceptibility to Atopic Dermatitis Flare. Nat. Microbiol. 2016, 1, 16106. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Kumari, N.; Bandyopadhyay, D.; Sinha, N.; Majumder, P.P.; Mitra, R.; Mukherjee, S. Dysbiotic Lesional Microbiome With Filaggrin Missense Variants Associate With Atopic Dermatitis in India. Front. Cell. Infect. Microbiol. 2020, 10, 570423. [Google Scholar] [CrossRef] [PubMed]
- Bjerre, R.D.; Holm, J.B.; Palleja, A.; Sølberg, J.; Skov, L.; Johansen, J.D. Skin Dysbiosis in the Microbiome in Atopic Dermatitis Is Site-Specific and Involves Bacteria, Fungus and Virus. BMC Microbiol. 2021, 21, 256. [Google Scholar] [CrossRef] [PubMed]
- Maarouf, M.; Saberian, C.; Lio, P.A.; Shi, V.Y. Head-and-Neck Dermatitis: Diagnostic Difficulties and Management Pearls. Pediatr. Dermatol. 2018, 35, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Darabi, K.; Hostetler, S.G.; Bechtel, M.A.; Zirwas, M. The Role of Malassezia in Atopic Dermatitis Affecting the Head and Neck of Adults. J. Am. Acad. Dermatol. 2009, 60, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Kaga, M.; Sugita, T.; Nishikawa, A.; Wada, Y.; Hiruma, M.; Ikeda, S. Molecular Analysis of the Cutaneous Malassezia Microbiota from the Skin of Patients with Atopic Dermatitis of Different Severities. Mycoses 2011, 54, e24–e28. [Google Scholar] [CrossRef]
- Zhang, E.; Tanaka, T.; Tajima, M.; Tsuboi, R.; Kato, H.; Nishikawa, A.; Sugita, T. Anti-Malassezia-Specific IgE Antibodies Production in Japanese Patients with Head and Neck Atopic Dermatitis: Relationship between the Level of Specific IgE Antibody and the Colonization Frequency of Cutaneous Malassezia Species and Clinical Severity. J. Allergy 2011, 2011, 645670. [Google Scholar] [CrossRef] [Green Version]
- Woo, Y.R.; Cho, M.; Han, Y.; Lee, S.H.; Cho, S.H.; Lee, J.D.; Kim, H.S. Characterization of Distinct Microbiota Associated with Scalp Dermatitis in Patients with Atopic Dermatitis. J. Clin. Med. 2022, 11, 1735. [Google Scholar] [CrossRef]
- Nowicka, D.; Nawrot, U. Contribution of Malassezia Spp. to the Development of Atopic Dermatitis. Mycoses 2019, 62, 588–596. [Google Scholar] [CrossRef]
- Sparber, F.; De Gregorio, C.; Steckholzer, S.; Ferreira, F.M.; Dolowschiak, T.; Ruchti, F.; Kirchner, F.R.; Mertens, S.; Prinz, I.; Joller, N.; et al. The Skin Commensal Yeast Malassezia Triggers a Type 17 Response That Coordinates Anti-Fungal Immunity and Exacerbates Skin Inflammation. Cell Host Microbe 2019, 25, 389–403.e6. [Google Scholar] [CrossRef]
- Buentke, E.; Heffler, L.C.; Wallin, R.P.; Löfman, C.; Ljunggren, H.G.; Scheynius, A. The Allergenic Yeast Malassezia Furfur Induces Maturation of Human Dendritic Cells. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2001, 31, 1583–1593. [Google Scholar] [CrossRef]
- Hau, C.S.; Kanda, N.; Makimura, K.; Watanabe, S. Antimycotics Suppress the Malassezia Extract-Induced Production of CXC Chemokine Ligand 10 in Human Keratinocytes. J. Dermatol. 2014, 41, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Kistowska, M.; Fenini, G.; Jankovic, D.; Feldmeyer, L.; Kerl, K.; Bosshard, P.; Contassot, E.; French, L.E. Malassezia Yeasts Activate the NLRP3 Inflammasome in Antigen-Presenting Cells via Syk-Kinase Signalling. Exp. Dermatol. 2014, 23, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Park, H.R.; Oh, J.H.; Lee, Y.J.; Park, S.H.; Lee, Y.W.; Lee, S.; Kang, H.; Kim, J.E. Inflammasome-Mediated Inflammation by Malassezia in Human Keratinocytes: A Comparative Analysis with Different Strains. Mycoses 2021, 64, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Agerberth, B.; Buentke, E.; Bergman, P.; Eshaghi, H.; Gabrielsson, S.; Gudmundsson, G.H.; Scheynius, A. Malassezia Sympodialis Differently Affects the Expression of LL-37 in Dendritic Cells from Atopic Eczema Patients and Healthy Individuals. Allergy 2006, 61, 422–430. [Google Scholar] [CrossRef]
- Selander, C.; Engblom, C.; Nilsson, G.; Scheynius, A.; Andersson, C.L. TLR2/MyD88-Dependent and -Independent Activation of Mast Cell IgE Responses by the Skin Commensal Yeast Malassezia Sympodialis. J. Immunol. Baltim. 2009, 182, 4208–4216. [Google Scholar] [CrossRef] [Green Version]
- Saunte, D.M.L.; Gaitanis, G.; Hay, R.J. Malassezia-Associated Skin Diseases, the Use of Diagnostics and Treatment. Front. Cell. Infect. Microbiol. 2020, 10, 112. [Google Scholar] [CrossRef]
- Johansson, C.; Eshaghi, H.; Linder, M.T.; Jakobson, E.; Scheynius, A. Positive Atopy Patch Test Reaction to Malassezia Furfur in Atopic Dermatitis Correlates with a T Helper 2-like Peripheral Blood Mononuclear Cells Response. J. Investig. Dermatol. 2002, 118, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Abdillah, A.; Ranque, S. Chronic Diseases Associated with Malassezia Yeast. J. Fungi 2021, 7, 855. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Sugita, T.; Nishikawa, A. Cytokine Secretion Profile of Human Keratinocytes Exposed to Malassezia Yeasts. FEMS Immunol. Med. Microbiol. 2006, 48, 400–409. [Google Scholar] [CrossRef]
- Gehrmann, U.; Qazi, K.R.; Johansson, C.; Hultenby, K.; Karlsson, M.; Lundeberg, L.; Gabrielsson, S.; Scheynius, A. Nanovesicles from Malassezia Sympodialis and Host Exosomes Induce Cytokine Responses—Novel Mechanisms for Host-Microbe Interactions in Atopic Eczema. PLoS ONE 2011, 6, e21480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaji, H.; Heratizadeh, A.; Wichmann, K.; Niebuhr, M.; Crameri, R.; Scheynius, A.; Werfel, T. Malassezia Sympodialis Thioredoxin-Specific T Cells Are Highly Cross-Reactive to Human Thioredoxin in Atopic Dermatitis. J. Allergy Clin. Immunol. 2011, 128, 92–99.e4. [Google Scholar] [CrossRef] [PubMed]
- Hiragun, T.; Ishii, K.; Hiragun, M.; Suzuki, H.; Kan, T.; Mihara, S.; Yanase, Y.; Bartels, J.; Schröder, J.-M.; Hide, M. Fungal Protein MGL_1304 in Sweat Is an Allergen for Atopic Dermatitis Patients. J. Allergy Clin. Immunol. 2013, 132, 608–615.e4. [Google Scholar] [CrossRef] [PubMed]
- Numata, T.; Takahagi, S.; Ishii, K.; Morioke, S.; Kan, T.; Mizuno, H.; Yanase, Y.; Kawaguchi, T.; Tanaka, A.; Hide, M. Immunological Changes of Basophil Hyperreactivity to Sweat in Patients With Well-Controlled Atopic Dermatitis. Front. Immunol. 2022, 13, 883605. [Google Scholar] [CrossRef]
- Johansson, H.J.; Vallhov, H.; Holm, T.; Gehrmann, U.; Andersson, A.; Johansson, C.; Blom, H.; Carroni, M.; Lehtiö, J.; Scheynius, A. Extracellular Nanovesicles Released from the Commensal Yeast Malassezia Sympodialis Are Enriched in Allergens and Interact with Cells in Human Skin. Sci. Rep. 2018, 8, 9182. [Google Scholar] [CrossRef] [Green Version]
- Vallhov, H.; Johansson, C.; Veerman, R.E.; Scheynius, A. Extracellular Vesicles Released From the Skin Commensal Yeast Malassezia Sympodialis Activate Human Primary Keratinocytes. Front. Cell. Infect. Microbiol. 2020, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Glatz, M.; Bosshard, P.P.; Hoetzenecker, W.; Schmid-Grendelmeier, P. The Role of Malassezia Spp. in Atopic Dermatitis. J. Clin. Med. 2015, 4, 1217–1228. [Google Scholar] [CrossRef] [Green Version]
- Kaffenberger, B.H.; Mathis, J.; Zirwas, M.J. A Retrospective Descriptive Study of Oral Azole Antifungal Agents in Patients with Patch Test-Negative Head and Neck Predominant Atopic Dermatitis. J. Am. Acad. Dermatol. 2014, 71, 480–483. [Google Scholar] [CrossRef]
- Navarro-Triviño, F.J.; Ayén-Rodríguez, Á. Study of Hypersensitivity to Malassezia Furfur in Patients with Atopic Dermatitis with Head and Neck Pattern: Is It Useful as a Biomarker and Therapeutic Indicator in These Patients? Life 2022, 12, 299. [Google Scholar] [CrossRef]
- Bayrou, O.; Pecquet, C.; Flahault, A.; Artigou, C.; Abuaf, N.; Leynadier, F. Head and Neck Atopic Dermatitis and Malassezia-Furfur-Specific IgE Antibodies. Dermatology 2005, 211, 107–113. [Google Scholar] [CrossRef]
- Svejgaard, E.; Larsen, P.Ø.; Deleuran, M.; Ternowitz, T.; Roed-Petersen, J.; Nilsson, J. Treatment of Head and Neck Dermatitis Comparing Itraconazole 200 Mg and 400 Mg Daily for 1 Week with Placebo. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Kozera, E.; Stewart, T.; Gill, K.; De La Vega, M.A.; Frew, J.W. Dupilumab-Associated Head and Neck Dermatitis Is Associated with Elevated Pretreatment Serum Malassezia-Specific IgE: A Multicentre, Prospective Cohort Study. Br. J. Dermatol. 2022, 186, 1050–1052. [Google Scholar] [CrossRef] [PubMed]
- Bax, C.E.; Khurana, M.C.; Treat, J.R.; Castelo-Soccio, L.; Rubin, A.I.; McMahon, P.J. New-Onset Head and Neck Dermatitis in Adolescent Patients after Dupilumab Therapy for Atopic Dermatitis. Pediatr. Dermatol. 2021, 38, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez-Rubiano, M.F.; Casas, M.; Balaguera-Orjuela, V. Dupilumab Facial Redness: Clinical Characteristics and Proposed Treatment in a Cohort. Dermatol. Ther. 2021, 34, e15140. [Google Scholar] [CrossRef]
- Harb, H.; Chatila, T.A. Mechanisms of Dupilumab. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2020, 50, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Choy, D.F.; Hart, K.M.; Borthwick, L.A.; Shikotra, A.; Nagarkar, D.R.; Siddiqui, S.; Jia, G.; Ohri, C.M.; Doran, E.; Vannella, K.M.; et al. TH2 and TH17 Inflammatory Pathways Are Reciprocally Regulated in Asthma. Sci. Transl. Med. 2015, 7, 301ra129. [Google Scholar] [CrossRef] [Green Version]
- Tokura, Y.; Hayano, S. Subtypes of Atopic Dermatitis: From Phenotype to Endotype. Allergol. Int. Off. J. Jpn. Soc. Allergol. 2022, 71, 14–24. [Google Scholar] [CrossRef]
- Guglielmo, A.; Sechi, A.; Patrizi, A.; Gurioli, C.; Neri, I. Head and Neck Dermatitis, a Subtype of Atopic Dermatitis Induced by Malassezia Spp: Clinical Aspects and Treatment Outcomes in Adolescent and Adult Patients. Pediatr. Dermatol. 2021, 38, 109–114. [Google Scholar] [CrossRef]
- Kobiela, A.; Frackowiak, J.E.; Biernacka, A.; Hovhannisyan, L.; Bogucka, A.E.; Panek, K.; Paul, A.A.; Lukomska, J.; Wang, X.; Giannoulatou, E.; et al. Exposure of Keratinocytes to Candida Albicans in the Context of Atopic Milieu Induces Changes in the Surface Glycosylation Pattern of Small Extracellular Vesicles to Enhance Their Propensity to Interact With Inhibitory Siglec Receptors. Front. Immunol. 2022, 13, 884530. [Google Scholar] [CrossRef]
- Orfali, R.L.; Sato, M.N.; Takaoka, R.; Azor, M.H.; Rivitti, E.A.; Hanifin, J.M.; Aoki, V. Atopic Dermatitis in Adults: Evaluation of Peripheral Blood Mononuclear Cells Proliferation Response to Staphylococcus Aureus Enterotoxins A and B and Analysis of Interleukin-18 Secretion. Exp. Dermatol. 2009, 18, 628–633. [Google Scholar] [CrossRef]
- Tanaka, M.; Aiba, S.; Takahashi, K.; Tagami, H. Reduced Proliferative Responses of Peripheral Blood Mononuclear Cells Specifically to Candida Albicans Antigen in Patients with Atopic Dermatitis—Comparison with Their Normal Reactivity to Bacterial Superantigens. Arch. Dermatol. Res. 1996, 288, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, J.; Lintu, P.; Kosonen, J.; Kortekangas-Savolainen, O.; Viander, M.; Pène, J.; Kalimo, K.; Terho, E.O.; Bousquet, J. Pityrosporum and Candida Specific and Non-Specific Humoral, Cellular and Cytokine Responses in Atopic Dermatitis Patients. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2001, 31, 125–134. [Google Scholar]
- Savolainen, J.; Kosonen, J.; Lintu, P.; Viander, M.; Pène, J.; Kalimo, K.; Terho, E.O.; Bousquet, J. Candida Albicans Mannan- and Protein-Induced Humoral, Cellular and Cytokine Responses in Atopic Dermatitis Patients. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 1999, 29, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Campione, E.; Cosio, T.; Lanna, C.; Mazzilli, S.; Ventura, A.; Dika, E.; Gaziano, R.; Dattola, A.; Candi, E.; Bianchi, L. Predictive Role of Vitamin A Serum Concentration in Psoriatic Patients Treated with IL-17 Inhibitors to Prevent Skin and Systemic Fungal Infections. J. Pharmacol. Sci. 2020, 144, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Pistoia, E.S.; Cosio, T.; Campione, E.; Pica, F.; Volpe, A.; Marino, D.; Di Francesco, P.; Monari, C.; Fontana, C.; Favaro, M.; et al. All-Trans Retinoic Acid Effect on Candida Albicans Growth and Biofilm Formation. J. Fungi 2022, 8, 1049. [Google Scholar] [CrossRef]
- Kosonen, J.; Lintu, P.; Kortekangas-Savolainen, O.; Kalimo, K.; Terho, E.O.; Savolainen, J. Immediate Hypersensitivity to Malassezia Furfur and Candida Albicans Mannans in Vivo and in Vitro. Allergy 2005, 60, 238–242. [Google Scholar] [CrossRef]
- Chang, F.-Y.; Lee, J.-H.; Yang, Y.-H.; Yu, H.-H.; Wang, L.-C.; Lin, Y.-T.; Chiang, B.-L. Analysis of the Serum Levels of Fungi-Specific Immunoglobulin E in Patients with Allergic Diseases. Int. Arch. Allergy Immunol. 2011, 154, 49–56. [Google Scholar] [CrossRef]
- Celakovska, J.; Vankova, R.; Bukac, J.; Cermakova, E.; Andrys, C.; Krejsek, J. Atopic Dermatitis and Sensitisation to Molecular Components of Alternaria, Cladosporium, Penicillium, Aspergillus, and Malassezia-Results of Allergy Explorer ALEX 2. J. Fungi 2021, 7, 183. [Google Scholar] [CrossRef]
- Sonesson, A.; Bartosik, J.; Christiansen, J.; Roscher, I.; Nilsson, F.; Schmidtchen, A.; Bäck, O. Sensitization to Skin-Associated Microorganisms in Adult Patients with Atopic Dermatitis Is of Importance for Disease Severity. Acta Derm. Venereol. 2013, 93, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Nenoff, P.; Müller, B.; Sander, U.; Kunze, G.; Bröker, M.; Haustein, U.F. IgG and IgE Immune Response against the Surface Glycoprotein Gp200 of Saccharomyces Cerevisiae in Patients with Atopic Dermatitis. Mycopathologia 2001, 152, 15–21. [Google Scholar] [CrossRef]
- Kimura, M.; Tsuruta, S.; Yoshida, T. IFN-Gamma Plays a Dominant Role in Upregulation of Candida-Specific IgE Synthesis in Patients with Atopic Dermatitis. Int. Arch. Allergy Immunol. 2000, 122, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Sugita, T.; Ishibashi, Y.; Nishikawa, A. Evaluation of the Levels of Specific IgE against Cryptococcus Diffluens and Cryptococcus Liquefaciens in Patients with Atopic Dermatitis. Microbiol. Immunol. 2007, 51, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Jinnestål, C.L.; Belfrage, E.; Bäck, O.; Schmidtchen, A.; Sonesson, A. Skin Barrier Impairment Correlates with Cutaneous Staphylococcus Aureus Colonization and Sensitization to Skin-Associated Microbial Antigens in Adult Patients with Atopic Dermatitis. Int. J. Dermatol. 2014, 53, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Zinkeviciene, A.; Girkontaite, I.; Citavicius, D. Specific Immunoglobulin E Antibodies to Saprophytic Yeasts in Sera of Atopic Patients Allergic to House Dust Mites. J. Investig. Allergol. Clin. Immunol. 2012, 22, 412–418. [Google Scholar]
- Thammahong, A.; Kiatsurayanon, C.; Edwards, S.W.; Rerknimitr, P.; Chiewchengchol, D. The Clinical Significance of Fungi in Atopic Dermatitis. Int. J. Dermatol. 2020, 59, 926–935. [Google Scholar] [CrossRef]
- Rhimi, W.; Theelen, B.; Boekhout, T.; Aneke, C.I.; Otranto, D.; Cafarchia, C. Conventional Therapy and New Antifungal Drugs against Malassezia Infections. Med. Mycol. 2021, 59, 215–234. [Google Scholar] [CrossRef]
- Tao, R.; Li, R.; Wang, R. Dysbiosis of Skin Mycobiome in Atopic Dermatitis. Mycoses 2022, 65, 285–293. [Google Scholar] [CrossRef]
- Wollenberg, A.; Barbarot, S.; Bieber, T.; Christen-Zaech, S.; Deleuran, M.; Fink-Wagner, A.; Gieler, U.; Girolomoni, G.; Lau, S.; Muraro, A.; et al. Consensus-Based European Guidelines for Treatment of Atopic Eczema (Atopic Dermatitis) in Adults and Children: Part I. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 657–682. [Google Scholar] [CrossRef] [Green Version]
- Chandra, J.; Retuerto, M.; Seité, S.; Martin, R.; Kus, M.; Ghannoum, M.A.; Baron, E.; Mukherjee, P.K. Effect of an Emollient on the Mycobiome of Atopic Dermatitis Patients. J. Drugs Dermatol. 2018, 17, 1039–1048. [Google Scholar]
- Kanda, N.; Enomoto, U.; Watanabe, S. Anti-Mycotics Suppress Interleukin-4 and Interleukin-5 Production in Anti-CD3 plus Anti-CD28-Stimulated T Cells from Patients with Atopic Dermatitis. J. Investig. Dermatol. 2001, 117, 1635–1646. [Google Scholar] [CrossRef] [Green Version]
- Sugita, T.; Tajima, M.; Ito, T.; Saito, M.; Tsuboi, R.; Nishikawa, A. Antifungal Activities of Tacrolimus and Azole Agents against the Eleven Currently Accepted Malassezia Species. J. Clin. Microbiol. 2005, 43, 2824–2829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollenberg, A.; Barbarot, S.; Bieber, T.; Christen-Zaech, S.; Deleuran, M.; Fink-Wagner, A.; Gieler, U.; Girolomoni, G.; Lau, S.; Muraro, A.; et al. Consensus-Based European Guidelines for Treatment of Atopic Eczema (Atopic Dermatitis) in Adults and Children: Part II. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 850–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozera, E.; Flora, A.; Stewart, T.; Gill, K.; Xu, J.; De La Vega, M.A.; Frew, J.W. Dupilumab-Associated Head and Neck Dermatitis Resolves Temporarily with Itraconazole Therapy and Rapidly with Transition to Upadacitinib, with Malassezia-Specific Immunoglobulin E Levels Mirroring Clinical Response. J. Am. Acad. Dermatol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Logan, A.; Wolfe, A.; Williamson, J.C. Antifungal Resistance and the Role of New Therapeutic Agents. Curr. Infect. Dis. Rep. 2022, 24, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Vairagkar, U.; Mirza, Y. Antagonistic Activity of Antimicrobial Metabolites Produced from Seaweed-Associated Bacillus Amyloliquefaciens MTCC 10456 Against Malassezia Spp. Probiotics Antimicrob. Proteins 2021, 13, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Chae, M.; Kim, B.J.; Na, J.; Kim, S.-Y.; Lee, J.O.; Kim, Y.-J.; Lee, E.; Cho, D.; Roh, J.; Kim, W. Antimicrobial Activity of Lactiplantibacillus Plantarum APsulloc 331261 and APsulloc 331266 against Pathogenic Skin Microbiota. Front. Biosci. Elite Ed. 2021, 13, 237–248. [Google Scholar] [CrossRef]
- Sastoque, A.; Triana, S.; Ehemann, K.; Suarez, L.; Restrepo, S.; Wösten, H.; de Cock, H.; Fernández-Niño, M.; González Barrios, A.F.; Celis Ramírez, A.M. New Therapeutic Candidates for the Treatment of Malassezia Pachydermatis -Associated Infections. Sci. Rep. 2020, 10, 4860. [Google Scholar] [CrossRef] [Green Version]
- Mayser, P. Medium Chain Fatty Acid Ethyl Esters—Activation of Antimicrobial Effects by Malassezia Enzymes. Mycoses 2015, 58, 215–219. [Google Scholar] [CrossRef]
- da Silva, G.O.; Farias, B.C.S.; da Silva, R.B.; Teixeira, E.H.; de Aguiar Cordeiro, R.; Hissa, D.C.; Melo, V.M.M. Effects of Lipopeptide Biosurfactants on Clinical Strains of Malassezia Furfur Growth and Biofilm Formation. Med. Mycol. 2021, 59, 1191–1201. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, B.J.; Kim, M.N. Photodynamic Therapy: New Treatment for Recalcitrant Malassezia Folliculitis. Lasers Surg. Med. 2010, 42, 192–196. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, H.I.; Kim, M.N.; Kim, B.J.; Chun, Y.-J.; Kim, D. Topical Photodynamic Therapy with Methyl Aminolevulinate May Be an Alternative Therapeutic Option for the Recalcitrant Malassezia Folliculitis. Int. J. Dermatol. 2011, 50, 488–490. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.H.; Jeong, M.Y.; Park, K.C.; Youn, S.W.; Huh, C.H.; Na, J.I. A New Therapeutic Option for Facial Seborrhoeic Dermatitis: Indole-3-Acetic Acid Photodynamic Therapy. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Cho, Y.-J.; Kim, D.; Yang, C.-S.; Lee, S.M.; Dawson, T.L.; Nakamizo, S.; Kabashima, K.; Lee, Y.W.; Jung, W.H. A Novel Virus Alters Gene Expression and Vacuolar Morphology in Malassezia Cells and Induces a TLR3-Mediated Inflammatory Immune Response. mBio 2020, 11, e01521-20. [Google Scholar] [CrossRef]
- Górski, A.; Bollyky, P.L.; Przybylski, M.; Borysowski, J.; Międzybrodzki, R.; Jończyk-Matysiak, E.; Weber-Dąbrowska, B. Perspectives of Phage Therapy in Non-Bacterial Infections. Front. Microbiol. 2018, 9, 3306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
First Author (Year) | Methodology | Study Population (Number (Sex), Age) | Analyzed Locations | Treatment | Main Findings | Study Limitations | |
---|---|---|---|---|---|---|---|
AD Patients | Healthy Controls | ||||||
Choi (2022) | skin swabs ⟶ real-time qPCR | 211 (NR), NR; | 23 (NR), NR | antecubital fossa | EC: oral or topical antifungals (used within 4 weeks prior to the study) | C. albicans and C. parapsilosis most prevalent; Candida colonization more frequent in AD than in HC | small control group; lack of information about age, sex, and disease severity |
Schmid (2022) | skin swabs ⟶ ITS amplicon sequencing | 16 (NR), adults; | 16 (NR), adults | antecubital fossa, dorsal neck, glabella, vertex | EC: antibiotics or antifungals (within 6 months prior to the study); 14 of 16 AD patients applied topical steroids | M. restricta and M. globosa most prevalent; decreased M. restricta dominance in severe AD patients | small study population; following regular skin care habits; lack of follow-up; various locations difficult to compare; lack of information about age and sex of the study population |
Bjerre (2021) | skin swabs ⟶ shotgun metagenomic sequencing | 10 (3 M, 7 F), 24–62 y; | 5 (2 M, 3 F), 27–63 y | 14 locations | EC: antibiotics or probiotics (within 4 weeks prior to the study) 4 AD patients received systemic treatment (not specified) | Malassezia less prevalent in AD than HC | small study population, failure in sequencing a substantial number of samples (insufficient biomass); AD patients undergoing systemic treatment included; use of DNA extraction protocol optimized for bacteria; reference databases lack annotations for some organisms (M. restricta) |
Moosbrugger-Martinz (2021) | skin swabs ⟶ ITS amplicon sequencing | 17 (NR), NR; | 9 (NR), NR | popliteal fossa, scapular region | NR | Ascomycota and Cladosporium more frequent in AD than HC | small study population; lack of information about age, sex, and treatment in the study population |
Nath (2020) | skin swabs ⟶ shotgun metagenomic sequencing | 18 adults (12 M, 6 F), 18–57 y; 16 children (8 M, 8 F), 2–16 y; | 54 (NR), 18–57 y | antecubital fossa, neck | EC: antibiotics (within 2 weeks) or any topical cream (within 1 week prior to the study) | M. globosa less prevalent in AD than HC | small study population; heterogenous age of the study population |
Han (2018) | skin swabs ⟶ ITS amplicon sequencing | 10 (NR), NR; | 10 (NR), NR | antecubital fossa | EC: oral antifungals, anti-inflammatory drugs, immunomodulators including steroids (within 4 weeks prior to the study); topical antifungals, steroids or calcineurin inhibitors (within 2 weeks prior to the study) | high mycobiome diversity in AD; M. sloofiae and M. dermatis characteristic of AD | small study population; some isolates might be “transit” microorganisms; lack of information about age and sex of the study population |
Chng (2016) | tape stripping, skin swabs, cup scrub samples ⟶ shotgun metagenomic sequencing | 19 adults (8 ± 1 M, 12 ± 1 F) *, mean 23.1 y; | 15 adults (8 M, 7 F), mean 24.1 y | antecubital fossa, retroauricular crease | NR | M. restricta and M. globosa most prevalent; M. sympodialis and M. dermatis characteristic for AD | small study population |
Javad (2015) | oral swabs, skin scraps ⟶ culture, D1/D2 26S rRNA sequencing | 100 (27 M, 73 F), mean 12.1 ± 11.5 y; | 50 (22 M, 28 F), mean 39.9 ± 11.45 y | skin, oral cavity | NR | no significant difference between Candida colonization in AD patients and HC | no information about the treatment |
Jagielski (2014) | skin swabs ⟶ culture, PCR-RFLP | 6 (3 M, 3 F), 22–31 y; | 6 (3 M, 3 F), 27–70 y | head, face, chest, back | 5 AD patients received topical treatment (emollients/ corticosteroids/ calcineurin inhibitors/ antibiotics) and systemic antihistaminics; 1 AD patient received topical treatment and systemic cyclosporin | M. sympodialis most prevalent | use of culture-based approach, possible bias due to treatment |
Zhang (2013) | tape stripping ⟶ D1/D2 26S rRNA sequencing | 61 (NR), NR; | 40 (NR), NR | lesional regions on the face and neck | routine skincare, mild steroid ointment permitted prior to the study | Cryptococcus albidus colonization more frequent in AD than HC | lack of information about age and sex of the study population; possible bias due to treatment |
Zhang (2011) | tape stripping ⟶ D1/D2 26S rRNA sequencing | 9 (NR), NR; | 10 (5 M, 5 F), adults | face (lesional site) | medium to strong steroid ointments permitted prior to the study; none of the subjects had received systemic/ topical antibiotics or antifungals | Malassezia predominant; Malassezia colonization more frequent in AD than HC; mycobiota differs between patients with mild-to-moderate and severe disease | small study population; possible bias due to treatment |
Yim (2010) | skin swabs ⟶ culture, PCR-RFLP | 60 (30 M, 30 F), 0–30 y | - | scalp, cheek, chest, arm, thigh | EC: systemic glucocorticoids, systemic antifungals, ultraviolet phototherapy (within 2 months prior to the study); topical antifungals (1 month prior to the study); topical corticosteroids (1 week prior to the study); emollients and showers were not allowed on the day of the study | M. sympodialis most prevalent; highest colonization on scalp; M. sympodialis most common on chest; M. restricta most common on scalp and cheeks | heterogenous age of the study population; lack of control group |
Tajima (2008) | tape stripping ⟶ nested PCR | 36 (24 M, 12 F), 20–64 y; | 30 (12 M, 18 F), 20–53 y | face, neck, lesional skin | NR | M. restricta and M. globosa most prevalent; Malassezia colonization more frequent in AD than HC | lack of information about the treatment |
Sandström Falk (2005) | contact plates ⟶ culture-based typing (Sabouraud’s agar growth, catalase reaction, Cremophor EL, esculine splitting, Dixon’s agar growth at 38 °C) | 124 (42 M, 82 F), adults; | 31 (2 M, 29 F), adults | upper back, lesional skin (mainly upper trunk) | NR | M. sympodialis most prevalent; Malassezia colonization less frequent in AD than HC | lack of information about the treatment |
Sugita (2003) | tape stripping ⟶ culture, nested PCR | 36 (24 M, 12 F), 20–64 y; | 30 (10 M, 20 F), 19–25 y | erythematous lesions on the face and neck | routine skin care, mild steroid ointment permitted prior to the study | Cryptococcus diffluens and C. liquefaciens colonization more frequent in AD than HC | small study population; possible bias due to treatment |
Gupta (2001) | contact plates ⟶ culture-based typing (microscopic observation, catalase reaction, Sabouraud’s agar growth with Tween test; PCR-RFLP of the ITS region to distinguish M. sympodialis from M. furfur and M. sloofiae) | AD: 31 adults (17 M, 14 F), mean 41.3 y; | HC: 20 adults (6 M, 14 F), mean 38.3 y | forehead, arm, trunk, and leg | EC: topical treatment (within 2 weeks prior to the study); oral treatment (within 4 weeks) | M. sympodialis most prevalent; Mallassezia colonization lower on lesional sites; highest colonization on the forehead | small study population; molecular identification performed only to distinguish between M. sympodialis and M. sloofiae |
Sugita (2001) | tape stripping ⟶ nested PCR | 32 (NR), NR; | 18 (NR), NR | scalp, back, nape, lesional skin | NR | M. restricta and M. globosa most prevalent; Malassezia colonization more frequent in AD than HC; increased sensitization to Malassezia antigens | small study population; lack of information about age, sex, and treatment of the study population |
Arzumanyan (2000) | harvesting method not specified ⟶ culture-based typing (morphological, cytological, and physicobiochemical tests; unspecified) | 91 (NR), 0.25–36 y | - | mouth edges, cheeks, scalp, face, hands, buttocks | NR | Candida colonization more frequent in AD than HC (both lesional and nonlesional skin); highest colonization on the face | lack of control group; lack of information about sex and treatment of the study population; heterogenous age of the study population; unspecified identification methods of the yeast species |
Nakabayashi (2000) | skin swabs ⟶ culture-based typing (Sabouraud’s agar growth, Sabouraud’s agar growth with Tween test, catalase reaction, macroscopic and microscopic examination with molecular tests) | 17 (8 M, 9 F), 22–41 y; | 108 (90 ± 1 M, 18 ± 1 F) *, 22–64 y | scalp, face, trunk (with and without skin lesions) | NR | Mallassezia colonization lower on lesional skin; M. furfur isolated more frequently from lesional skin than nonlesional skin | small study group; lack of information about the treatment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepańska, M.; Blicharz, L.; Nowaczyk, J.; Makowska, K.; Goldust, M.; Waśkiel-Burnat, A.; Czuwara, J.; Samochocki, Z.; Rudnicka, L. The Role of the Cutaneous Mycobiome in Atopic Dermatitis. J. Fungi 2022, 8, 1153. https://doi.org/10.3390/jof8111153
Szczepańska M, Blicharz L, Nowaczyk J, Makowska K, Goldust M, Waśkiel-Burnat A, Czuwara J, Samochocki Z, Rudnicka L. The Role of the Cutaneous Mycobiome in Atopic Dermatitis. Journal of Fungi. 2022; 8(11):1153. https://doi.org/10.3390/jof8111153
Chicago/Turabian StyleSzczepańska, Milena, Leszek Blicharz, Joanna Nowaczyk, Karolina Makowska, Mohamad Goldust, Anna Waśkiel-Burnat, Joanna Czuwara, Zbigniew Samochocki, and Lidia Rudnicka. 2022. "The Role of the Cutaneous Mycobiome in Atopic Dermatitis" Journal of Fungi 8, no. 11: 1153. https://doi.org/10.3390/jof8111153
APA StyleSzczepańska, M., Blicharz, L., Nowaczyk, J., Makowska, K., Goldust, M., Waśkiel-Burnat, A., Czuwara, J., Samochocki, Z., & Rudnicka, L. (2022). The Role of the Cutaneous Mycobiome in Atopic Dermatitis. Journal of Fungi, 8(11), 1153. https://doi.org/10.3390/jof8111153